The Effect of Adding Banana Fibers on the Physical and Mechanical Properties of Mortar for Paving Block Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportions
2.3. Experimental Methodology
2.3.1. Mortar Sample Preparation
2.3.2. Ultrasonic-Pulse Velocity (UPV)
2.3.3. Compressive Strength
2.3.4. Compressive Strength Modeling
C | = | modeled compressive strength; |
x | = | curing period (days); |
y | = | initial rate of compressive strength (IRC); |
z | = | ultimate compressive strength (UC). |
2.3.5. Flexural Strength
2.3.6. Total Water Absorption (TWA)
2.3.7. Capillary Water Absorption (CWA)
2.3.8. Capillary-Diffusive Model
M/A | = | weight of water absorbed per unit of area (kg/m2); |
C | = | constant associated with the distance from the concrete surface where capillary pores regulate the initial sorption; |
ρ | = | density of the water (kg/m3); |
S | = | sorptivity coefficient (kg/m2·s1/2); |
t | = | time (s); |
CO | = | invariance of water concentration (kg/m2); |
L | = | depth of the sample = 0.1 m; |
D | = | diffusion coefficient (m2/s). |
3. Results and Discussion
3.1. Ultrasonic-Pulse Velocity (UPV)
3.2. Compressive Strength
3.3. Flexural Strength
3.4. Total Water Absorption (TWA)
3.5. Capillary-Diffusive Process
3.6. Relationships between Various Properties
3.6.1. Compressive Strength-UPV Relationship
3.6.2. Compressive Strength–Flexural Strength Relationship
3.6.3. Compressive Strength-(M/A) Relationship
4. Conclusions
- The addition of 0.5% BF resulted in either similar or slightly higher compressive and flexural strength compared to the control. Beyond 0.5%, there is a consistent reduction in mechanical properties.
- A correlation coefficient of R2 ~ 0.9 indicates that the hyperbolic model was effective in predicting the compressive strength over a 90-day period. Both the initial length change and the ultimate length change parameters peaked at 0.5% BF addition and subsequently steadily declined with increasing BF%.
- As the amount of BF added to mortar mixes rises, the TWA increases. With reference to the control, the TWA is increased by 1, 11, 21.8, and 37.1% for mixes containing 0.5%, 1%, 1.5%, and 2% BF, respectively, at 28 days.
- The weight of water absorbed per area increases with the addition of BF to the mortar mixture. M/A is increased by 93, 110, 130, and 152% at 28 days for mixes containing 0.5, 1, 1.5, and 2% BF, respectively, compared to the control mix.
- With a correlation coefficient of R2 > 0.99, the capillary-diffusive model successfully predicted the capillary-diffusive phenomenon as a function of time. The sorptivity and diffusion coefficients exhibited a progressive increase when BF is added and a reduction as the curation period progresses.
- UPV and flexural strength show a strong positive association with compressive strength with high coefficients of correlation (R2 ≥ 0.9). On the other hand, M/A is negatively correlated to compressive strength.
- According to this study, BF content of 0.5% in the matrix yields the best mechanical and physical properties, providing appropriate mechanical and durability performance. Future research should consider adding less than 0.5% BF.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Okonkwo, C.E.; Alhassan, E.A.; Ajiboye, M. Durability and strength properties of particle boards from polystyrene–wood wastes. J. Mater. Cycles Waste Manag. 2019, 21, 1541–1549. [Google Scholar] [CrossRef]
- Tolêdo Filho, R.D.; Ghavami, K.; England, G.L.; Scrivener, K. Development of vegetable fibre–mortar composites of improved durability. Cem. Concr. Compos. 2003, 25, 185–196. [Google Scholar] [CrossRef]
- Al-Massri, G.; Ghanem, H.; Khatib, J.; Kırgız, M.S.; Elkordi, A. Chemical shrinkage, autogenous shrinkage, drying shrinkage, and expansion stability of interfacial transition zone material using alkali-treated banana fiber for concrete. J. Struct. Integr. Maint. 2024, 9, 2390650. [Google Scholar] [CrossRef]
- De Andrade Silva, F.; Mobasher, B.; Toledo Filho, R.D. Cracking mechanisms in durable sisal fiber reinforced cement composites. Cem. Concr. Compos. 2009, 31, 721–730. [Google Scholar] [CrossRef]
- Shah, I.; Li, J.; Yang, S.; Zhang, Y.; Anwar, A. Experimental investigation on the mechanical properties of natural fiber reinforced concrete. J. Renew. Mater. 2022, 10, 1307. [Google Scholar] [CrossRef]
- Khan, M.B.; Shafiq, N.; Waqar, A.; Radu, D.; Cismaș, C.; Imran, M.; Almujibah, H.; Benjeddou, O. Effects of jute fiber on fresh and hardened characteristics of concrete with environmental assessment. Buildings 2023, 13, 1691. [Google Scholar] [CrossRef]
- Prafulla, K.; Nagaraju, A. An experimental study on coir fiber reinforced concrete with ground granulated blast furnace slag and dolomite powder as partial replacement of cement. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1086, p. 012052. [Google Scholar] [CrossRef]
- Machaka, M.; Khatib, J.; Baydoun, S.; Elkordi, A.; Assaad, J.J. The Effect of Adding Phragmites australis Fibers on the Properties of Concrete. Buildings 2022, 12, 278. [Google Scholar] [CrossRef]
- Zouaoui, Y.; Benmahiddine, F.; Yahia, A.; Belarbi, R. Hygrothermal and mechanical behaviors of fiber mortar: Comparative study between palm and hemp fibers. Energies 2021, 14, 7110. [Google Scholar] [CrossRef]
- Li, Q.; Ibrahim, L.; Zhou, W.; Zhang, M.; Yuan, Z. Treatment methods for plant fibers for use as reinforcement in cement-based materials. Cellulose 2021, 28, 5257–5268. [Google Scholar] [CrossRef]
- Mohammed-Ziegler, I.; Oszlánczi, Á.; Somfai, B.; Hórvölgyi, Z.; Pászli, I.; Holmgren, A.; Forsling, W. Surface free energy of natural and surface-modified tropical and European wood species. J. Adhes. Sci. Technol. 2004, 18, 687–713. [Google Scholar] [CrossRef]
- Mohammed-Ziegler, I.; Tánczos, I.; Hórvölgyi, Z.; Agoston, B. Water-repellent acylated and silylated wood samples and their surface analytical characterization. Colloids Surf. A Physicochem. Eng. Asp. 2008, 319, 204–212. [Google Scholar] [CrossRef]
- Arias, P. The World Banana Economy 2003, 1985–2002 (No. 1). Food & Agriculture Org. Available online: https://www.fao.org/3/y5102e/y5102e04.htm (accessed on 15 September 2024).
- Ali, B.; Azab, M.; Ahmed, H.; Kurda, R.; El Ouni, M.H.; Elhag, A.B. Investigation of physical, strength, and ductility characteristics of concrete reinforced with banana (Musaceae) stem fiber. J. Build. Eng. 2022, 61, 105024. [Google Scholar] [CrossRef]
- Logeshwar, A.B.; Bhuvaneshpandi, M.; Harishkanna, V.; Midhunkumar, R.; Praveenkumar, S. Effect of Banana Fibre on Strength Properties of Bagasse ash & Rice Husk ash blended high performance concrete composite. In Proceedings of the ASPS Conference Proceedings, Rajasthan, India, 19–22 December 2022; Volume 1, pp. 201–206. [Google Scholar] [CrossRef]
- Pathan, T.A.; Jhumarwala, R.A. Evaluation of mechanical properties of high strength banana fibre concrete (HSBFC) incorporating fly ash and silica fume. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 780–785. [Google Scholar] [CrossRef]
- Lamichhane, N.; Lamichhane, A.; Gyawali, T.R. Enhancing mechanical properties of mortar with short and thin banana fibers: A sustainable alternative to synthetic fibers. Heliyon 2024, 10, e30652. [Google Scholar] [CrossRef]
- Thanushan, K.; Sathiparan, N. Mechanical performance and durability of banana fibre and coconut coir reinforced cement stabilized soil blocks. Materialia 2022, 21, 101309. [Google Scholar] [CrossRef]
- ASTM C1437-15 2015; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C 597; Standard Test Method for Pulse Velocity through Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- Ghanem, H.; Khatib, J.; Elkordi, A. Effect of partial replacement of sand by mswi-ba on the properties of mortar. BAU J. Sci. Technol. 2020, 1, 4. [Google Scholar] [CrossRef]
- ASTM C109; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens. ASTM International: West Conshohocken, PA, USA, 2016.
- Ghanem, H.; Ramadan, R.; Khatib, J.; Elkordi, A. A Review on Chemical and Autogenous Shrinkage of Cementitious Systems. Materials 2024, 17, 283. [Google Scholar] [CrossRef]
- ASTM C348; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. American Society for Testing and Materials International: West Conshohocken, PA, USA, 2008.
- ASTM C1585; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International: West Conshohocken, PA, USA, 2004.
- Martys, N.S.; Ferraris, C.F. Capillary transport in mortars and concrete. Cem. Concr. Res. 1997, 27, 747–760. [Google Scholar] [CrossRef]
- Villar-Cocina, E.; Valencia-Morales, E.; Vega-Leyva, J.; Munoz, J.A. Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model. Comput. Concr. Int. J. 2005, 2, 19–30. [Google Scholar] [CrossRef]
- Wongsa, A.; Kunthawatwong, R.; Naenudon, S.; Sata, V.; Chindaprasirt, P. Natural fiber reinforced high calcium fly ash geopolymer mortar. Constr. Build. Mater. 2020, 241, 118143. [Google Scholar] [CrossRef]
- Mathavan, M.; Sakthieswaran, N.; Babu, O.G. Experimental investigation on strength and properties of natural fibre reinforced cement. Mater. Today Proc. 2021, 37, 1066–1070. [Google Scholar] [CrossRef]
- Alatshan, F.; Altlomate, A.M.; Mashiri, F.; Alamin, W. Effect of date palm fibers on the mechanical properties of concrete. Int. J. Sustain. Build. Technol. Urban Dev. 2017, 8, 68–80. [Google Scholar] [CrossRef]
- Khatib, J.M.; Ramadan, R.; Ghanem, H.; Elkordi, A.; Baalbaki, O.; Kırgız, M. Chemical shrinkage of paste and mortar containing limestone fines. Mater. Today Proc. 2022, 61, 530–536. [Google Scholar] [CrossRef]
- De La Grée, G.D.; Yu, Q.L.; Brouwers, H.J.H. Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars. Constr. Build. Mater. 2017, 143, 48–60. [Google Scholar] [CrossRef]
- Bilba, K.; Arsène, M.A.; Ouensanga, A. Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem. Concr. Compos. 2003, 25, 91–96. [Google Scholar] [CrossRef]
- Tolêdo Filho, R.D.; Scrivener, K.; England, G.L.; Ghavami, K. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem. Concr. Compos. 2000, 22, 127–143. [Google Scholar] [CrossRef]
- Araya-Letelier, G.; Antico, F.C.; Carrasco, M.; Rojas, P.; García-Herrera, C.M. Effectiveness of new natural fibers on damage-mechanical performance of mortar. Constr. Build. Mater. 2017, 152, 672–682. [Google Scholar] [CrossRef]
- Choi, J.I.; Jang, S.Y.; Kwon, S.J.; Lee, B.Y. Tensile behavior and cracking pattern of an ultra-high-performance mortar reinforced by polyethylene fiber. Adv. Mater. Sci. Eng. 2017, 2017, 5383982. [Google Scholar] [CrossRef]
- Aslon MW, B.; Lakawa, I.; Sulaiman, S.; Hawa, S. Testing the Compressive Strength of Concrete With the Utilization of Rice Husk Ash and Palm Fiber. Sultra Civ. Eng. J. 2023, 4, 11–19. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, J.; Wang, J. Flexural performance of recycled concrete beam reinforced with modified basalt fiber and nano-silica. Case Stud. Constr. Mater. 2023, 18, e02022. [Google Scholar] [CrossRef]
- Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes. Compos. Part B Eng. 2016, 86, 214–220. [Google Scholar] [CrossRef]
- Arshad, S.; Sharif, M.B.; Irfan-ul-Hassan, M.; Khan, M.; Zhang, J.L. Efficiency of supplementary cementitious materials and natural fiber on mechanical performance of concrete. Arab. J. Sci. Eng. 2020, 45, 8577–8589. [Google Scholar] [CrossRef]
- Mounanga, P.; Khelidj, A.; Loukili, A.; Baroghel-Bouny, V. Predicting Ca (OH) 2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem. Concr. Res. 2004, 34, 255–265. [Google Scholar] [CrossRef]
- Kouta, N.; Saliba, J.; Saiyouri, N. Effect of flax fibers on early age shrinkage and cracking of earth concrete. Constr. Build. Mater. 2020, 254, 119315. [Google Scholar] [CrossRef]
- Alzebdeh, K.I.; Nassar, M.M.; Arunachalam, R. Effect of fabrication parameters on strength of natural fiber polypropylene composites: Statistical assessment. Measurement 2019, 146, 195–207. [Google Scholar] [CrossRef]
- Ji, Y.; Ji, W.; Zhang, Z.; Wang, R. Road performance investigation on fiber-reinforced recycled cement base material. Polymers 2022, 14, 4102. [Google Scholar] [CrossRef]
- Ghanem, H.; Machaka, M.; Khatib, J.; Elkordi, A.; Baalbaki, O. Effect of partial replacement of cement by MSWIBA on the properties of mortar. Acad. J. Civ. Eng. 2019, 37, 82–89. [Google Scholar] [CrossRef]
- Khatib, J.; Ramadan, R.; Ghanem, H.; ElKordi, A. Effect of using limestone fines on the chemical shrinkage of pastes and mortars. Environ. Sci. Pollut. Res. 2023, 30, 25287–25298. [Google Scholar] [CrossRef]
- Ren, F.; Zhou, C.; Zeng, Q.; Ding, Z.; Xing, F.; Wang, W. The dependence of capillary sorptivity and gas permeability on initial water content for unsaturated cement mortars. Cem. Concr. Compos. 2019, 104, 103356. [Google Scholar] [CrossRef]
- Khatib, J.; Ramadan, R.; Ghanem, H.; Elkordi, A. Volume stability of cement paste containing limestone fines. Buildings 2021, 11, 366. [Google Scholar] [CrossRef]
- Pipilikaki, P.; Katsioti, M. Study of the hydration process of quaternary blended cements and durability of the produced mortars and concretes. Constr. Build. Mater. 2009, 23, 2246–2250. [Google Scholar] [CrossRef]
Quantity (kg/m3) | |||||||
---|---|---|---|---|---|---|---|
Mortar Code | Cement | Water | Sand | BF | BF (% by vol) | w/c | c/s |
M-0% BF | 657 | 295.6 | 1314 | 0 | 0 | 0.45 | 0.5 |
M-0.5% BF | 657 | 295.6 | 1314 | 6.75 | 0.5 | 0.45 | 0.5 |
M-1% BF | 657 | 295.6 | 1314 | 13.5 | 1 | 0.45 | 0.5 |
M-1.5% BF | 657 | 295.6 | 1314 | 20.25 | 1.5 | 0.45 | 0.5 |
M-2% BF | 657 | 295.6 | 1314 | 27 | 2 | 0.45 | 0.5 |
Quality of Concrete | Excellent | Good | Doubtful | Poor | Very poor |
UPV (km/s) | >4.5 | 3.5-4.5 | 3.0-3.5 | 2.0-3.0 | <2.0 |
Mortar Code | Curing Period (Days) | S (kg/m2·s1/2) | D (m2/s) | R2 |
---|---|---|---|---|
M-0% BF | 1 | 1.15 × 10−2 | 8.03 × 10−5 | 0.983 |
28 | 8.78 × 10−2 | 8.05 × 10−8 | 0.995 | |
M-0.5% BF | 1 | 1.18 × 10−1 | 9.98 × 10−3 | 0.997 |
28 | 8.81 × 10−2 | 5.61 × 10−7 | 0.997 | |
M-1% BF | 1 | 1.20 × 10−1 | 5.60 × 10−2 | 0.995 |
28 | 9.31 × 10−2 | 6.72 × 10−7 | 0.996 | |
M-1.5% BF | 1 | 1.29 × 10−1 | 7.81 × 10−2 | 0.998 |
28 | 1.25 × 10−1 | 2.76 × 10−4 | 0.995 | |
M-2% BF | 1 | 1.31 × 10−1 | 8.24 × 10−2 | 0.998 |
28 | 1.27 × 10−1 | 2.07 × 10−3 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Massri, G.; Ghanem, H.; Khatib, J.; El-Zahab, S.; Elkordi, A. The Effect of Adding Banana Fibers on the Physical and Mechanical Properties of Mortar for Paving Block Applications. Ceramics 2024, 7, 1533-1553. https://doi.org/10.3390/ceramics7040099
Al-Massri G, Ghanem H, Khatib J, El-Zahab S, Elkordi A. The Effect of Adding Banana Fibers on the Physical and Mechanical Properties of Mortar for Paving Block Applications. Ceramics. 2024; 7(4):1533-1553. https://doi.org/10.3390/ceramics7040099
Chicago/Turabian StyleAl-Massri, Ginan, Hassan Ghanem, Jamal Khatib, Samer El-Zahab, and Adel Elkordi. 2024. "The Effect of Adding Banana Fibers on the Physical and Mechanical Properties of Mortar for Paving Block Applications" Ceramics 7, no. 4: 1533-1553. https://doi.org/10.3390/ceramics7040099
APA StyleAl-Massri, G., Ghanem, H., Khatib, J., El-Zahab, S., & Elkordi, A. (2024). The Effect of Adding Banana Fibers on the Physical and Mechanical Properties of Mortar for Paving Block Applications. Ceramics, 7(4), 1533-1553. https://doi.org/10.3390/ceramics7040099