Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks
Abstract
:1. Introduction
2. Basic Equations
2.1. Effects of Current Gradient
2.2. Effects of Collisions
3. Correlation Length
4. High Confinement Mode (H-Mode)
5. Zonal Flows
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiland, J.; Nordman, H. Theory of Fusion Plasmas. In Proceedings of the Varenna-Lausanne Workshop, Chexbres, Switzerland, 3–7 October 1988; Bologna Editrice Compostori: Bologna, Italy, 1988; p. 451. [Google Scholar]
- Weiland, J. Review of mixing length estimates and effects of toroidicity in a fluid model for turbulent transport in tokamaks. Plasma Phys. Rep. 2016, 42, 502–513. [Google Scholar] [CrossRef]
- Weiland, J.; Holod, I. Drift wave transport scalings introduced by varying correlation length. Phys. Plasmas 2004, 12, 012505. [Google Scholar] [CrossRef]
- Eriksson, A.; Weiland, J. Electromagnetic effects on quasilinear turbulent particle transport. Phys. Plasmas 2005, 12, 092509. [Google Scholar] [CrossRef]
- Candy, J. Beta scaling of transport in microturbulence simulations. Phys. Plasmas 2005, 12, 072307. [Google Scholar] [CrossRef]
- Hein, T.; Angioni, C.; Fable, E.; Candy, J. Gyrokinetic study of the role of β on electron particle transport in tokamaks. Phys. Plasmas 2010, 17, 102309. [Google Scholar] [CrossRef]
- Weiland, J. Stability and Transport in Magnetic Confinement Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
- Zhong, W.L.; Zou, X.L.; Bourdelle, C.; Song, S.D.; Artaud, J.F.; Aniel, T.; Duan, X.R. Convective Velocity Reversal Caused by Turbulence Transition in Tokamak Plasma. Phys. Rev. Lett. 2013, 111, 265001. [Google Scholar] [CrossRef]
- Ma, J.; Wang, G.; Weiland, J.; Rafiq, T.; Kritz, A.H. Reversal of particle flux in collisional-finite beta tokamak discharges. Phys. Plasmas 2015, 22, 012304. [Google Scholar] [CrossRef]
- Weiland, J.; Jarmén, A.; Nordman, H. Diffusive particle and heat pinch effects in toroidal plasmas. Nucl. Fusion 1989, 29, 1810. [Google Scholar] [CrossRef]
- Weiland, J. Turbulence at a pinch. Nat. Phys. 2010, 6, 167–168. [Google Scholar] [CrossRef]
- Andersson, P.; Weiland, J. Dispersion relation for pressure-driven toroidal modes including finite Larmor radius effects. Nucl. Fusion 1985, 25, 1761. [Google Scholar] [CrossRef]
- Andersson, P.; Weiland, J. Effect of convective damping on the growth rate of magnetohydrodynamic ballooning modes. Phys. Fluids 1986, 29, 1744–1746. [Google Scholar] [CrossRef]
- Weiland, J. Analytical eigenvalue solution for ηi modes of general modewidth. Phys. Plasmas 2004, 11, 3238–3241. [Google Scholar] [CrossRef]
- Weiland, J. Simulations of the L-H transition on experimental advanced superconducting Tokamak. Phys. Plasmas 2014, 21, 122501. [Google Scholar] [CrossRef]
- Weiland, J.; Zagorodny, A.; Rafiq, T. Theory for transport in magnetized plasmas. Phys. Scr. 2020, 95, 105607. [Google Scholar] [CrossRef]
- Rogers, B.N.; Drake, J.F.; Zeiler, A. Phase Space of Tokamak Edge Turbulence, the L − H Transition, and the Formation of the Edge Pedestal. Phys. Rev. Lett. 1998, 81, 4396–4399. [Google Scholar] [CrossRef]
- Weiland, J.; Mantica, P.; The JET-EFDA Contributors. Effects of flow shear on the correlation length of drift wave turbulence. In Proceedings of the 38th EPS Conference on Plasma Physics, Strasbourg, France, 27 June–1 July 2011; p. P5.130. [Google Scholar]
- Dupree, T.H. A Perturbation Theory for Strong Plasma Turbulence. Phys. Fluids 1966, 9, 1773–1782. [Google Scholar] [CrossRef]
- Zagorodny, A.; Weiland, J. Statistical theory of turbulent transport (non-Markovian effects). Phys. Plasmas 1999, 6, 2359–2372. [Google Scholar] [CrossRef]
- Weiland, J.; Rafiq, T.; Schuster, E. Fast particles in drift wave turbulence. Phys. Plasmas 2023, 30, 042517. [Google Scholar] [CrossRef]
- Weiland, J.; Crombe, K.; Mantica, P.; Naulin, V.; Tala, T. Comparison of Edge and Internal Transport Barriers in Drift Wave Predictive Simulations. AIP Conf. Proc. 2011, 1392, 85–91. [Google Scholar] [CrossRef]
- Rafiq, T.; Weiland, J. Self-consistent core-pedestal ITER scenario modeling. Nucl. Fusion 2021, 61, 116005. [Google Scholar] [CrossRef]
- Weiland, J.; Zagorodny, A. On the normalization of transport from ITG Modes. Phys. Plasmas 2016, 23, 102307. [Google Scholar] [CrossRef]
- Dimits, A.M.; Bateman, G.; Beer, M.A.; Cohen, B.I.; Dorland, W.; Hammett, G.W.; Kim, C.; Kinsey, J.E.; Kotschenreuther, M.; Kritz, A.H.; et al. Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 2000, 7, 969–983. [Google Scholar] [CrossRef]
- Waltz, R.E.; Dominguez, R.R.; Hammett, G.W. Gyro-Landau fluid models for toroidal geometry. Phys. Fluids B Plasma Phys. 1992, 4, 3138–3151. [Google Scholar] [CrossRef]
- Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W. Advances in the simulation of toroidal gyro-Landau fluid model turbulence. Phys. Plasmas 1995, 2, 2408–2416. [Google Scholar] [CrossRef]
- Zagorodny, A.; Weiland, J. Closure at the Irreducible Part of the Fourth Moment for the Case of Constant Coefficients in the Fokker-Planck Equation. AIP Conf. Proc. 2011, 1392, 24–32. [Google Scholar] [CrossRef]
- Merz, F.; Jenko, F. Nonlinear Saturation of Trapped Electron Modes via Perpendicular Particle Diffusion. Phys. Rev. Lett. 2008, 100, 035005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiland, J.; Rafiq, T.; Schuster, E. Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks. Plasma 2023, 6, 459-465. https://doi.org/10.3390/plasma6030031
Weiland J, Rafiq T, Schuster E. Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks. Plasma. 2023; 6(3):459-465. https://doi.org/10.3390/plasma6030031
Chicago/Turabian StyleWeiland, Jan, Tariq Rafiq, and Eugenio Schuster. 2023. "Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks" Plasma 6, no. 3: 459-465. https://doi.org/10.3390/plasma6030031
APA StyleWeiland, J., Rafiq, T., & Schuster, E. (2023). Unveiling the Significance of Correlations in K-Space and Configuration Space for Drift Wave Turbulence in Tokamaks. Plasma, 6(3), 459-465. https://doi.org/10.3390/plasma6030031