Microanalysis of Active Nitrogen Oxides (RONS) Generation Characteristics during DC Negative Corona Discharge at a Needle-Plate Electrode
Abstract
:1. Introduction
2. Numerical Modeling
2.1. Discharge Structure and Boundary Conditions
2.2. Control Equations
2.3. Type of Crash Response
3. Results and Discussion
3.1. Validation of the Validity of Chemical Reaction Systems
3.2. Discharge Current of Negative Corona
3.3. Ionic Behavior during Discharge
3.4. Generation Pattern of ROS
3.4.1. Generation Pattern of Ozone (O3)
3.4.2. Generation Pattern of Hydrogen Peroxide (H2O2)
3.5. Generation Pattern of RNS
4. Conclusions
- (1)
- During a Trichel pulse period, the rising and falling edges of the current correspond to the development of positive ions (N2+ and O2+) in the cathode-sheath layer, respectively. Negative ions (O− and O2−) move away from the cathode and diffuse continuously with the development of the electron collapse and the electric-field force, showing a typical layering phenomenon.
- (2)
- Active oxygen ROS (O3) is horizontally above the plate electrode except for the area below the needle tip, where its density is approximately uniformly distributed at the same instant, and the concentration of O3 tends to increase cumulatively with time.
- (3)
- The variation pattern of active oxygen ROS (H2O2) is the same as that of the current pulse, with the maximum density at the peak moment along the rise of the current pulse and a decrease with the development of the current pulse. The number density of H2O2 is greater than 0 throughout the pulse period. Thus, the concentration of H2O2 shows the same trend of cumulative increase with time and can be approximated as a uniform distribution of H2O2 above the grounding electrode plate at the same moment except for the area below the needle tip.
- (4)
- The concentration of active nitrogen RNS (NO) increases cumulatively with time throughout the pulse period and is approximately uniformly distributed at the same moment in the levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dordizadeh, P.; Adamiak, K.; Castle, G. Experimental study of the characteristics of Trichel pulses in the needle-plane negative corona discharge in atmospheric air. J. Electrost. 2016, 88, 49–54. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Ning, P.; Cheng, C.; Xu, K.; Wang, F.; Bian, Z.; Yan, S. Conversion of COS by corona plasma and the effect of simultaneous removal of COS and dust. Chem. Eng. J. 2016, 290, 328–334. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, C.; Yan, P.; Zhu, W.; Wang, Y.; Gao, X.; Luo, Z.; Ni, M.; Cen, K. Effect of electrode configuration on particle collection in a high-temperature electrostatic precipitator. Sep. Purif. Technol. 2016, 166, 157–163. [Google Scholar] [CrossRef]
- Nie, S.; Qin, T.; Ji, H.; Nie, S.; Dai, Z. Synergistic effect of hydrodynamic cavitation and plasma oxidation for the degradation of Rhodamine B dye wastewater. J. Water Process Eng. 2022, 49, 103022. [Google Scholar] [CrossRef]
- Uniyal, A.; Pal, A.; Srivastava, G.; Rana, M.; Taya, S.A.; Sharma, A.; Altahan, B.R.; Tomar, S.; Singh, Y.; Parajuli, D.; et al. Surface plasmon resonance biosensor sensitivity improvement employing of 2D materials and BaTiO3 with bimetallic layers of silver. J. Mater. Sci. Mater. Electron. 2023, 34, 466. [Google Scholar] [CrossRef]
- Xu, W.; Song, Z.; Luan, X.; Ding, C.; Cao, Z.; Ma, X. Biological Effects of High-Voltage Electric Field Treatment of Naked Oat Seeds. Appl. Sci. 2019, 9, 3829. [Google Scholar] [CrossRef]
- Song, Z.; Ding, C.; Luan, X.; Chen, H. Review of research on biological effects of high-voltage corona electric field. J. Nucl. Agric. 2019, 33, 69–75. [Google Scholar] [CrossRef]
- Luan, X.; Song, Z.; Du, J.; Wen, X.; Liu, H.; Yang, Z. Biological effects of high voltage corona electric field treatment of alfalfa. Seed 2019, 38, 18–23. [Google Scholar] [CrossRef]
- Liu, M.; Tang, J.; Pan, C. Experimental study on the development process of DC positive and negative corona on needle plates in air. High Volt. Technol. 2016, 42, 1018–1027. [Google Scholar] [CrossRef]
- Moreau, E.; Audier, P.; Benard, N. Ionic wind produced by positive and negative corona discharges in air. J. Electrost. 2018, 93, 85–96. [Google Scholar] [CrossRef]
- Xu, L.P. Simulation Study on the Microscopic Discharge Mechanism of Air Needle-Plate Positive and Negative Corona. Master’s Thesis, South China University of Technology, Guangzhou, China, 2020. [Google Scholar] [CrossRef]
- Trichel, G.W. The Mechanism of the Negative Point to Plane Corona Near Onset. Phys. Rev. 1938, 54, 1078–1084. [Google Scholar] [CrossRef]
- Feng, Q.; Huang, L.; Liu, D.; Wu, J.B.; Qi, H.W.; Dang, Z.M. Negative corona discharge characteristics of needle-plate and rod-plate electrode structures at different temperatures. High Volt. Technol. 2021, 47, 1847–1856. [Google Scholar] [CrossRef]
- Liu, X. Research of the Mechanism and Characteristics in Air Discharge Based on the Fluid-Chemical Reaction Hybrid Model. Ph.D. Thesis, Chongqing University, Chongqing, China, 2012; pp. 41–64. [Google Scholar]
- Liao, R.J.; Wu, F.F.; Yang, L.J.; Wang, K.; Zhou, Z.; Liu, K.L. Investigation on microcosmic characteristics of Trichel pulse in bar-plate DC negative corona discharge based on a novel simulation model. Int. Rev. Electr. Eng. 2013, 8, 504–513. [Google Scholar]
- Liao, R.; Liu, K.; Wu, F.; Yang, L.; Zhou, Z. Simulation study on the characteristics of heavy particles during negative DC corona discharge at rod-plate electrodes. High Volt. Technol. 2014, 40, 7. [Google Scholar] [CrossRef]
- Zhang, Y. DC Corona Discharge Characteristics and Its Spatial Ion Behavior. Ph.D. Thesis, Beijing University of Technology, Beijing, China, 2016. [Google Scholar]
- Sera, B.; Spatenka, P.; Serý, M.; Vrchotova, N.; Hruskova, I. Influence of Plasma Treatment on Wheat and Oat Germination and Early Growth. IEEE Trans. Plasma Sci. 2010, 38, 2963–2968. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Q.; Chen, G.; Yang, S. Effects of atmospheric pressure plasma treatment on seed germination and growth and development of lettuce. North China J. Agric. 2007, 6, 108–113. [Google Scholar] [CrossRef]
- Bailly, C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004, 14, 93–107. [Google Scholar] [CrossRef]
- Nishimura, H.; Hayamizu, T.; Yanagisawa, Y. Reduction of nitrogen oxide (NO2) to nitrogen oxide (NO)by rush and other plants. Environ. Sci. Technol. 1986, 20, 413–416. [Google Scholar] [CrossRef]
- Gong, B.; Yan, Y.; Zhang, L.; Cheng, F.; Liu, Z.; Shi, Q. Unravelling GSNOR-Mediated S-Nitrosylation and Multiple Developmental Programs in Tomato Plants. Plant Cell Physiol. 2019, 60, 2523–2537. [Google Scholar] [CrossRef]
- Ali, Q.; Daud, M.; Haider, Z.M.; Ali, S.; Rizwan, M.; Aslam, N.; Noman, A.; Iqbal, N.; Shahzad, F.; Deeba, F.; et al. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol. Biochem. 2017, 119, 50–58. [Google Scholar] [CrossRef]
- Bethke, P.C.; Gubler, F.; Jacobsen, J.V.; Jones, R.L. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 2004, 219, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Sarath, G.; Hou, G.; Baird, L.M.; Mitchell, R.B. ABA, ROS and NO are Key Players during Switchgrass Seed Germination. Plant Signal Behav. 2007, 2, 492–493. [Google Scholar] [CrossRef] [PubMed]
- Bataller, M.; Veliz, E.; Riverol, Y.; Fernández, L.A.; Salomón, J.L.; Camilo, F.A.; Fernández, I. Effect of Ozone on Sprouting of Potato and Sugarcane Seeds: A Sustainable Alternative of Disinfection. Ozone Sci. Eng. 2021, 43, 451–460. [Google Scholar] [CrossRef]
- Xu, W. Study on the Biological Effect of Seeds Treated with High Voltage Corona Electric Field. Master’s Thesis, Inner Mongolia University of Technology, Hohhot, China, 2021. [Google Scholar] [CrossRef]
- Huang, X. Study on the Effect of Pulsed Atmospheric Pressure Low Temperature Plasma on the Growth Characteristics of Ganoderma lucidum. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2021. [Google Scholar] [CrossRef]
- Dobrin, D.; Magureanu, M.; Mandache, N.B.; Ionita, M.-D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innov. Food Sci. Emerg. Technol. 2015, 29, 255–260. [Google Scholar] [CrossRef]
- Cui, D.; Hu, X.; Yin, Y.; Zhu, Y.; Zhuang, J.; Wang, X.; Ma, R.; Jiao, Z. Quality enhancement and microbial reduction of mung bean (Vigna radiata) sprouts by non-thermal plasma pretreatment of seeds. Plasma Sci. Technol. 2022, 24, 045504. [Google Scholar] [CrossRef]
- Liu, X.; He, W.; Yang, F.; Xiao, H.G.; Ma, J. Simulation and analysis of electron transport parameters in air discharge. High Volt. Eng. 2011, 37, 1614–1619. [Google Scholar]
- Itikawa, Y.; Mason, N. Cross sections for electron collisions with water molecules. J. Phys. Chem. Ref. Data 2005, 34, 1–22. [Google Scholar] [CrossRef]
- Tu, H.; Zhong, A.; Dai, D.; Li, L. Effect of electrode spacing on the generation of surface dielectric barrier discharge products. J. Nanchang Univ. (Sci. Ed.) 2022, 46, 266–276. [Google Scholar] [CrossRef]
- Ning, W.; Dai, D.; Zhang, Y.; Han, Y.; Li, L. Effects of trace of nitrogen on the helium atmospheric pressure plasma jet interacting with a dielectric substrate. J. Phys. D Appl. Phys. 2018, 51, 125204. [Google Scholar] [CrossRef]
- Fang, Z.; Lin, J.; Xie, X.; Qiu, Y.; Kuffel, E. Experimental study on the transition of the discharge modes in air dielectric barrier discharge. J. Phys. D. Appl. Phys. A Europhys. J. 2009, 42, 085203. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, C.; Hu, X.; Ren, C.; Chen, G.; Shao, T. Analysis of factors influencing nitrogen fixation by nanosecond pulsed liquid-phase discharge coupled with microbubbles. J. Electrotechnol. 2023, 38, 1–12. [Google Scholar] [CrossRef]
- Pang, X.; Deng, Z.; Jia, P.; Liang, W. Numerical simulation of nitrogen oxide particle behavior in atmospheric plasma. J. Phys. 2011, 60, 345–353. [Google Scholar] [CrossRef]
Number | Reaction | Rate Coefficient |
---|---|---|
R1 | e + N2 => e + N2 | f(ɛ) |
R2 | e + N2 => N2+ + 2e | f(ɛ) |
R3 | e + O2 => e + O2 | f(ɛ) |
R4 | e + O2 => O2− | f(ɛ) |
R5 | e + O2 => O + O− | f(ɛ) |
R6 | e + O2 => O2++ 2e | f(ɛ) |
R7 | e + 2O2 => O2 + O2− | 5.17 × 10−43Te−1 |
R8 | e + N2 + N2+ => 2N2 | 6.07 × 10−34Te−2.5 |
R9 | 2e + N2+ => N2 + e | 7.18 × 10−39Te−4.5 |
R10 | O2+ + e => 2O | 6.25 × 10−15Te−1 |
R11 | N2+ + e => 2N | 2.8 × 10−13(300/Te)0.5 |
R12 | e + O3 => O2 + O− | 1 × 10−17 |
R13 | e + O2+ => O2 | 4 × 10−18 |
R14 | 2e + O2+ => O2 + e | 7.18 × 10−39Te−4.5 |
R15 | e + N2+ => N2 | 7.72 × 10−14Te−0.5 |
R16 | O2− + O2+ => 2O2 | 2 × 10−13 |
R17 | O2 + N2+ => N2 + O2+ | 1.04 × 10−15Tg−0.5 |
R18 | O2+ + O2 + O2− => 2O2 + O2 | 2 × 10−37 |
R19 | O2+ + N2 + O2− => 2O2 + N2 | 2 × 10−37 |
R20 | O + O2 + N2 => O3 + N2 | 2.5 × 10−46 |
R21 | O + O2 + O2 => O3 + O2 | 2.5 × 10−46 |
R22 | O− + O2+ => O + O2 | 3.46 × 10−12Tg−0.5 |
R23 | O3 + N => NO + O2 | 6 × 10−19 |
R24 | O + NO2 => NO + O2 | 2.63 × 10−17exp(−13,790/Tg) |
R25 | O2 + N => NO + O | 1.0 × 10−31(300/Tg)2.5 |
R26 | O3 + NO2 => NO + 2O2 | 1.0 × 10−31(300/Tg)2.5 |
R27 | O3 + NO => NO2 + O2 | 3.6 × 10−18exp(−1560/Tg) |
R28 | O + N2O => 2NO | 1.66 × 10−16exp(−14,090/(Te) |
R29 | 3NO => NO2 + N2O | 2.95 × 10−50exp(−13,490/Te) |
R30 | NO + N2O => NO2 + N2 | 4.17 × 10−16exp(−25,160/Te) |
R31 | 2NO2 => NO3 + NO | 5.37 × 10−18exp(−12,880/Te) |
R32 | NO + NO3 => 2NO2 | 1.6 × 10−17exp(150/Tg) |
R33 | O3 + NO2 => NO3 + O2 | 1.2 × 10−19exp(−2450/Tg) |
R34 | NO + NO3 => 2NO + O2 | 2.71 × 10−17Tg−0.23exp(−947/Tg) |
Time | NO (1/m3) | N (1/m3) |
---|---|---|
t1 | 2.4514 × 1010 | 2.4514 × 1010 |
t2 | 2.4515 × 1010 | 2.4515 × 1010 |
t3 | 2.4517 × 1010 | 2.4517 × 1010 |
t4 | 2.4520 × 1010 | 2.4520 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Jin, F.; Ma, S.; Liu, X.; Leng, X.; Chen, K. Microanalysis of Active Nitrogen Oxides (RONS) Generation Characteristics during DC Negative Corona Discharge at a Needle-Plate Electrode. Plasma 2023, 6, 649-662. https://doi.org/10.3390/plasma6040045
Shi J, Jin F, Ma S, Liu X, Leng X, Chen K. Microanalysis of Active Nitrogen Oxides (RONS) Generation Characteristics during DC Negative Corona Discharge at a Needle-Plate Electrode. Plasma. 2023; 6(4):649-662. https://doi.org/10.3390/plasma6040045
Chicago/Turabian StyleShi, Jinqiang, Fubao Jin, Shangang Ma, Xinhe Liu, Xuejian Leng, and Keyuan Chen. 2023. "Microanalysis of Active Nitrogen Oxides (RONS) Generation Characteristics during DC Negative Corona Discharge at a Needle-Plate Electrode" Plasma 6, no. 4: 649-662. https://doi.org/10.3390/plasma6040045
APA StyleShi, J., Jin, F., Ma, S., Liu, X., Leng, X., & Chen, K. (2023). Microanalysis of Active Nitrogen Oxides (RONS) Generation Characteristics during DC Negative Corona Discharge at a Needle-Plate Electrode. Plasma, 6(4), 649-662. https://doi.org/10.3390/plasma6040045