Hybrid Dielectric Barrier Discharge Reactor: Characterization for Ozone Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup
2.2. HDBD Reactor
- They act as spacers between the electrode bulk and the dielectric barrier, defining the length of the volume DBD microdischarges and the cross-section area for the gas flow.
- The circular face surface of the spacer touches the dielectric barrier, resulting in the generation of the convex SDBD.
- The heat deposited on the electrode surface is conducted to the Peltier cooler via the posts and the alumina plate, promoting a lower discharge temperature. To optimize this effect, the position of each post is aligned with the center of each Peltier element.
- The posts obstruct the gas flow, causing better mixing, resulting in better convective cooling, and hence, better ozone production performance of the HDBD reactor.
2.3. ITO-Coated Plate
2.4. DBD Driver
2.5. UV Absorption Measurement
2.6. Gases
3. Results and Discussion
3.1. Discharge Morphology
3.2. High Voltage Signal
3.3. Discharge Power Estimation
3.4. Current Spectrum
3.5. Ozone Production in Oxygen
3.5.1. Specific Energy Input
3.5.2. Mechanisms of Ozone Production and Destruction in Oxygen
3.5.3. Influence of Oxygen Flow
3.5.4. Influence of Voltage
3.5.5. Influence of Duty Cycle
3.5.6. Influence of Peltier Cooling
3.6. Ozone Produced in Synthetic Air
3.6.1. Reaction Channels Due to Nitrogen
3.6.2. Influence of Synthetic Air Flow
3.6.3. Influence of Duty Cycle
3.6.4. Effectivity of the Peltier Cooling
3.7. Ozone Produced in Compressed Dry Air
3.7.1. Reaction Channels Due to Humidity
3.7.2. Influence of Compressed Air Flow
3.7.3. Influence of Duty Cycle
3.7.4. Influence of Peltier Cooling
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APP | Atmospheric pressure plasma |
APPJ | Atmospheric pressure plasma jet |
CAPP | Cold atmospheric pressure plasma |
CDA | Compressed dry air |
DBD | Dielectric barrier discharge |
EEDF | Electron energy distribution function |
FFT | Fast Fourier-transform [112] |
HDBD | Hybrid surface-volume-DBD |
HLT | Half-life time |
HV | High voltage |
ICP | Inductively coupled plasma |
ITO | Indium tin oxide |
MDIR | microdischarges impulses response |
MFC | Mass flow controller |
PAA | Pulsed atmospheric arc |
PWM | Pulse-width modulation |
RMS | Root mean square |
ROS | Reactive oxidized species |
RONS | Reactive oxygen-nitrogen species |
SDBD | Surface dielectric barrier discharge |
SEI | specific energy input |
SLM | Standard liter per minute |
UV | Ultraviolet light |
VDBD | Volume dielectric barrier discharge |
References
- Rice, R.; Netzer, A. Handbook of Ozone Technology and Applications, Vol.1; Ann Arbor Science Publishers: Ann Arbor, MI, USA, 1982. [Google Scholar]
- McClurkin, J.D.; Maier, D.E.; Ileleji, K.E. Half-life time of ozone as a function of air movement and conditions in a sealed container. J. Stored Prod. Res. 2013, 55, 41–47. [Google Scholar] [CrossRef]
- McClurkin, J.; Maier, D. Half-life time of ozone as a function of air conditions and movement. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; pp. 381–385. [Google Scholar]
- Batakliev, T.; Georgiev, V.; Anachkov, M.; Rakovsky, S.; Zaikov, G. Ozone decomposition. Interdiscip Toxicol. 2014, 7, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Guiza, M.; Ouederni, A.; Ratel, A. Decomposition of dissolved ozone in the presence of activated carbon: An experimental study. Ozone Sci. Eng. 2004, 26, 299–307. [Google Scholar] [CrossRef]
- Li, W.; Gibbs, G.V.; Oyama, S.T. Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and ab initio molecular orbital calculations. J. Am. Chem. Soc. 1998, 120, 9041–9046. [Google Scholar] [CrossRef]
- von Sonntag, C.; von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, UK, 2012; Available online: https://iwaponline.com/ebooks/book/465/Chemistry-of-Ozone-in-Water-and-Wastewater (accessed on 7 June 2024).
- O’Donnell, C.; Tiwari, B.; Cullen, P.J.; Rice, R.G. Ozone in Food Processing, 1st ed.; Wiley-Blackwell: Ames, IA, USA, 2012. [Google Scholar]
- Botondi, R.; Barone, M.; Grasso, C. A review into the effectiveness of ozone technology for improving the safety and preserving the quality of fresh-cut fruits and vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Petani, L.; Koker, L.; Herrmann, J.; Hagenmeyer, V.; Gengenbach, U.; Pylatiuk, C. Recent developments in ozone sensor technology for medical applications. Micromachines 2020, 11, 624. [Google Scholar] [CrossRef] [PubMed]
- Lunov, O.; Zablotskii, V.; Churpita, O.; Chánová, E.; Syková, E.; Dejneka, A.; Kubinová, Š. Cell death induced by ozone and various non-thermal plasmas: Therapeutic perspectives and limitations. Sci. Rep. 2014, 4, 7129. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.; Griffith, C.; Peters, A. Bactericidal properties of Ozone and its potential applications as a terminal disinfectant. J. Food Prot. 2000, 63, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Byeon, J.H.; Yoon, K.Y.; Park, J.H.; Hwang, J. Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Sep. Purif. Technol. 2011, 77, 87–93. [Google Scholar] [CrossRef]
- Ohkawa, H.; Akitsu, T.; Ohtsuki, K.; Ohnishi, M.; Tsuji, M. High-grade disinfection using high-density ozone. J. Adv. Oxid. Technol. 2004, 7, 154–160. [Google Scholar] [CrossRef]
- Iwamura, T.; Nagano, K.; Nogami, T.; Matsuki, N.; Kosaka, N.; Shintani, H.; Katoh, M. Confirmation of the sterilization effect using a high concentration of ozone gas for the bio-clean room. Biocontrol Sci. 2013, 18, 9–20. [Google Scholar] [CrossRef]
- Dohan, J.M.; Masschelein, W.J. The photochemical generation of ozone: Present state–of–the–art. Ozone Sci. Eng. 1987, 9, 315–334. [Google Scholar] [CrossRef]
- Eliasson, B.; Kogelschatz, U. Ozone generation with narrow–band UV radiation. Ozone Sci. Eng. 1991, 13, 365–373. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Popov, N.A.; Proshina, O.V.; Rakhimova, T.V.; Rulev, G.B.; Saenko, V.B. Study of the ozone production and loss during oxygen photolysis in a VUV ozonator chamber. Tech. Phys. Lett. 2001, 27, 29–31. [Google Scholar] [CrossRef]
- Christensen, P.A.; Yonar, T.; Zakaria, K. The electrochemical generation of ozone: A review. Ozone Sci. Eng. 2013, 35, 149–167. [Google Scholar] [CrossRef]
- Schönbein, C. On the odour accompanying electricity and on the probability of its dependence on the presence of a new substance. Philos. Mag. (III) 1840, 17, 293–294. [Google Scholar] [CrossRef]
- Buntat, Z.; Smith, I.R.; Razali, N.A.M. Ozone generation by pulsed streamer discharge in air. Appl. Phys. Res. 2009, 1, 2–10. [Google Scholar] [CrossRef]
- Chang, J.S.; Lawless, P.A.; Yamamoto, T. Corona discharge processes. IEEE Trans. Plasma Sci. 1991, 19, 1152–1166. [Google Scholar] [CrossRef]
- Skalný, J.; Országh, J.; Matejčík, Š.; Mason, N. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide. Phys. Scr. 2008, T131, 014012–1–014012–3. [Google Scholar] [CrossRef]
- Itoh, H.; Teranishi, K.; Suzuki, S. Discharge plasmas generated by piezoelectric transformers and their applications. Plasma Sources Sci. Technol. 2006, 15, S51. [Google Scholar] [CrossRef]
- Teranishi, K.; Shimomura, N.; Suzuki, S.; Itoh, H. Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: Effect of dielectric electrode materials on ozone generation. Plasma Sources Sci. Technol. 2009, 18, 045011. [Google Scholar] [CrossRef]
- Korzec, D.; Hoppenthaler, F.; Andres, T.; Guentner, S.; Lerach, S. Application of nitrogen piezoelectric direct discharge for increase in surface free energy of polymers. Plasma 2022, 5, 111–129. [Google Scholar] [CrossRef]
- Teranishi, K.; Suzuki, S.; Itoh, H. A novel generation method of dielectric barrier discharge and ozone production using a piezoelectric transformer. Jpn. J. Appl. Phys. 2004, 43, 9733–9739. [Google Scholar] [CrossRef]
- Itoh, H. Discharge plasmas generated by piezoelectric transformer and their applications. In Proceedings of the 27th ICPIG, Eindhoven, The Netherlands, 18–22 July 2005; pp. 1–4. [Google Scholar]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421–1437. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Eliasson, B.; Hirth, M. Ozone generation from oxygen and air: Discharge physics and reaction mechanisms. Ozone Sci. Eng. 1988, 10, 367–378. [Google Scholar] [CrossRef]
- Siemens, W. Über die elektrostatische Induktion und die Verzögerung des Stroms in Flaschendrähten. Ann. der Physik und Chem. Vierte Reihe 1957, 12, 66–122. [Google Scholar] [CrossRef]
- Brandenburg, R.; Becker, K.H.; Weltmann, K.D. Barrier discharges in science and technology since 2003: A tribute and update. Plasma Chem. Plasma Process. 2023, 43, 1303–1334. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Baessler, P. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1–45. [Google Scholar] [CrossRef]
- Fanelli, F. Thin film deposition and surface modification with atmospheric pressure dielectric barrier discharges. Surf. Coatings Technol. 2010, 205, 1536–1543. [Google Scholar] [CrossRef]
- Masuda, S.; Akutsu, K.; Kuroda, M.; Awatsu, Y.; Shibuya, Y. A ceramic-based ozonizer using high-frequency discharge. IEEE Trans. Ind. Appl. 1988, 24, 223–231. [Google Scholar] [CrossRef]
- Shimizu, T.; Sakiyama, Y.; Graves, D.B.; Zimmermann, J.L.; Morfill, G.E. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J. Phys. 2012, 14, 103028. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Lindner, M.; Pipa, A.V.; Brandenburg, R.; Schreiner, R. Expansion of surface barrier discharge scrutinized. Plasma Sources Sci. Technol. 2022, 31, 105018. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kim, Y.S.; Joh, D.G.; Ko, J.J.; Kim, D.I.; Choi, E.H. Effects of the dielectric layer on a planar and a coplanar discharge breakdown. Jpn. J. Appl. Phys. 1998, 37, L1549–L1552. [Google Scholar] [CrossRef]
- Šimor, M.; Ráhel’, J.; Vojtek, P.; Černák, M.; Brablec, A. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl. Phys. Lett. 2002, 81, 2716–2718. [Google Scholar] [CrossRef]
- Černák, M.; Kováčik, D.; Ráhel, J.; St’ahel, P.; Zahoranová, A.; Kubincová, J.; Tóth, A.; Černáková, L. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion 2011, 53, 124031. [Google Scholar] [CrossRef]
- Kogelheide, F.; Offerhaus, B.; Bibinov, N.; Krajinski, P.; Schücke, L.; Schulze, J.; Stapelmann, K.; Awakowicz, P. Characterisation of volume and surface dielectric barrier discharges in N2–O2 mixtures using optical emission spectroscopy. Plasma Processes Polym. 2020, 17, 1900126. [Google Scholar] [CrossRef]
- Pietsch, G.J.; Gibalov, V.I. Dielectric barrier discharges and ozone synthesis. Pure Appl. Chem. 1998, 70, 1169–1174. [Google Scholar] [CrossRef]
- Nassour, K.; Brahami, M.; Nemmich, S.; Hammadi, N.; Zouzou, N.; Tilmatine, A. Comparative experimental study between surface and volume DBD ozone generator. Ozone Sci. Eng. 2016, 38, 70–76. [Google Scholar] [CrossRef]
- Nassour, K.; Brahami, M.; Nemmich, S.; Hammadi, N.; Tilmatine, A.; Zouzou, N. A new hybrid surface-volume dielectric barrier discharge reactor for ozone generation. In Proceedings of the 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, USA, 18–22 October 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Nassour, K.; Brahami, M.; Nemmich, S.; Hammadi, N.; Zouzou, N.; Tilmatine, A. New hybrid surface–volume dielectric barrier discharge reactor for ozone generation. IEEE Trans. Ind. Appl. 2017, 53, 2477–2484. [Google Scholar] [CrossRef]
- Chen, H.L.; Lee, H.M.; Chang, M.B. Enhancement of energy yield for ozone production via packed-bed reactors. Ozone Sci. Eng. 2006, 28, 111–118. [Google Scholar] [CrossRef]
- Takaki, K.; Takahashi, S.; Mukaigawa, S.; Fujiwara, T.; Sugawara, K.; Sugawara, T. Influence of pellet shape of ferro-electric packed-bed plasma reactor on ozone generation and NO removal. Int. J. Plasma Environ. Sci. Technol. 2009, 3, 28–34. [Google Scholar] [CrossRef]
- Takaki, K.; Jani, M.; Fujiwara, T. Removal of nitric oxide in flue gases by multi-point to plane dielectric barrier discharge. IEEE Trans. Plasma Sci. 1999, 27, 1137–1145. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.Z.; Wang, W.C.; Liu, Z.J.; Wang, S.; Jiang, P.C.; Zhang, S. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap. J. Appl. Phys. 2014, 116, 113301. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, K.; Duan, L.; Li, Y.; An, J.; Zhang, C.; Lu, N.; Li, J.; Wu, Y. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor. J. Phys. Conf. Ser. 2013, 418, 012131. [Google Scholar] [CrossRef]
- Jodzis, S. Effective ozone generation in oxygen using a mesh electrode in an ozonizer with variable linear velocity. Ozone Sci. Eng. 2012, 34, 378–386. [Google Scholar] [CrossRef]
- Mercado-Cabrera, A.; Peña-Eguiluz, R.; López-Callejas, R.; Jaramillo-Sierra, B.; Valencia-Alvarado, R.; Rodríguez-Méndez, B.; Muñoz-Castro, A.E. Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution. Plasma Sci. Technol. 2017, 19, 075501. [Google Scholar] [CrossRef]
- Jeon, J.; Klaempfl, T.G.; Zimmermann, J.L.; Morfill, G.E.; Shimizu, T. Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities. New J. Phys. 2014, 16, 103007. [Google Scholar] [CrossRef]
- Shimizu, T.; Lachner, V.; Zimmermann, J. Surface microdischarge plasma for disinfection. Plasma Med. 2017, 7, 175–185. [Google Scholar] [CrossRef]
- Maisch, T.; Shimizu, T.; Li, Y.F.; Heinlin, J.; Karrer, S.; Morfill, G.; Zimmermann, J.L. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE 2012, 7, e34610. [Google Scholar] [CrossRef]
- Finanţu-Dinu, E.G.; Korzec, D.; Teschke, M.; Engemann, J. Influence of electrode layout on the performance of insulated surface discharge: Electrical characterization. Surf. Coatings Technol. 2003, 174-175, 524–529. [Google Scholar] [CrossRef]
- Tański, M.; Reza, A.; Przytula, D.; Garasz, K. Ozone generation by surface dielectric barrier discharge. Appl. Sci. 2023, 13, 7001. [Google Scholar] [CrossRef]
- Buntat, Z. Ozone Generation Using Electrical Discharges; VDM Verlag Dr. Müller: Saarbrücken, Germany, 2010; Chapter 1.7.1; p. 14. [Google Scholar]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008; pp. 388–390. [Google Scholar]
- Noma, Y.; Choi, J.H.; Stauss, S.; Tomai, T.; Terashima, K. Gas-temperature-dependent characteristics of cryo-dielectric barrier discharge plasma under atmospheric pressure. Appl. Phys. Express 2008, 1, 046001. [Google Scholar] [CrossRef]
- Nettesheim, S. Device and Method for Generating a Dielectric Barrier Discharge. International Patent Application WO2022058333 (A1). 2022. Available online: https://worldwide.espacenet.com/WO2022058333 (accessed on 15 July 2024).
- Chang, M.B.; Wu, S.J. Experimental study on ozone synthesis via dielectric barrier discharges. Ozone Sci. Eng. 1997, 19, 241–254. [Google Scholar] [CrossRef]
- Zhang, X.; Lee, B.J.; Im, H.G.; Cha, M.S. Ozone production with dielectric barrier discharge: Effects of power source and humidity. IEEE Trans. Plasma Sci. 2016, 44, 2288–2296. [Google Scholar] [CrossRef]
- Bekeschus, S.; Lin, A.; Fridman, A.; Wende, K.; Weltmann, K.D.; Miller, V. A comparison of floating-electrode DBD and kINPen jet: Plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions. Plasma Chem. Plasma Process. 2018, 38, 1–12. [Google Scholar] [CrossRef]
- Hoffmann, C.; Berganza, C.; Zhang, J. Cold atmospheric plasma: Methods of production and application in dentistry and oncology. Med. Gas Res. 2013, 3, 1–15. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Dobrynin, D.; Wasko, K.; Friedman, G.; Fridman, A.; Fridman, G. Cold plasma sterilization of open wounds: Live rat model. Plasma Med. 2011, 1, 109–114. [Google Scholar] [CrossRef]
- Kimura, T.; Hattori, Y.; Oda, A. Ozone production efficiency of atmospheric dielectric barrier discharge of oxygen using time-modulated power supply. Jpn. J. Appl. Phys. 2004, 43, 7689–7692. [Google Scholar] [CrossRef]
- Barni, R.; Biganzoli, I.; Dell’Orto, E.C.; Riccardi, C. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges. J. Appl. Phys. 2015, 118, 143301. [Google Scholar] [CrossRef]
- Molina, L.T.; Molina, M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. 1986, 91, 14501–14508. [Google Scholar] [CrossRef]
- Daumont, D.; Brion, J.; Charbonnier, J.; Malicet, J. Ozone UV Spectroscopy I: Absorption cross-section at room temperature. J. Atmos. Chem. 1992, 15, 145–155. [Google Scholar] [CrossRef]
- Ashpis, D.E.; Laun, M.C.; Griebeler, E.L. Progress toward accurate measurement of dielectric barrier discharge plasma actuator power. AIAA J. 2017, 55, 2254–2268. [Google Scholar] [CrossRef] [PubMed]
- Manley, T.C. The electric characteristics of the ozonator discharge. Trans. Electrochem. Soc. 1943, 84, 83–96. [Google Scholar] [CrossRef]
- TDK Electronics AG. MediPlas Reactor. Code: Z63000Z2910Z1Z84(Prototype). 2023. Available online: https://www.relyon-plasma.com/wp-content/uploads/2023/07/MediPlas-Reactor-V1_008_27072023.pdf (accessed on 7 June 2024).
- Stauss, S.; Ebato, N.; Oshima, F.; Muneoka, H.; Pai, D.Z.; Terashima, K. Uniform, filamentary, and striped patterns in helium dielectric barrier discharge cryoplasmas. IEEE Trans. Plasma Sci. 2011, 39, 2184–2185. [Google Scholar] [CrossRef]
- TDK Electronics AG. MediPlas Driver. Code: B54321P5100A020. 2023. Available online: https://www.relyon-plasma.com/wp-content/uploads/2023/06/MediPlas-Driver-V4_007_230613.pdf (accessed on 7 June 2024).
- Nilsson, J.W.; Riedel, S.A. Electri c Circuits, 7th ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2004; Chapter 14.3; pp. 665–666. [Google Scholar]
- Douat, C.; Ponduri, S.; Boumans, T.; Guaitella, O.; Welzel, S.; Carbone, E.; Engeln, R. The role of the number of filaments in the dissociation of CO2 in dielectric barrier discharges. Plasma Sources Sci. Technol. 2023, 32, 055001. [Google Scholar] [CrossRef]
- Jidenko, N.; Petit, M.; Borra, J.P. Electrical characterization of microdischarges produced by dielectric barrier discharge in dry air at atmospheric pressure. J. Phys. D Appl. Phys. 2006, 39, 281–293. [Google Scholar] [CrossRef]
- ISO Standard No. 17050-1:2004; Conformity Assessment—Supplier's Declaration of Conformity. International Organization for Standardization: Geneva, Switzerland, 2018.
- Burden, R.L.; Faires, J.D. Numerical Analysis; Wadsworth Group: Pacific Grove, CA, USA, 2001; Chapter 8.6; pp. 537–548. ISBN 0-534-38216-9. [Google Scholar]
- Korzec, D.; Hoppenthaler, F.; Burger, D.; Andres, T.; Nettesheim, S. Atmospheric pressure plasma jet powered by piezoelectric direct discharge. Plasma Processes Polym. 2020, 17, 2000053. [Google Scholar] [CrossRef]
- Braun, D.; Gibalov, V.; Pietsch, G. Two-dimensional modeling of the dielectric barrier discharge in air. Plasma Sources Sci. Technol. 1992, 1, 166–174. [Google Scholar] [CrossRef]
- Korzec, D.; Finanţu-Dinu, E.G.; Dinu, G.L.; Engemann, J.; Štefečka, M.; Kando, M. Comparison of coplanar and surface barrier discharges operated in oxygen-nitrogen gas mixtures. Surf. Coatings Technol. 2003, 174-175, 503–508. [Google Scholar] [CrossRef]
- Korzec, D.; Finanţu-Dinu, E.G.; Engemann, J. Interpretation of the current signal collected from surface barrier discharge electrodes. In Proceedings of the XXVI International Conference on Phenomena in Ionized Gases ICPIG 2003, Greifswald, Germany, 15–20 July 2003; Volume 4, pp. 63–64. [Google Scholar]
- Brandenburg, R.; Jahanbakhsh, S.; Schiorlin, M.; Schmidt, M. About the development and dynamics of microdischarges in toluene-containing air. Plasma Chem. Plasma Process. 2019, 39, 667–682. [Google Scholar] [CrossRef]
- Becker, M.M.; Hoder, T.; Loffhagen, D.; Ramoino, L.; Kettlitz, M. Variation of the breakdown voltage with ozone concentration in dielectric barrier discharges. In Proceedings of the XXXI International Conference on Phenomena in Ionized Gases ICPIG 2013, Granada, Spain, 14–19 July 2013; Volume 10, pp. 1–3. [Google Scholar]
- Gibalov, V.I.; Pietsch, G.J. On the performance of ozone generators working with dielectric barrier discharges. Ozone Sci. Eng. 2006, 28, 119–124. [Google Scholar] [CrossRef]
- Ozkan, A.; Dufour, T.; Arnoult, G.; De Keyzer, P.; Bogaerts, A.; Reniers, F. CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. J. CO2 Util. 2015, 9, 74–81. [Google Scholar] [CrossRef]
- Becker, H. Über die Extrapolation und Berechnung der Konzentration und Ausbeute von Ozonapparaten. In Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern: Erster Band 1920–1922; Harries, C.D., Ed.; Springer: Berlin/Heidelberg, Germany, 1922; pp. 76–106. [Google Scholar] [CrossRef]
- Pekárek, S. Experimental study of surface dielectric barrier discharge in air and its ozone production. J. Phys. D Appl. Phys. 2012, 45, 075201. [Google Scholar] [CrossRef]
- Kitayama, J.; Kuzumoto, M. Theoretical and experimental study on ozone generation characteristics of an oxygen-fed ozone generator in silent discharge. J. Phys. D Appl. Phys. 1997, 30, 2453. [Google Scholar] [CrossRef]
- Held, B.; Peyrous, R. A systematic parameters study from analytic calculations to optimize ozone concentration in an oxygen-fed wire-to-cylinder ozonizer. Eur. Phys. J. 1999, AP 7, 151–166. [Google Scholar] [CrossRef]
- Rajasekaran, P.; Mertmann, P.; Bibinov, N.; Wandke, D.; Viöl, W.; Awakowicz, P. Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: Investigation through plasma characterization and simulation of surface irradiation. Plasma Processes Polym. 2010, 7, 665–675. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008; Chapter 6.5.3; pp. 382–383. [Google Scholar]
- Wild, R.; Benduhn, J.; Stollenwerk, L. Surface charge transport and decay in dielectric barrier discharges. J. Phys. D Appl. Phys. 2014, 47, 435204. [Google Scholar] [CrossRef]
- Opaits, D.F.; Shneider, M.N.; Miles, R.B.; Likhanskii, A.V.; Macheret, S.O. Surface charge in dielectric barrier discharge plasma actuators. Phys. Plasmas 2008, 15, 073505. [Google Scholar] [CrossRef]
- Peeters, F.J.J.; Rumphorst, R.F.; van de Sanden, M.C.M. Dielectric barrier discharges revisited: The case for mobile surface charge. Plasma Sources Sci. Technol. 2016, 25, 03LT03. [Google Scholar] [CrossRef]
- Braun, D.; Küchler, U.; Pietsch, G. Microdischarges in air-fed ozonizers. J. Phys. D Appl. Phys. 1991, 24, 564–572. [Google Scholar] [CrossRef]
- Kitayama, J.; Kuzumoto, M. Analysis of ozone generation from air in silent discharge. J. Phys. D Appl. Phys. 1999, 32, 3032–3040. [Google Scholar] [CrossRef]
- Becker, K.; Schmidt, M.; Viggiano, A.A.; Dressler, R.; Williams, S. Air plasma chemistry. In Non-Equilibrium Air Plasmas at Atmospheric Pressure; Becker, K.H., Kogelschatz, U., Schoenbach, K.H., Barker, R.J., Eds.; IoP – Institute of Physics Publishing: Bristol and Philadelphia, PA, USA, 2005; Chapter 4; pp. 124–182. [Google Scholar]
- Holleman, A.F.; Wiberg, E. Lehrbuch der Anorganischen Chemie; Walter de Gruyter & Co.: Berlin, Germany, 1985; Chapter 1.4; pp. 579–587. [Google Scholar]
- Dorai, R.; Kushner, M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003, 36, 666–685. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: New York, NY, USA, 2008; Chapter 6.5.6; pp. 383–386. [Google Scholar]
- Herron, J.T.; Green, D.S. Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chem. Plasma Process. 2001, 21, 459–481. [Google Scholar] [CrossRef]
- Karabeyoglu, A.; Dyer, J.; Stevens, J.; Cantwell, B. Modeling of N2O decomposition events. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; AIAA: Hartford, CT, USA, 21–23 July, 2008; pp. 1–30. [Google Scholar] [CrossRef]
- Zylka, P. Evaluation of ozone generation in volume spiral-tubular dielectric barrier discharge source. Energies 2020, 13, 1199. [Google Scholar] [CrossRef]
- Al-Abduly, A.; Christensen, P. An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD). Plasma Sources Sci. Technol. 2015, 24, 065006. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P. Effect of relative humidity on electron distribution and ozone production by DC coronas in air. IEEE Trans. Plasma Sci. 2005, 33, 808–812. [Google Scholar] [CrossRef]
- Navarro-Rodriguez, M.; Palacios-Lidon, E.; Somoza, A.M. The surface charge decay: A theoretical and experimental analysis. Appl. Surf. Sci. 2023, 610, 155437. [Google Scholar] [CrossRef]
- Bronshtein, I.N.; Semendyayev, K.A.; Musiol, G.; Muehlig, H. Handbook of Methematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004; Chapter 19.6.4.2; pp. 925–928. ISBN 3-540-43491-7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzec, D.; Freund, F.; Bäuml, C.; Penzkofer, P.; Nettesheim, S. Hybrid Dielectric Barrier Discharge Reactor: Characterization for Ozone Production. Plasma 2024, 7, 585-615. https://doi.org/10.3390/plasma7030031
Korzec D, Freund F, Bäuml C, Penzkofer P, Nettesheim S. Hybrid Dielectric Barrier Discharge Reactor: Characterization for Ozone Production. Plasma. 2024; 7(3):585-615. https://doi.org/10.3390/plasma7030031
Chicago/Turabian StyleKorzec, Dariusz, Florian Freund, Christian Bäuml, Patrik Penzkofer, and Stefan Nettesheim. 2024. "Hybrid Dielectric Barrier Discharge Reactor: Characterization for Ozone Production" Plasma 7, no. 3: 585-615. https://doi.org/10.3390/plasma7030031
APA StyleKorzec, D., Freund, F., Bäuml, C., Penzkofer, P., & Nettesheim, S. (2024). Hybrid Dielectric Barrier Discharge Reactor: Characterization for Ozone Production. Plasma, 7(3), 585-615. https://doi.org/10.3390/plasma7030031