Formation of Fine Structures in Incompressible Hall Magnetohydrodynamic Turbulence Simulations
Abstract
:1. Introduction
2. Numerical Simulations of Hall MHD Turbulence
3. Energy Spectra and Related Topics in Hall MHD Turbulence
4. Formation of Coherent Structures
4.1. Discussions of Coherent Structures in MHD Turbulence
4.2. Fine Structures in Hall MHD Turbulence
4.2.1. Decaying Homogeneous and Isotropic Turbulence
4.2.2. Forced Homogeneous and Isotropic Turbulence
4.3. Energy Transfer and Coherent Structures
4.4. Additional Note on Coherent Structures
5. Summary
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DNS | direct numerical simulation |
FFT | fast Fourier transform |
GS | grid scale |
LES | large eddy simulation |
SGS | sub-grid scale |
Appendix A. Large Eddy Simulation of Hall MHD Model
References
- Braginskii, S.I. Transport processes in a plasma. In Reviews of Plasma Physics; Leontovich, M.A., Ed.; Consultants Bureau: New York, NY, USA, 1965; Volume 1, p. 205. [Google Scholar]
- Holm, D.D. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability. Phys. Fliuds 1987, 30, 1310. [Google Scholar] [CrossRef]
- Mahajan, S.M.; Yoshida, Z. Double Curl Beltrami Flow: Diamagnetic Structures. Phys. Rev. Lett. 1998, 81, 4863. [Google Scholar] [CrossRef]
- Saharoui, F.; Belmont, G.; Rezeau, L. Hamiltonian canonical formulation of Hall-magnetohydrodynamics: Toward an application to weak turbulence theory. Phys. Plasmas 2003, 10, 1325. [Google Scholar]
- Yoshida, Z.; Mahajan, S.M.; Ohsaki, S. Scale hierarchy created in plasma flow. Phys. Plasmas 2004, 11, 3660. [Google Scholar] [CrossRef]
- Ohsaki, S.; Mahajan, S.M. Hall current and Alfvén wave. Phys. Plasmas 2004, 11, 898. [Google Scholar] [CrossRef]
- Krishnan, V.; Mahajan, S.M. Magnetic fluctuations and Hall magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 2004, 109, A11. [Google Scholar]
- Hameiri, E.; Torasso, R. Linear stability of static equilibrium states in the Hall-magnetohydrodynamics model. Phys. Plasmas 2004, 11, 4394. [Google Scholar] [CrossRef]
- Hirota, M.; Yoshida, Z.; Hameiri, E. Variational principle for linear stability of flowing plasmas in Hall magnetohydrodynamics. Phys. Plasmas 2006, 13, 022107. [Google Scholar] [CrossRef]
- Mahajan, S.M. Classical Perfect Diamagnetism: Expulsion of Current from the Plasma Interior. Phys. Rev. Lett. 2008, 100, 075001. [Google Scholar] [CrossRef]
- Shivamoggi, B.K. Impulse formulations of Hall magnetohydrodynamic equations. Phys. Lett. A 2009, 373, 708. [Google Scholar] [CrossRef]
- Eyink, G.L. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models. J. Math. Phys. 2009, 50, 083102. [Google Scholar] [CrossRef]
- Araki, K. Helicity-based particle-relabeling operator and normal mode expansion of the dissipationless incompressible Hall magnetohydrodynamics. Phys. Rev. E 2015, 92, 063106. [Google Scholar] [CrossRef] [PubMed]
- Araki, K. Differential-geometrical approach to the dynamics of dissipationless incompressible Hall magnetohydrodynamics: I. Lagrangian mechanics on semidirect product of two volume preserving diffeomorphisms and conservation laws. J. Phys. A Math. Theor. 2015, 48, 175501. [Google Scholar] [CrossRef]
- Mahajan, S.; Miura, H. Linear superposition of nonlinear waves. J. Plasma Phys. 2009, 75, 145. [Google Scholar] [CrossRef]
- Abdelhamid, H.M.; Lingam, M.; Mahajan, S.M. Extended MHD turbulence and its applications to the solar wind. Astrophys. J. 2016, 829, 87. [Google Scholar] [CrossRef]
- D’Avignon, E.D.; Morrison, P.; Lingam, M. Derivation of the Hall and extended magnetohydrodynamics brackets. Phys. Plasmas 2016, 23, 062101. [Google Scholar] [CrossRef]
- Araki, K. Differential-geometrical approach to the dynamics of dissipationless incompressible Hall magnetohydrodynamics: II. Geodesic formulation and Riemannian curvature analysis of hydrodynamic and magnetohydrodynamic stabilities. J. Phys. A Math. Theor. 2017, 50, 235501. [Google Scholar] [CrossRef]
- Kawazura, Y.; Miloshvich, G.; Morrison, P. Action principles for relativistic extended magnetohydrodynamics: A unified theory of magnetofluid models. Phys. Plasmas 2017, 24, 022103. [Google Scholar] [CrossRef]
- Miloshevich, G.; Lingam, M.; Morrison, P.J. On the structure and statistical theory of turbulence of extended magnetohydrodynamics. New J. Phys. 2017, 19, 015007. [Google Scholar] [CrossRef]
- Bello-Beneítez, E.; Sánchez-Arriaga, G.; Passot, T.; Laveder, D.; Siminos, E. Structure and evolution of magnetohydrodynamic solivary waves with Hall and finite Larmor radius effects. Phys. Rev. E 2019, 99, 023202. [Google Scholar] [CrossRef]
- Rosenbluth, M.N.; Krall, N.A.; Rostoker, N. Finite larmor radius stabilization of “Weakly” unstable confined plasmas. Nucl. Fusion Suppl. 1962, 1, 143. [Google Scholar]
- Roberts, K.V.; Taylor, J.B. Magnetohydrodynamic Equations for Finite Larmor Radius. Phys. Rev. Lett. 1962, 8, 197. [Google Scholar] [CrossRef]
- Huba, J.D. Finite Larmor radius magnetohydrodynamics of the Rayleigh-Taylor instability. Phys. Plasmas 1996, 3, 2523. [Google Scholar] [CrossRef]
- Winske, D. Regimes of the magnetized Rayleigh-Taylor instability. Phys. Plasmas 1996, 3, 11. [Google Scholar] [CrossRef]
- Huba, J.D.; Winske, D. Rayleigh-Taylor instability: Comparison of hybrid and nonideal magnetohydrodynamic simulations. Phys. Plasmas 1998, 5, 2305. [Google Scholar] [CrossRef]
- Chacon, L.; Knoll, D.A.; Finn, J.M. Hall MHD effects on the 2D Kelvin-Helmholtz/tearing instability. Phys. Lett. A 2003, 308, 187. [Google Scholar] [CrossRef]
- Filippychev, D.S. Simulation of space plasma allowing for the Hall effect: Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Comput. Math. Model. 2006, 17, 140. [Google Scholar] [CrossRef]
- Zhu, P.; Schnack, D.D.; Ebrahimi, F.; Zweibel, E.G.; Suzuki, M.; Hegna, C.C.; Sovinec, C.R. Absence of Complete Finite-Larmor-Radius Stabilization in Extended MHD. Phys. Rev. Lett. 2008, 101, 085005. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Lefebvre, B.; Forest, C.B.; Bhattacharjee, A. Global Hall-MHD simulations of magnetorotational instability in a plasma Couette flow experiment. Phys. Plasmas 2011, 18, 062904. [Google Scholar] [CrossRef]
- Ahedo, E.; Ramos, J.J. Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability. Phys. Plasmas 2012, 19, 072519. [Google Scholar] [CrossRef]
- Xi, P.W.; Xu, X.Q.; Xia, T.Y.; Nevins, W.M.; Kim, S.S. Impact of a large density gradient on linear and nonlinear edge-localized mode simulations. Nucl. Fusion 2013, 53, 113020. [Google Scholar] [CrossRef]
- Goto, R.; Miura, H.; Ito, A.; Sato, M.; Hatori, T. Hall and Gyro-Viscosity Effects on the Rayleigh-Taylor Instability in a 2D Rectangular Slab. Plasma Fusion Res. 2014, 9, 1403076. [Google Scholar] [CrossRef]
- Goto, R.; Miura, H.; Ito, A.; Sato, M.; Hatori, T. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects. Phys. Plasmas 2015, 22, 032115. [Google Scholar] [CrossRef]
- Ghosh, S.; Parashar, T. Linear vs. nonlinear acceleration in plasma turbulence. II. Hall–finite-Larmor-radius magnetohydrodynamics. Phys. Plasmas 2015, 22, 042303. [Google Scholar] [CrossRef]
- Lu, H.Y.; Cao, J.B.; Ge, Y.S.; Zhang, T.L.; Nakamura, R.; Dunlop, M.W. Hall and finite Larmor radius effects on the dipolarization fronts associated with interchange instability. Geophys. Res. Lett. 2015, 42, 10099–10105. [Google Scholar] [CrossRef]
- Ito, A.; Miura, H. Parameter dependence of two-fluid and finite Larmor radius effects on the Rayleigh-Taylor instability in finite beta plasmas. Phys. Plasmas 2016, 23, 122123. [Google Scholar] [CrossRef]
- Umeda, T.; Wada, Y. Non-MHD effects in the nonlinear development of the MHD-scale Rayleigh-Taylor instability. Phys. Plasmas 2017, 24, 072307. [Google Scholar] [CrossRef]
- Mininni, P.D.; Gómez, D.O.; Mahajan, S.M. Dynamo action in magnetohydrodynamics and Hall-magnetohydrodynamics. Astrophys. J. 2003, 587, 472. [Google Scholar] [CrossRef]
- Mininni, P.; Gómez, D.O.; Mahajan, S. Role of the Hall current in magnetohydrodynamic dynamos. Astrophys. J. 2003, 584, 1120. [Google Scholar] [CrossRef]
- Matthaeus, W.H.; Dmitruk, P.; Smith, D.; Ghosh, S.; Oughton, S. Impact of Hall effect on energy decay in magnetohydrodynamic turbulence. Geophys. Res. Lett. 2003, 30, 2104. [Google Scholar] [CrossRef]
- Mininni, P.D.; Gómez, D.O.; Mahajan, S.M. Direct numerical simulations of helical Hall-MHD turbulence and dynamo action. Astrophys. J. 2005, 619, 1019. [Google Scholar] [CrossRef]
- Halder, A.; Banerjee, S.; Chatterjee, A.G.; Sharma, M.K. Contribution of the Hall term in small-scale magnetohydrodynamic dynamos. Phys. Rev. Fluids 2023, 8, 053701. [Google Scholar] [CrossRef]
- Kerr, R.M.; Brandenburg, A. Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Recon-nection. Phys. Rev. Lett. 1999, 83, 1155. [Google Scholar] [CrossRef]
- Eyink, G.L.; Lazarian, A.; Vishniac, E.T. Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J 2011, 743, 51. [Google Scholar] [CrossRef]
- Karimabadi, H.; Roytershteyn, V.; Wan, M.; Matthaeus, W.H.; Daughton, W.; Wu, P.; Shay, M.; Loring, B.; Borovsky, J.; Leonardis, E.; et al. Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 2013, 20, 012303. [Google Scholar] [CrossRef]
- Krauss-Varban, D.; Omidi, N.; Quest, K.B. Mode properties of low-frequency waves, Kinetic theory versus Hall-MHD. J. Geophys. Res. 1994, 99, 5987–6009. [Google Scholar] [CrossRef]
- Schnack, D.D.; Barnes, D.C.; Brennan, D.P.; Hegna, C.C.; Held, E.; Kim, C.C.; Kruger, S.E.; Pankin, A.Y.; Sovinec, C.R. Computational modeling of fully ionized magnetized plasmas using the fluid approximation. Phys. Plasmas 2006, 13, 058103. [Google Scholar] [CrossRef]
- Schnack, D.D.; Cheng, J.; Barnes, D.C.; Parker, S.E. Comparison of kinetic and extended magnetohydrodynamics computational models for the linear ion temperature gradient instability in slab geometry. Phys. Plasmas 2013, 20, 062106. [Google Scholar] [CrossRef]
- Papini, E.; Franci, L.; Landi, S.; Verdini, A.; Matteini, L.; Helinger, P. Can Hall Magnetohydrodynamics Explain Plasma Turbulence at Sub-ion Scales. Astrophys. J. 2019, 870, 52. [Google Scholar] [CrossRef]
- Polygiannakis, J.M.; Moussas, X. A review of magneto-vorticity induction in Hall-MHD plasmas. Plasma Phys. Control. Fusion 2001, 43, 195. [Google Scholar] [CrossRef]
- Gomez, D. Parallel Simulations of Hall-MHD Plasmas. Space Sci. Rev. 2006, 122, 231. [Google Scholar] [CrossRef]
- Servidio, S.; Dmitruk, P.; Greco, A.; Wan, M.; Donato, S.; Cassak, P.A.; Shay, M.A.; Carbone, V.; Matthaeus, W.H. Magnetic reconnection as an element of turbulence. Nonlinear Proc. Geophy. 2011, 18, 675. [Google Scholar] [CrossRef]
- Pouquet, A.; Rosenberg, D.; Stawarz, J.E.; Marino, R. Helicity Dynamics, Inverse, and Bidirectional Cascades in Fluid and Magnetohydrodynamic Turbulence: A Brief Review. Earth Space Sci. 2019, 6, 351. [Google Scholar] [CrossRef]
- Pouquet, A.; Yokoi, N. Helical fluid and (Hall)-MHD turbulence: A brief review. Phil. Trans. R. Soc. A 2022, 380, 38020210087. [Google Scholar] [CrossRef]
- Marino, R.; Sorriso-Valvo, L. Scaling laws for the energy transfer in space plasma turbulence. Phys. Rep. 2023, 1006, 1. [Google Scholar] [CrossRef]
- Miura, H.; Araki, K. Coarse-graining study of homogeneous and isotropic Hall magnetohydrodynamics turbulence. Plasma Phys. Control. Fusion 2013, 55, 014012. [Google Scholar] [CrossRef]
- Miura, H.; Araki, K. Structure transitions induced by the Hall term in homogeneous and isotropic magnetohydrodynamic turbulence. Phys. Plasmas 2014, 21, 072313. [Google Scholar] [CrossRef]
- Biskamp, D. Magnetohydrodynamic Turbulence; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Davidson, P.A. Turbulence; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Davidson, P.A. Turbulence in Rotating, Stratified and Electrically Conducting Fluids; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Alexandrova, O.; Lacombe, C.; Saur, J.; Mangeney, A.; Mitchell, J.; Schwartz, S.J.; Robert, P. Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales. Phys. Rev. Lett. 2009, 103, 165003. [Google Scholar] [CrossRef]
- Kiyani, K.H.; Chapman, S.C.; Khotyaintsev, Y.V.; Dunlop, M.W.; Sahraoui, F. Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 2009, 103, 075006. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Matthaeus, W.H.; McComas, D.J.; Chhiber, R.; Usmanov, A.V.; Huang, J.; Livi, R.; Larson, D.E.; Kasper, J.C.; Case, A.W. Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophys. J. Lett. 2022, 926, L1. [Google Scholar] [CrossRef]
- Huang, S.Y.; Xu, S.B.; Zhang, J.; Sahraoui, F.; Andrés, N.; He, J.S.; Yuan, Z.G.; Deng, X.H.; Jiang, K.; Wei, Y.Y.; et al. Anisotropy of Magnetic Field Spectra at Kinetic Scales of Solar Wind. Turbul. Reveal. Park. Sol. Probe Inn. Heliosphere Astrophys. J. Lett. 2022, 929, L6. [Google Scholar]
- Parashar, T.N.; Matthaeus, W.H. Observations of cross scale energy transfer in the inner heliosphere by Parker Solar Probe. Rev. Mod. Plasma Phys. 2022, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-L.; Zank, G.P.; Adhikari, L.; Telloni, D.; Stevens, M.; Kasper, J.C.; Bale, S.D.; Raouafi, N.E. Turbulence and Waves in the Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe during Encounter 10. Astrophys. J. Lett. 2022, 934, L36. [Google Scholar] [CrossRef]
- Raouafi, N.E.; Matteini, L.; Squire, J.; Badman, S.T.; Velli, M.; Klein, K.G.; Chen, C.H.K.; Matthaeus, W.H.; Szabo, A.; Linton, M.; et al. Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum. Space Sci. Rev. 2023, 219, 8. [Google Scholar] [CrossRef]
- Goldreich, P.; Sridhar, S. Magnetohydrodynamic turbulence revisited. Astrophys. J. 1997, 485, 680. [Google Scholar] [CrossRef]
- Galtier, S.; Nazarenko, S.V.; Newell, A.C.; Pouquet, A. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 2000, 63, 447. [Google Scholar] [CrossRef]
- Cho, J.; Laarian, A. Compressible Sub-Alfvénic MHD Turbulence in Low-b Plasmas. Phys. Rev. Lett. 2002, 88, 245001. [Google Scholar] [CrossRef]
- Cho, J.; Lazarian, A.; Vishniac, E.T. Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium. Astrophys. J. 2002, 564, 291. [Google Scholar] [CrossRef]
- Boldyrev, S. On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. 2005, 636, L37. [Google Scholar] [CrossRef]
- Beresnyak, A.; Lazarian, A. Polarization intermittency and its influence on MHD turbulence. Astrophys. J. 2006, 640, L175. [Google Scholar] [CrossRef]
- Mason, J.; Cattaneo, F.; Boldyrev, S. Numerical measurements of the spectrum in magnetohydrodynamic turbulence. Phys. Rev. E 2008, 77, 036403. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, S.; Perez, J.C.; Boravsky, J.E.; Podesta, J.J. Specral scaling-laws in magnetohydrodynamic turbulence simulations and in the solar wind. Astrophys. J. Lett. 2011, 741, L19. [Google Scholar] [CrossRef]
- Galtier, S.; Buchlin, E. Multiscale Hall-Magnetohydrodynamic Turbulence in the Solar Wind. J. Astrophys. 2007, 656, 560–566. [Google Scholar] [CrossRef]
- Hori, D.; Miura, H. Spectrum properties of Hall MHD turbulence. Plasma Fusion Res. 2008, 3, S1053. [Google Scholar] [CrossRef]
- Servidio, S.; Matthaeus, W.H.; Shay, M.A.; Cassak, P.A.; Dmitruk, P. Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 2009, 102, 115003. [Google Scholar] [CrossRef]
- Galtier, S. Turbulence in space plasma and beyond. J. Phys. A Math. Theor. 2018, 51, 293001. [Google Scholar] [CrossRef]
- Miura, H. Extended Magnetohydrodynamic Simulations of Decaying, Homogeneous, Approximately-Isotropic and Incompressible Turbulence. Fluids 2019, 4, 46. [Google Scholar] [CrossRef]
- Mininni, P.; Alexakis, A.; Pouquet, A. Energy transfer in Hall-MHD turbulence: Cascades, backscatter, and dynamo action. J. Plasma Phys. 2007, 73, 377. [Google Scholar] [CrossRef]
- Meyrand, R.; Galtier, S. Anomalous k⊥−8/3 Spectrum in Electron Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2013, 111, 264501. [Google Scholar] [CrossRef]
- Miura, H.; Yang, J.; Gotoh, T. Hall magnetohydrodynamic turbulence with a magnetic Prandtl number larger than unity. Phys. Rev. E 2019, 100, 063207. [Google Scholar] [CrossRef]
- Takahashi, D. An Implementation of Parallel 1-D FFT Using SSE3 Instructions on Dual-Core Processors. In Applied Parallel Computing, State of the Art in Scientific Computing. PARA 2006; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4699. [Google Scholar]
- Pekurovsky, D. P3DFFT: A framework for parallel computations of Fourier transforms in three dimensions. SIAM J. Sci. Comput. 2012, 34, C192. [Google Scholar] [CrossRef]
- Gotoh, T.; Watanabe, T. Power and Nonpower Laws of Passive Scalar Moments Convected by Isotropic Turbulence. Phys. Rev. Lett. 2015, 115, 114502. [Google Scholar] [CrossRef] [PubMed]
- Politano, H.; Pouquet, A. Model of intermittency in magnetohydrodynamic turbulence. Phys. Rev. E 1995, 52, 636. [Google Scholar] [CrossRef] [PubMed]
- Politano, H.; Pouquet, A. Von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 1998, 57, R21. [Google Scholar] [CrossRef]
- Bigot, B.; Galtier, S.; Politano, H. Development of anisotropy in incompressible magnetohydrodynamic turbulence. Phys. Rev. E 2008, 78, 066301. [Google Scholar] [CrossRef]
- Yoshimatsu, K. Examination of the four-fifth law for longitudinal third-order moments in incompressible magnetohydrodynamic turbulence in a periodic box. Phys. Rev. E 2012, 85, 066313. [Google Scholar] [CrossRef]
- Basu, A.; Naji, A.; Pandit, R. Structure-function hierarchies and von Karmán–Howarth relations for turbulence in magnetohydrodynamical equations. Phys. Rev. E 2014, 89, 012117. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Wu, D.J. Observations of anisotropic scaling of solar wind turbulence. Astrophys. J. Lett. 2010, 714, L138. [Google Scholar] [CrossRef]
- Palacios1, J.C.; Bourouaine, S.; Perez, J.C. On the Statistics of Elsasser Increments in Solar Wind and Magnetohydrodynamic Turbulence. Astrophys. J. Lett. 2022, 940, L20. [Google Scholar] [CrossRef]
- Ferrand, R.; Galtier, S.; Sahraoui, F. A compact exact law for compressible isothermal Hall magnetohydrodynamic turbulence. J. Plasma Phys. 2021, 87, 905870220. [Google Scholar] [CrossRef]
- Ferrand, R.; Sahraoui, F.; Galtier, S.; Andrés, N.; Mininni, P.; Dmitruk, P. An In-depth Numerical Study of Exact Laws for Compressible Hall Magnetohydrodynamic Turbulence. Astrophys. J. 2022, 927, 205. [Google Scholar] [CrossRef]
- Wu, H.; Huang, S.; Wang, X.; Yuan, Z.; He, J.; Yan, L. Intermittency of Magnetic Discontinuities in the Near-Sun Solar Wind Turbulence. Astrophys. J. Lett. 2023, 947, L22. [Google Scholar] [CrossRef]
- Banerjee, S.; Galtier, S. Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence. Phys. Rev. E 2016, 93, 033120. [Google Scholar] [CrossRef] [PubMed]
- Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L. Von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations. Astrophys. J. Lett. 2018, 857, L19. [Google Scholar] [CrossRef]
- Andrés, N.; Galtier, S.; Sahraoui, F. Exact law for homogenenous compressible Hall magnetohydrodynamic turbulence. Phys. Rev. E 2018, 97, 013204. [Google Scholar] [CrossRef]
- Andrés, N.; Sahraoui, F.; Galtier, S.; Hadid, L.Z.; Ferrand, R.; Huang, S.Y. Energy Cascade Rate Measured in a Collisionless Space Plasma with MMS Data and Compressible Hall Magnetohydrodynamic Turbulence Theory. Phys. Rev. Lett. 2019, 123, 245101. [Google Scholar] [CrossRef]
- Ferrand, R.; Galtier, S.; Sahraoui, F.; Meyrand, R.; Andrés, N.; Banerjee, S. On Exact Laws in Incompressible Hall Magnetohydrodynamic Turbulence. Astrophys. J. 2019, 881, 50. [Google Scholar] [CrossRef]
- Ishida, T.; Kaneda, Y. Small-scale anisotropy in magnetohydrodynamic turbulence under a strong uniform magnetic field. Phys. Fluids 2007, 19, 075104. [Google Scholar] [CrossRef]
- Mininni, P.D.; Pouquet, A.G.; Montgomery, D.C. Small-Scale Structures in Three-Dimensional Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2006, 97, 244503. [Google Scholar] [CrossRef]
- Dmitruk, P.; Matthaeus, W.H. Structure of the electromagnetic field in three-dimensional Hall magnetohydrodynamic turbulence. Phys. Plasmas 2006, 13, 042307. [Google Scholar] [CrossRef]
- Araki, K.; Miura, H. Nonlocal Interaction of Inverse Magnetic Energy Transfer in Hall Magnetohydrodynamic Turbulence. Plasma Fusion Res. 2011, 6, 2401132. [Google Scholar] [CrossRef]
- Martin, L.N.; Dmitruk, P.; Gomez, D.O. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic. Phys. Plasmas 2012, 19, 052305. [Google Scholar] [CrossRef]
- Araki, K.; Miura, H. Generalized Elsässer Energy Spectra of the Ion Cyclotron and whistler Modes in Magnetohydrodynamic and Hall Magnetohydrodynamic Turbulence. Plasma Fusion Res. 2015, 10, 3401030. [Google Scholar] [CrossRef]
- Verma, M.K. Anisotropy in Quasi-Static Magnetohydrodynamic Turbulence. Rep. Prog. Phys. 2017, 80, 087001. [Google Scholar] [CrossRef] [PubMed]
- Galtier, S. On the origin of the energy dissipation anomaly in (Hall) magnetohydrodynamics. J. Phys. A Math. Theor. 2018, 51, 205501. [Google Scholar] [CrossRef]
- Pouquet, A.; Rosenberg, D.; Stawarz, J.E. Interplay between turbulence and waves: Large-scale helical transfer, and small-scale dissipation and mixing in fluid and Hall-MHD. Rend. Lincei Sci. Fis. Nat. 2020, 31, 949. [Google Scholar] [CrossRef]
- Papini, E.; Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Montagud-Camps, V.; Matteini, L. Properties of Hall-MHD Turbulence at Sub-Ion Scales: Spectral Transfer Analysis. Atmosphere 2021, 12, 1632. [Google Scholar] [CrossRef]
- Manzini, D.; Califano, F.S.F.; Ferrand, R. Local energy transfer and dissipation in incompressible Hall magnetohydrodynamic turbulence: The coarse-graining approach. Phys. Rev. E 2022, 106, 035202. [Google Scholar] [CrossRef]
- Yoshida, K.; Arimitsu, T. Inertial-subrange structures of isotropic incompressible magnetohydrodynamic turbulence in the Lagrangian renormalized approximation. Phys. Plasmas 2007, 19, 045106. [Google Scholar] [CrossRef]
- Burlaga, L.F. Intermittent turbulence in large-scale velocity fluctuations at 1 AU near solar maximum. J. Geophys. Res. 1993, 98, 17467. [Google Scholar] [CrossRef]
- Alexandrova, O.; Mangeney, A.; Maksimovic, M.; Cornilleau-Wehrlin, N.; Bosqued, J.-M.; André, M. Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock. J. Geophys. Res. 2006, 111, A12208. [Google Scholar] [CrossRef]
- Malapaka, S.K.; Müller, W.-C. Large-scale magnetic structure formation in three-dimensional magnetohydrodynamic turbulence. Astrophys. J. 2013, 778, 21. [Google Scholar] [CrossRef]
- Sahoo, G.; Perlekar, P.; Pandit, R. Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence. New J. Phys. 2011, 13, 013036. [Google Scholar] [CrossRef]
- Verma, M.K. Statistical theory of magnetohydrodynamic turbulence: Recent results. Phys. Rep. 2004, 401, 229. [Google Scholar] [CrossRef]
- Brandenburg, A.; Nordlund, A. Astrophysical turbulence modeling. Rep. Prog. Phys. 2011, 74, 046901. [Google Scholar] [CrossRef]
- Mininni, P.D. Scale Interactions in Magnetohydrodynamic Turbulence. Ann. Rev. Fluid Mech. 2011, 43, 377. [Google Scholar] [CrossRef]
- Brandenburg, A.; Sokoloff, D.; Subramanian, K. Current Status of Turbulent Dynamo Theory. Space Sci. Rev. 2012, 169, 123. [Google Scholar] [CrossRef]
- Brandenburg, A.; Lazarian, A. Astrophysical Hydromagnetic Turbulence. Space Sci. Rev. 2013, 178, 163. [Google Scholar] [CrossRef]
- Matthaeus, W.H.; Montgomery, D.C.; Wan, M.; Servidio, S. A review of relaxation and structure in some turbulent plasmas: Magnetohydrodynamics and related models. J. Turbul. 2013, 13, N37. [Google Scholar] [CrossRef]
- Veltri, P. MHD turbulence in the solar wind: Self-similarity, intermittency and coherent structures. Plasma Phys. Control. Fusion 1999, 41, A787. [Google Scholar] [CrossRef]
- Mininni, P.D.; Pouquet, A. Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev. E 2009, 80, 025401. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Matthaeus, W.H.; Servidio, S.; Chuychai, P.; Dmitruk, P. Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. 2009, 691, L111. [Google Scholar] [CrossRef]
- Martin, L.N.; Vita, G.D.; Sorriso-Valvo, L.; Dmitruk, P.; Nigro, G.; Primavera, L.; Carbone, V. Cancellation properties in hall magnetohydrodynamics with a strong guide magnetic field. Phys. Rev. E 2013, 88, 063107. [Google Scholar] [CrossRef] [PubMed]
- Zhdankin, V.; Uzdensky, D.A.; Perez, J.C.; Boldyrev, S. Statistical analysis of current sheets in three-dimensional magnetohydrodynamic turbulence. Astrophys. J. 2013, 771, 124. [Google Scholar] [CrossRef]
- Zhdankin, V.; Boldyrev, S.; Perez, J.C.; Tobias, S.M. Energy dissipation in magnetohydrodynamic turbulence: Coherent structures or “nanoflares”? Astrophys. J. 2014, 795, 127. [Google Scholar] [CrossRef]
- Parashar, T.N.; Matthaeus, W.H. Propinquity of current and vortex structures, effects on collisionless plasma heating. Astrophys. J. 2016, 832, 57. [Google Scholar] [CrossRef]
- Kitiashvili, I.N.; Kosovichev, A.G.; Mansour, N.N.; Lele, S.K.; Wray, A.A. Vortex tubes of turbulent solar convection. Phys. Scr. 2012, 86, 018403. [Google Scholar] [CrossRef]
- Kivotides, D. Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers. Phys. Rev. Fluids 2018, 3, 033701. [Google Scholar] [CrossRef]
- Silva, S.S.A.; Fedun, V.; Verth, G.; Rempel, E.L.; Shelyag, S. Solar Vortex Tubes: Vortex Dynamics in the Solar Atmosphere. Astrophys. J. 2020, 898, 137. [Google Scholar] [CrossRef]
- Wan, M.; Oughton, S.; Servidio, S.; Matthaeus, W.H. Von Kármán self-preservation hypothesis for magnetohydrodynamic turbulence and its consequences for universality. J. Fluid Mech. 2012, 697, 296. [Google Scholar] [CrossRef]
- Lee, E.; Brachet, M.E.; Pouquet, A.; Mininni, P.D.; Rosenberg, D. Lack of universality in decaying magnetohydrodynamic turbulence. Phys. Rev. E 2010, 81, 016318. [Google Scholar] [CrossRef] [PubMed]
- Ohno, N.; Ohtani, H. Development of In-Situ Visualization Tool for PIC Simulation. Plasma Fusion Res. 2015, 9, 3401071. [Google Scholar] [CrossRef]
- Stawarz, J.E.; Pouquet, A. Small-scale behavior of Hall magnetohydrodynamic turbulence. Phys. Rev. E 2015, 92, 063102. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Halder, A. Fundamental units of triadic interactions in Hall magnetohydrodynamic turbulence: How far can we go. arXiv 2023, arXiv:2312.10709v1. [Google Scholar] [CrossRef]
- Araki, K.; Miura, H. Asymmetry of Quadratic Energy Transfer Between Ion Cyclotron and whistler Modes in Fully Developed Hall Magnetohydrodynamic Turbulence. Plasma Fusion Res. 2020, 15, 2401024. [Google Scholar] [CrossRef]
- Chong, M.S.; Perry, A.E.; Cantwell, B.J. A general classification of three-dimensional flow fields. Phys. Fluids A 1990, 2, 765. [Google Scholar] [CrossRef]
- Yadav, S.K.; Miura, H.; Pandit, R. Statistical properties of three-dimensional Hall magnetohydrodynamics turbulence. Phys. Fluids 2022, 34, 095135. [Google Scholar] [CrossRef]
- Ji, H.; Daughton, W.; Jara-Almonte, J.; Le, A.; Stanier, A.; Yoo, J. Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 2022, 4, 263. [Google Scholar] [CrossRef]
- Huba, J.D.; Rudakov, L.I. Hall Magnetic Reconnection Rate. Phys. Rev. Lett. 2004, 93, 175003. [Google Scholar] [CrossRef]
- Ren, Y.; Yamada, M.; Gerhardt, S.; Ji, H.; Kulsrud, R.; Kuritsyn, A. Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma. Phys. Rev. Lett. 2005, 95, 055003. [Google Scholar] [CrossRef]
- Eastwood, J.P.; Shay, M.A.; Phan, T.D.; Øieroset, M. Asymmetry of the Ion Diffusion Region Hall Electric and Magnetic Fields during Guide Field Reconnection: Observations and Comparison with Simulations. Phys. Rev. Lett. 2010, 104, 205001. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Bhattacharjee, A.; Sullivan, B.P. Onset of fast reconnection in Hall magnetohydrodynamics mediated by the plasmoid instability. Phys. Plasmas 2011, 18, 072109. [Google Scholar] [CrossRef]
- Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; Pino, E.M.d.D. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration. Space Sci. Rev. 2012, 173, 557. [Google Scholar] [CrossRef]
- Lazarian, A. Reconnection Diffusion in Turbulent Fluids and Its Implications for Star Formation. Space Sci. Rev. 2014, 181, 1. [Google Scholar] [CrossRef]
- Osman, K.T.; Matthaeus, W.H.; Gosling, J.T.; Greco, A.; Servidio, S.; Hnat, B.; Chapman, S.C.; Phan, T.D. Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett. 2014, 112, 215002. [Google Scholar] [CrossRef]
- Lalescu, C.C.; Shi, Y.; Eyink, G.L.; Drivas, T.D. Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind. Phys. Rev. Lett. 2015, 115, 025001. [Google Scholar] [CrossRef]
- Boldyrev, S.; Loureiro, N. Magnetohydrodynamic Turbulence Mediated by Reconnection. Astrophys. J. 2017, 844, 125. [Google Scholar] [CrossRef]
- Loureiro, N.F.; Boldyrev, S. Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 2017, 118, 245101. [Google Scholar] [CrossRef]
- Donato, S.; Servidio, S.; Dmitruk, P.; Carbone, V.; Shay, M.A.; Cassak, P.A.; Matthaeus, W.H. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence. Phys. Plasmas 2012, 19, 092307. [Google Scholar] [CrossRef]
- Yoshimatsu, K.; Kondo, Y.; Schneider, K.; Okamoto, N.; Hagiwara, H.; Farge, M. Wavelet-based coherent vorticity sheet and current sheet extraction from three-dimensional homogeneous magnetohydrodynamic turbulence. Phys. Plasmas 2009, 16, 082306. [Google Scholar] [CrossRef]
- Donato, S.; Greco, A.; Matthaeus, W.H.; Servidio, S.; Dmitruk, P. How to identify reconnecting current sheets in incompressible Hall MHD turbulence. J. Geophys. Res. Space Phys. 2013, 118, 4033. [Google Scholar] [CrossRef]
- Kageyama, A.; Yamada, T. An approach to exascale visualization: Interactive viewing of in-situ visualization. Comput. Phys. Commun. 2014, 185, 79. [Google Scholar] [CrossRef]
- O’Leary, P.; Ahrens, J.; Jourdain, S.; Wittenburg, S.; Rogers, D.H.; Petersen, M. Cinema image-based in situ analysis and visualization of MPAS-ocean simulations. Parallel Comput. 2016, 55, 43. [Google Scholar] [CrossRef]
- Kageyama, A.; Sakamoto, N.; Miura, H.; Ohno, N. Interactive Viewing of In-situ Visualization of MHD Simulation. Plasma Fusion Res. 2020, 15, 1401065. [Google Scholar] [CrossRef]
- Kobayashi, H. Large eddy simulation of magnetohydrodynamic turbulent channel flows with local subgrid-scale model based on coherent structures. Phys. Fluids 2006, 18, 045107. [Google Scholar] [CrossRef]
- Hamba, F.; Tsuchiya, M. Cross-helicity dynamo effect in magnetohydrodynamic turbulent channel flow. Phys. Plasmas 2010, 17, 012301. [Google Scholar] [CrossRef]
- Chernyshov, A.A.; Karelsky, K.V.; Petrosyan, A.S. Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas. Phys.-Uspekhi 2014, 57, 421. [Google Scholar] [CrossRef]
- Miesch, M.; Matthaeus, W.; Brandenburg, A.; Petrosyan, A.; Pouquet, A.; Cambon, C.; Jenko, F.; Uzdensky, D.; Stone, J.; Tobias, S.; et al. Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics. Space Sci. Rev. 2015, 97, 137. [Google Scholar] [CrossRef]
- Miura, H.; Araki, K.; Hamba, F. Hall effects and sub-grid-scale modeling in magnetohydrodynamic turbulence simulations. J. Comput. Phys. 2016, 316, 385. [Google Scholar] [CrossRef]
- Miura, H.; Hamba, F. Sub-grid-scale model for studying Hall effects on macroscopic aspects of magnetohydrodynamic turbulence. J. Comput. Phys. 2022, 448, 110692. [Google Scholar] [CrossRef]
- Miura, H.; Hamba, F. Numerical Simulations of Hall MHD Turbulence with Magnetization. Plasma Fusion Res. 2023, 18, 2401022. [Google Scholar] [CrossRef]
- Garnier, E.; Adams, N.; Sagaut, P. Large Eddy Simulation for Compressible Flows; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, H. Formation of Fine Structures in Incompressible Hall Magnetohydrodynamic Turbulence Simulations. Plasma 2024, 7, 793-815. https://doi.org/10.3390/plasma7040042
Miura H. Formation of Fine Structures in Incompressible Hall Magnetohydrodynamic Turbulence Simulations. Plasma. 2024; 7(4):793-815. https://doi.org/10.3390/plasma7040042
Chicago/Turabian StyleMiura, Hideaki. 2024. "Formation of Fine Structures in Incompressible Hall Magnetohydrodynamic Turbulence Simulations" Plasma 7, no. 4: 793-815. https://doi.org/10.3390/plasma7040042
APA StyleMiura, H. (2024). Formation of Fine Structures in Incompressible Hall Magnetohydrodynamic Turbulence Simulations. Plasma, 7(4), 793-815. https://doi.org/10.3390/plasma7040042