Measuring a Fire. The Story of the January 2019 Fire Told from Measurements at the Warra Supersite, Tasmania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Carbon Fluxes and Meteorology
2.3. Photograph-Derived Measures
2.4. Biomass Measurements within Core 1 ha Plot
2.5. Small Coarse Woody Debris (CWD)
2.6. Post-Fire Seedling Regeneration
3. Results
3.1. Fire Weather Conditions
3.2. Measurements as the Fire Burnt through the Warra Supersite
3.3. Changes to the Existing Forest
3.4. New Cohort of Plants Regenerating after the Fire
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Allometric Equations Used for Computation of Aboveground Biomass in the Core 1 ha Plot of the Warra Supersite
Taxon | Regression Model | Statistics |
---|---|---|
Eucalyptus obliqua | Ht = 1/(0.0158539 + 0.423019/DBH) | F1,43 = 51.7; MSE = 6.34 × 10−6; r = 0.739 |
Acacia melanoxylon | Ht = 1/(0.0138618 + 0.625844/DBH) | F1,22 = 31.1; MSE = 2.18 × 10−5; r = 0.765 |
Nothofagus cunninghamii | Ht = 34.1307 − 228.262/DBH | F1,19 = 60.9; MSE = 8.00; r = −0.873 |
Atherosperma moschatum | Ht = 1/(0.01889 + 0.655262/DBH) | F1,9 = 39.2; MSE = 4.21 ×10−5; r = 0.902 |
Pomaderris apetala | Ht = 24.8721 − 155.257/DBH | F1,3 = 1.1; MSE = 9.57; r = −0.517 |
Other species | Ht = 1/(0.0126758 + 0.734503/DBH | F1,58 = 164.4; MSE = 8.83 × 10−5; r = 0.860 |
Taxon | Stem Volume Model | Reference |
---|---|---|
Acacia melanoxylon | Ln (ESV) = −8.359 + 2.265 ln(dbh) | [53] |
Nothofagus cunninghamii | ESV = 0.00125338 × ((1 − e(−0.0380063 × Ht)^0.75) × dbh2) | [54] |
Eucalyptus obliqua | ESV = e(−6.748851−0.0035614 × dbh + 0.1893998 × Ht−0.0013634 × Ht2 + 2.207765 × (dbh/ht) − 0.2535472 × (dbh/Ht)2) | R.Musk pers. comm. (from Forestry Tasmania inventory data) |
Eucryphia lucida | ESV = 0.00107074 × ((1 − e(−0.0618753 × Ht)^0.856899) × dbh2) | [54] |
Phyllocladus aspleniifolius | ESV = 0.00108502 × ((1 − e(−0.0562587 × Ht)^0.871411) × DBH2) | [54] |
Other species | 1.3 m-top = conic volume; 0–1.3 m cylindric volume | Default for this study |
References
- Ashton, D.H. The development of even-aged stands of Eucalyptus regnans F. Muell. in Central Victoria. Aust. J. Bot. 1976, 24, 397–414. [Google Scholar] [CrossRef]
- Attiwill, P.M. Ecological disturbance and the conservative management of eucalypt forests in Australia. For. Ecol. Manag. 1994, 63, 301–346. [Google Scholar] [CrossRef]
- Meng, Y.; Deng, Y.; Shi, P. Mapping Forest Wildfire Risk of the World. In World Atlas of Natural Disaster Risk; Springer–Beijing Normal University Press: Beijing, China, 2015; pp. 261–275. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.; Berry, S.; Lindenmayer, D.; Gibbons, P. Estimating carbon carrying capacity in natural forest ecosystems across heterogeneous landscapes: Addressing sources of error. Glob. Chang. Biol. 2009, 16, 2971–2989. [Google Scholar] [CrossRef]
- Wood, S.W.; Hua, Q.; Allen, K.J.; Bowman, D.M.J.S. Age and growth of a fire prone Tasmanian temperate old-growth forest stand dominated by Eucalyptus regnans, the world’s tallest angiosperm. For. Ecol. Manag. 2010, 260, 438–447. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Keenan, R.J.; Prior, L.D. A warmer world will reduce tree growth in evergreen broadleaf forests: Evidence from Australian temperate and subtropical eucalypt forests. Glob. Ecol. Biogeogr. 2014, 23, 925–934. [Google Scholar] [CrossRef]
- Wood, S.W.; Prior, L.D.; Stephens, H.C.; Bowman, D.M. Macroecology of Australian Tall Eucalypt Forests: Baseline Data from a Continental-Scale Permanent Plot Network. PLoS ONE 2015, 10, e0137811. [Google Scholar] [CrossRef]
- Keeves, A.; Douglas, D.R. Forest fires in South Australia on 16 February 1983 and consequent future forest management aims. Aust. For. 1983, 46, 148–162. [Google Scholar] [CrossRef]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Sims, N.C.; Bannister, A.J.; Hollis, J.J.; Hurley, R.J. Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Ndalila, M.N.; Williamson, G.J.; Bowman, D.M.J.S. Geographic Patterns of Fire Severity Following an Extreme Eucalyptus Forest Fire in Southern Australia: 2013 Forcett-Dunalley Fire. Fire 2018, 1, 40. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.P.; Bradstock, R.A.; Boer, M.M.; Carter, J.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Russell-Smith, J.; Williamson, G.J.; Bowman, D.M.J.S.; et al. Fire regimes of Australia: A pyrogeographic model system. J. Biogeogr. 2013, 40, 1048–1058. [Google Scholar] [CrossRef]
- Hickey, J.E.; Su, W.; Rowe, P.; Brown, M.J.; Edwards, L. Fire history of the tall wet eucalypt forests of the Warra ecological research site, Tamania. Aust. For. 1999, 62, 66–71. [Google Scholar] [CrossRef]
- Alcorn, P.J.; Dingle, J.K.; Hickey, J.E. Age and stand structure in a multi-aged wet eucalypt forest at the Warra silvicultural systems trial. Tasforests 2001, 13, 245–259. [Google Scholar]
- Turner, P.A.M.; Balmer, J.; Kirkpatrick, J.B. Stand-replacing wildfires? For. Ecol. Manag. 2009, 258, 366–375. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 2009, 25, 607–619. [Google Scholar] [CrossRef]
- Fagg, P.; Lutze, M.; Slijkerman, C.; Ryan, M.; Bassett, O. Silvicultural recovery in ash forests following three recent large bushfires in Victoria. Aust. For. 2013, 76, 140–155. [Google Scholar] [CrossRef]
- Gilbert, J.M. Forest succession in the Florentine Valley, Tasmania. Pap. Proc. R. Soc. Tasman. 1959, 93, 129–151. [Google Scholar]
- Karan, M.; Liddell, M.; Prober, S.M.; Arndt, S.; Beringer, J.; Boer, M.; Cleverly, J.; Eamus, D.; Grace, P.; Van Gorsel, E.; et al. The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Sci. Total Environ. 2016, 568, 1263–1274. [Google Scholar] [CrossRef]
- Beringer, J.; Hutley, L.B.; McHugh, I.; Arndt, S.K.; Campbell, D.; Cleugh, H.A.; Cleverly, J.; Resco de Dios, V.; Eamus, D.; Evans, B.; et al. An introduction to the Australian and New Zealand flux tower network-OzFlux. Biogeosciences 2016, 13, 5895–5916. [Google Scholar] [CrossRef] [Green Version]
- Dowdy, A.J.; Mills, G.A.; Finkele, K.; de Groot, W. Australian Fire Weather as Represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index; CAWCR Technical Report No. 10; The Centre for Australian Weather and Climate Research, CSIRO and Australian Bureau of Meteorology: Melbourne, Australia, 2009.
- Griffiths, D. Improved Formula for the Drought Factor in McArthur’s Forest Fire Danger Meter. Aust. For. 1999, 62, 202–206. [Google Scholar] [CrossRef]
- Isaac, P.; Cleverly, J.; McHugh, I.; van Gorsel, E.; Ewenz, C.; Beringer, J. OzFlux data: Network integration from collection to curation. Biogeosciences 2017, 14, 2903–2928. [Google Scholar] [CrossRef] [Green Version]
- Kormann, R.; Meixner, F.X. An analytical footprint model for non-neural stratification. Bound. Layer Meteorol. 2001, 99, 207–224. [Google Scholar] [CrossRef]
- Spirig, C.; Ammann, C.; Neftel, A. The ART Footprint Tool, 1.0; Air Pollution and Climate Group Research Station Agroscope ART: Zurich, Switzerland, 2008. [Google Scholar]
- Karan, M. SuperSites Vegetation Monitoring Protocols; Version 1.21; Terrestrial Ecosystem Research Network: Brisbane, Australia, 2015. [Google Scholar]
- Musk, R. Stand level inventory of eucalypt plantations using small footprint LiDAR in Tasmania, Australia. Proceedings of SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, Hobart, Australia, 16–20 October 2011; pp. 1–10. [Google Scholar]
- Ximenes, F.A.; Gardner, W.D.; Kathuria, A. Proportion of above-ground biomass in commercial logs and residues following the harvest of five commercial forest species in Australia. For. Ecol. Manag. 2008, 256, 335–346. [Google Scholar] [CrossRef]
- Snowden, P.; Raison, J.; Keith, H.; Ritson, P.; Grierson, P.; Adams, M.; Montagu, K.; Bi, H.; Burrows, W.; Eamus, D. Protocol for Sampling Tree and Stand Biomass; National carbon accounting system; Australian Greenhouse Office: Canberra, Australia, 2002. [Google Scholar]
- Van Wagner, C.E. The line intersect method in forest fuel sampling. For. Sci. 1968, 14, 20–27. [Google Scholar]
- Grove, S.J.; Stamm, L.; Wardlaw, T.J. How well does a log decay-class system capture the ecology of decomposition?—A case-study from Tasmanian Eucalyptus obliqua forest. For. Ecol. Manag. 2011, 262, 692–700. [Google Scholar] [CrossRef]
- Grove, S.J.; Stamm, L.; Barry, C. Log decomposition rates in Tasmanian Eucalyptus obliqua determined using an indirect chronosequence approach. For. Ecol. Manag. 2009, 258, 389–397. [Google Scholar] [CrossRef]
- Sparrow, B.D.; Foulkes, J.N.; Wardle, G.M.; Leitch, E.J.; Caddy-Retalic, S.; van Leeuwen, S.J.; Tokmakoff, A.; Thurgate, N.Y.; Guerin, G.R.; Lowe, A.J. A Vegetation and Soil Survey Method for Surveillance Monitoring of Rangeland Environments. Front. Ecol. Evol. 2020, 8, 157. [Google Scholar] [CrossRef]
- Jennings, S.M.; Wilkinson, G.R. Regeneration of blackwood from ground-stored seed in the North Arthur Forests, north-western Tasmania. Tasforests 1994, 6, 69–78. [Google Scholar]
- Furlaud, J.M.; Bowman, D.J.M.S. Understanding Post-Fire Fuel Dynamics Using Burnt Permanent Plots; Report No. 569.2020; Bushfire and Natural Hazards CRC: Melbourne, Australia, 2020. [Google Scholar]
- Marsden-Smedley, J.; Silijpevic, A. Fuel characteristics and low intensity burning in Eucalyptus obliqua wet forest at Warra LTER site. Tasforests 2001, 13, 261–279. [Google Scholar]
- Butler, B.W.; Putnam, T. Fire shelter performance in simulated wildfires: An exploratory study. Int. J. Wildland Fire 2001, 10, 29–44. [Google Scholar] [CrossRef]
- Hollis, J.J.; Anderson, W.R.; McCaw, W.L.; Cruz, M.G.; Burrows, N.D.; Ward, B.; Tolhurst, K.G.; Gould, J.S. The effect of fireline intensity on woody fuel consumption in southern Australian eucalypt forest fires. Aust. For. 2013, 74, 81–96. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. Int. J. Wildland Fire 2012, 21, 95–113. [Google Scholar] [CrossRef]
- Commonwealth of Australia. Monthly Weather Review Australia. January 2016; Bureau of Meteorology: Melbourne, Australia, 2016; p. 33.
- Commonwealth of Australia. Special Climate Statement 43—Extreme Heat in January 2013; Bureau of Meteorolgy: Melbourne, Australia, 2013.
- Lunn, T.J.; Gerwin, M.; Buettel, J.C.; Brook, B.W. Impact of intense disturbance on the structure and composition of wet-eucalypt forests: A case study from the Tasmanian 2016 wildfires. PLoS ONE 2018, 13, e0200905. [Google Scholar] [CrossRef] [Green Version]
- Ellis, T.W.; Hatton, T.J. Relating leaf area index of natural eucalypt vegetation to climate variables in southern Australia. Agric. Water Manag. 2008, 95, 743–747. [Google Scholar] [CrossRef]
- Ashton, D.H.; Martin, D.G. Regeneration in a pole-stage forest of Eucalyptus regnans subjected to different fire intensities in 1982. Aust. J. Bot. 1996, 44, 393–410. [Google Scholar] [CrossRef]
- Neyland, M.; Hickey, J.; Read, S.M. A synthesis of outcomes from the Warra Silvicultural Systems Trial, Tasmania: Safety, timber production, economics, biodiversity, silviculture and social acceptability. Aust. For. 2012, 75, 147–162. [Google Scholar] [CrossRef]
- Moroni, M.T.; Musk, R.; Wardlaw, T.J. Forest succession where trees become smaller and wood carbon stocks reduce. For. Ecol. Manag. 2017, 393, 74–80. [Google Scholar] [CrossRef]
- Sun, Q.; Meyer, W.S.; Koerber, G.R.; Marschner, P. A wildfire event influences ecosystem carbon fluxes but not soil respiration in a semi-arid woodland. Agric. For. Meteorol. 2016, 226–227, 57–66. [Google Scholar] [CrossRef]
- Sun, Q.; Meyer, W.S.; Koerber, G.R.; Marschner, P. Rapid recovery of net ecosystem production in a semi-arid woodland after a wildfire. Agric. For. Meteorol. 2020, 291, 108099. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Amiro, B.D.; Barr, A.G.; Black, T.A.; Hawthorne, I.; Kidston, J.; McCaughey, J.H.; Orchansky, A.L.; Nesic, Z.; Sass, A.; et al. Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. Agric. For. Meteorol. 2009, 149, 783–794. [Google Scholar] [CrossRef]
- Rebane, S.; Jõgiste, K.; Põldveer, E.; Stanturf, J.A.; Metslaid, M. Direct measurements of carbon exchange at forest disturbance sites: A review of results with the eddy covariance method. Scand. J. For. Res. 2019, 34, 585–597. [Google Scholar] [CrossRef]
- Moroni, M.T.; Kelley, T.H.; McLarin, M.L. Carbon in Trees in Tasmanian State Forest. Int. J. For. Res. 2010, 2010, 690462. [Google Scholar] [CrossRef]
- Government of Tasmania. Tasmanian Greenhouse Gas Emissions Report 2019; Tasmanian Climate Change Office, Department of Premier and Cabinet: Hobart, Australia, 2019.
- Fox-Hughes, P.; Harris, R.; Lee, G.; Grose, M.; Bindoff, N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 2014, 23, 309. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Khanna, P.K. Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For. Ecol. Manag. 2004, 193, 81–95. [Google Scholar] [CrossRef]
- Walker, B.B.; Candy, S.G. Investigating methods of assessing rainforest in Tasmania. In Tasmanian Rainforests-Recent Research Results; Forest Ecology Research Fund: Hobart, Australia; pp. 7–33.
- Santos, A.J.A.; Alves, A.M.M.; Simões, R.M.S.; Pereira, H.; Rodriguesa, J.; Schwanninger, M. Estimation of wood basic density of Acacia melanoxylon (R. Br.) by near infrared spectroscopy. J. Near Infrared Spectrosc. 2012, 20, 267–274. [Google Scholar] [CrossRef]
- Bootle, K.R. Wood in Australia: Types, Properties and Uses; McGraw-Hill: Sydney, Australia, 2010. [Google Scholar]
- Beets, P.N.; Kimberley, M.O.; Oliver, G.R.; Pearce, S.H.; Graham, J.D.; Brandon, A. Allometric equations for estimating carbon stocks in natural forest in New Zealand. Forests 2012, 3, 818–839. [Google Scholar] [CrossRef]
Taxa | Measured by Hypsometer | Measured by LiDAR | Predicted from Regression |
---|---|---|---|
Acacia melanoxylon | 23 | 55 | |
Atherosperma moschatum | 11 | 8 | |
Dicksonia antarctica | 255 | ||
Eucalyptus obliqua | 6 | 39 | 61 |
Nothofagus cunninghamii | 21 | 79 | |
Pomaderris apetala | 5 | 95 | |
Other | 12 |
CWD Demographic | BIOMASS Carbon (t/ha) | |
---|---|---|
2015 | 2021 | |
Present in 2015 and persisting to 2021 | 3.5 (24) | 2.6 (14) |
Present in 2015 BUT not persisting to 2021 | 10.9 (76) | |
Added between 2015 and 2019 fire (charred) | 5.6 (31) | |
Added after 2019 fire (not charred) | 10.0 (55) | |
Total | 14.4 | 18.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardlaw, T. Measuring a Fire. The Story of the January 2019 Fire Told from Measurements at the Warra Supersite, Tasmania. Fire 2021, 4, 15. https://doi.org/10.3390/fire4020015
Wardlaw T. Measuring a Fire. The Story of the January 2019 Fire Told from Measurements at the Warra Supersite, Tasmania. Fire. 2021; 4(2):15. https://doi.org/10.3390/fire4020015
Chicago/Turabian StyleWardlaw, Tim. 2021. "Measuring a Fire. The Story of the January 2019 Fire Told from Measurements at the Warra Supersite, Tasmania" Fire 4, no. 2: 15. https://doi.org/10.3390/fire4020015
APA StyleWardlaw, T. (2021). Measuring a Fire. The Story of the January 2019 Fire Told from Measurements at the Warra Supersite, Tasmania. Fire, 4(2), 15. https://doi.org/10.3390/fire4020015