Forest Structure Drives Fuel Moisture Response across Alternative Forest States
Abstract
:1. Introduction
- Are there differences in fuel moisture content across alternative forest states?
- Can FMC at the forest floor (as represented by 10-h fuel moisture sticks) be accurately modelled from open-weather conditions?
- Which forest properties have the greatest influence on subcanopy FMC?
2. Materials and Methods
2.1. Overview
2.2. Study Area
2.2.1. Site Selection
2.2.2. Forest Structure Analysis
2.2.3. Representativeness of Forest Structure at the Instrumented Sites
2.3. Field Instrumentation and Data Collection
2.4. Data Analysis
3. Results
3.1. Differences in Fuel Availability
3.2. Modelling Understorey FMC from Open Weather
3.3. Influence of Forest Properties on Understorey FMC
4. Discussion
4.1. Differences in Fuel Availability across Alternative Forest States
4.2. Modelling Understorey FMC from Open Weather
4.3. Influence of Forest Structural Properties on FMC across Alternative States
4.4. Implications for Forest Flammability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
E. regnans2 Forest Structure Data
References
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an ecological and evolutionary driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Enright, N.; Fontaine, J.B.; Bowman, D.M.J.S.; Bradstock, R.A.; Williams, R.J.; Enright, N.J.; Bowman, J.B.; Bradstock, D.M.; Williams, R.A. Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 2015, 13, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.D.; Stocks, B.J.; Wotton, B.M. Climate change and forest fires. Sci. Total Environ. 2000, 262, 221–229. [Google Scholar] [CrossRef]
- Hennessey, K.; Lucas, C.; Nicholls, N.; Bathols, J.; Suppiah, R.; Ricketts, J. Climate Change Impacts on Fire-Weather in South-East Australia; CSIRO Marine and Atmospheric Research: Aspendale, VIC, Australia, 2005. [Google Scholar]
- Harris, S.; Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 2019, 14, e0222328. [Google Scholar] [CrossRef]
- Fairman, T.A.; Bennett, L.T.; Nitschke, C.R. Short-interval wildfires increase likelihood of resprouting failure in fire-tolerant trees. J. Environ. Manag. 2019, 231, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.T.; Higuera, P.E.; Dobrowski, S.Z.; Parks, S.A.; Abatzoglou, J.T.; Rother, M.T.; Veblen, T.T. Fire-catalyzed vegetation shifts in ponderosa pine and Douglas-fir forests of the western United States. Environ. Res. Lett. 2020, 15, 1040–1048. [Google Scholar] [CrossRef]
- Coop, J.D.; Parks, S.A.; Stevens-Rumann, C.S.; Crausbay, S.D.; Higuera, P.E.; Hurteau, M.D.; Tepley, A.; Whitman, E.; Assal, T.; Collins, B.M.; et al. Wildfire-Driven Forest Conversion in Western North American Landscapes. Bioscience 2020, 70, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Murphy, B.P.; Neyland, D.L.J.; Williamson, G.J.; Prior, L.D. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Glob. Chang. Biol. 2014, 20, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.T. Ecological response syndromes in the flora of southwestern Western Australia: Fire resprouters versus reseeders. Bot. Rev. 2001, 67, 417–440. [Google Scholar] [CrossRef]
- Noble, I.R.; Slatyer, R.O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 1980, 43, 5–21. [Google Scholar] [CrossRef]
- Ashton, D.H. The development of even-aged stands of Eucalyptus regnans F. Muell. in central Victoria. Aust. J. Bot. 1976, 24, 397–414. [Google Scholar] [CrossRef]
- Tepley, A.J.; Thomann, E.; Veblen, T.T.; Perry, G.L.W.; Holz, A.; Paritsis, J.; Kitzberger, T.; Anderson-Teixeira, K.J. Influences of fire–vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to altered fire regimes. J. Ecol. 2018, 106, 1925–1940. [Google Scholar] [CrossRef] [Green Version]
- Tiribelli, F.; Kitzberger, T.; Morales, J.M. Changes in vegetation structure and fuel characteristics along post-fire succession promote alternative stable states and positive fire-vegetation feedbacks. J. Veg. Sci. 2018, 29, 147–156. [Google Scholar] [CrossRef]
- Xu, X.; Jia, G.; Zhang, X.; Riley, W.J.; Xue, Y. Climate regime shift and forest loss amplify fire in Amazonian forests. Glob. Chang. Biol. 2020, 26, 5874–5885. [Google Scholar] [CrossRef]
- Hart, S.J.; Henkelman, J.; McLoughlin, P.D.; Nielsen, S.E.; Truchon-Savard, A.; Johnstone, J.F. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Chang. Biol. 2019, 25, 869–884. [Google Scholar] [CrossRef]
- Miller, A.D.; Thompson, J.R.; Tepley, A.J.; Anderson-Teixeira, K.J. Alternative stable equilibria and critical thresholds created by fire regimes and plant responses in a fire-prone community. Ecography (Cop.) 2019, 42, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Donato, D.C.; Fontaine, J.; Robinson, W.D.; Kauffman, J.B.; Law, B.E. Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. J. Ecol. 2009, 97, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Fairman, T.A.; Nitschke, C.R.; Bennett, L.T. Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. Int. J. Wildland Fire 2016, 25, 831–848. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Prior, L.D.; Murphy, B.P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 2016, 25, 1166–1172. [Google Scholar] [CrossRef]
- Gosper, C.R.; Yates, C.J.; Cook, G.D.; Harvey, J.M.; Liedloff, A.C.; McCaw, W.L.; Thiele, K.R.; Prober, S.M. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecol. 2018, 43, 681–695. [Google Scholar] [CrossRef]
- Burton, J.; Cawson, J.; Noske, P.; Sheridan, G. Shifting States, Altered Fates: Divergent Fuel Moisture Responses after High Frequency Wildfire in an Obligate Seeder Eucalypt Forest. Forests 2019, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Pyke, J.; Jiang, M.; Lacy, T.; de Whitelaw, P.; Jones, R. Assessing the Economic Value and Vulnerability of Nature-Based Tourism in the Ovens and Alpine Area of NE Victoria; The State of Victoria Department of Environment, Land, Water and Planning: Melbourne, Australia, 2015.
- Attiwill, P. Victoria’s Mountain Ash Forests: A Case of Sustainable Management. Agenda A J. Policy Anal. Reform 1996, 3, 229–234. [Google Scholar] [CrossRef]
- Macfarlane, M.A. Mammal populations in mountain ash (Eucalyptus regnans) forests of various ages in the Central Highlands of Victoria. Aust. For. 1988, 51, 14–27. [Google Scholar] [CrossRef]
- Colloff, M.J.; Doherty, M.D.; Lavorel, S.; Dunlop, M.; Wise, R.M.; Prober, S.M. Adaptation services and pathways for the management of temperate montane forests under transformational climate change. Clim. Chang. 2016, 138, 267–282. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Perry, G.L.W.; Marston, J.B. Feedbacks and landscape-level vegetation dynamics. Trends Ecol. Evol. 2015, 30, 255–260. [Google Scholar] [CrossRef]
- Matthews, S. Effect of drying temperature on fuel moisture content measurements. Int. J. Wildland Fire 2010, 19, 800–802. [Google Scholar] [CrossRef]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Forestry and Timber Bureau: Canberra, Australia, 1967.
- Cawson, J.G.; Duff, T.J.; Swan, M.H.; Penman, T.D. Wildfire in wet sclerophyll forests: The interplay between disturbances and fuel dynamics. Ecosphere 2018, 9, e02211. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Goosse, H.; Kay, J.E.; Armour, K.C.; Bodas-Salcedo, A.; Chepfer, H.; Docquier, D.; Jonko, A.; Kushner, P.J.; LeComte, O.; Massonnet, F.; et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 2018, 9, 1919. [Google Scholar] [CrossRef]
- Beckage, B.; Ellingwood, C. Fire Feedbacks with Vegetation and Alternative Stable States. Complex Syst. 2009, 18, 159–173. [Google Scholar] [CrossRef]
- McCarthy, M.A.; Gill, A.M.; Lindenmayer, D.B. Fire regimes in mountain ash forest: Evidence from forest age structure, extinction models and wildlife habitat. For. Ecol. Manag. 1999, 124, 193–203. [Google Scholar] [CrossRef]
- Eldridge, K.G. Genetic Variation in the Growth of Eucalyptus Regnans from an Altitudinal Transect of Mount Erica, Victoria; Government Publishing Service: Canberra, Australia, 1972; ISBN 9780642001573.
- Gill, A.M. Fire and The Australian Flora: A Review. Aust. For. 1975, 38, 4–25. [Google Scholar] [CrossRef]
- Ashton, D.H.; Attiwill, P.M. Tall open-forests. In Australian Vegetation; Groves, R.H., Ed.; Cambridge University Press: Cambridge, UK, 1994; pp. 157–197. [Google Scholar]
- May, B. Silver Wattle (Acacia dealbata): Its Role in the Ecology of the Mountain Ash Forest and the Effect of Alternative Silvicultural Systems on Its Regeneration. Ph.D. Thesis, The University of Melbourne, Melbourne, Australia, 1999. [Google Scholar]
- Davis, K.T.; Dobrowski, S.Z.; Holden, Z.A.; Higuera, P.E.; Abatzoglou, J.T. Microclimatic buffering in forests of the future: The role of local water balance. Ecography (Cop.) 2018, 41, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zellweger, F.; Coomes, D.; Lenoir, J.; Depauw, L.; Maes, S.L.; Wulf, M.; Kirby, K.J.; Brunet, J.; Kopecký, M.; Máliš, F.; et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 2019, 28, 1774–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Tu, C.; Fang, J.; Gioli, B.; Loubet, B.; Gruening, C.; Zhou, G.; Beringer, J.; Huang, J.; Dušek, J.; et al. Forests buffer thermal fluctuation better than non-forests. Agric. For. Meteorol. 2020, 288–289, 107994. [Google Scholar] [CrossRef]
- Miller, D.R. The two-dimensional energy budget of a forest edge with field measurements at a forest-parking lot interface. Agric. Meteorol. 1980, 22, 53–78. [Google Scholar] [CrossRef]
- De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K.; Lenoir, J. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 2019, 3, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Jucker, T.; Hardwick, S.R.; Both, S.; Elias, D.M.O.; Ewers, R.M.; Milodowski, D.T.; Swinfield, T.; Coomes, D.A. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol. 2018, 24, 5243–5258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, S.J.K.; Hadley, A.S.; Johnson, S.L.; Schulze, M.; Jones, J.A.; Betts, M.G. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2016, 2, e1501392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Arx, G.; Graf Pannatier, E.; Thimonier, A.; Rebetez, M. Microclimate in forests with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate. J. Ecol. 2013, 101, 1201–1213. [Google Scholar] [CrossRef]
- Kovács, B.; Tinya, F.; Ódor, P. Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 2017, 234–235, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.; Nepstad, D.; Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested amazon landscape. Ecol. Appl. 2005, 15, 1664–1678. [Google Scholar] [CrossRef]
- Bode, C.A.; Limm, M.P.; Power, M.E.; Finlay, J.C. Subcanopy Solar Radiation model: Predicting solar radiation across a heavily vegetated landscape using LiDAR and GIS solar radiation models. Remote Sens. Environ. 2014, 154, 387–397. [Google Scholar] [CrossRef]
- Moon, K.; Duff, T.J.; Tolhurst, K.G. Characterising forest wind profiles for utilisation in fire spread models. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–3 December 2013; pp. 214–220. [Google Scholar]
- Schindler, D.; Bauhus, J.; Mayer, H. Wind effects on trees. Eur. J. For. Res. 2012, 131, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Andrews, P.L. Modeling Wind Adjustment Factor and Midflame Wind Speed for Rothermel’s Surface Fire Spread Model; US Department of Agriculture, Forest Service General Technical Report RMRS-GTR: Fort Collings, CO, USA, 2012; pp. 1–39. [CrossRef]
- van Dijk, A.I.J.M.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part Model description. J. Hydrol. 2001, 247, 230–238. [Google Scholar] [CrossRef]
- Liu, S. Evaluation of the Liu model for predicting rainfall interception in forests world-wide. Hydrol. Process. 2001, 15, 2341–2360. [Google Scholar] [CrossRef]
- Ewers, R.M.; Banks-Leite, C. Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests. PLoS ONE 2013, 8, e58093. [Google Scholar] [CrossRef] [PubMed]
- Montejo-Kovacevich, G.; Martin, S.H.; Meier, J.I.; Bacquet, C.N.; Monllor, M.; Jiggins, C.D.; Nadeau, N.J. Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. J. Exp. Biol. 2020, 223, eb220426. [Google Scholar] [CrossRef] [Green Version]
- Senior, R.A. Hot and bothered: The role of behaviour and microclimates in buffering species from rising temperatures. J. Anim. Ecol. 2020, 89, 2392–2396. [Google Scholar] [CrossRef]
- Bureau of Meteorology Maps and Gridded Spatial Data. Available online: http://www.bom.gov.au/climate/data-services/maps.shtml (accessed on 19 January 2020).
- Nolan, R.H.; Boer, M.M.; Resco de Dios, V.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef] [Green Version]
- Anderson, H.E.; Rothermel, R.C. Influence of moisture and wind upon the characteristics of free-burning fires. In Proceedings of the Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1965; Volume 10, pp. 1009–1019. [Google Scholar]
- Anderson, H. Moisture diffusivity and response time in fine forest fuels. Can. J. For. Res. 1990, 20, 315–325. [Google Scholar] [CrossRef]
- Nelson, R. Prediction of diurnal change in 10-h fuel stick moisture content. Can. J. For. Res. 2000, 30, 1071–1087. [Google Scholar] [CrossRef]
- Cawson, J.G.; Nyman, P.; Schunk, C.; Sheridan, G.J.; Duff, T.J.; Gibos, K.; Bovill, W.D.; Conedera, M.; Pezzatti, G.B.; Menzel, A. Estimation of surface dead fine fuel moisture using automated fuel moisture sticks across a range of forests worldwide. Int. J. Wildland Fire 2020, 29, 548. [Google Scholar] [CrossRef]
- Bradshaw, L.S.; Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The 1978 National Fire-Danger Rating System: Technical Documentation. General Technical Report INT-169; US Department of Agriculture, Forest Service: Ogden, UT, USA, 1983; pp. 1–49. [Google Scholar]
- Sharples, J.J.; McRae, R.H.D.; Weber, R.O.; Gill, A.M. A simple index for assessing fuel moisture content. Environ. Model. Softw. 2009, 24, 637–646. [Google Scholar] [CrossRef]
- Resco de Dios, V.; Fellows, A.W.; Nolan, R.H.; Boer, M.M.; Bradstock, R.A.; Domingo, F.; Goulden, M.L. A semi-mechanistic model for predicting the moisture content of fine litter. Agric. For. Meteorol. 2015, 203, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, E.A.; Catchpole, W.R.; Viney, N.R.; McCaw, W.L.; Marsden-Smedley, J.B. Estimating fuel response time and predicting fuel moisture content from field data. Int. J. Wildland Fire 2001, 10, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S. A process-based model of fine fuel moisture. Int. J. Wildland Fire 2006, 15, 155–168. [Google Scholar] [CrossRef]
- Van Der Kamp, D.W.; Moore, R.D.; McKendry, I.G. A model for simulating the moisture content of standardized fuel sticks of various sizes. Agric. For. Meteorol. 2017, 236, 123–134. [Google Scholar] [CrossRef]
- Slijepcevic, A.; Anderson, W.; R. Matthews, S. Testing existing models for predicting hourly variation in fine fuel moisture in eucalypt forests. For. Ecol. Manag. 2013, 306, 202–215. [Google Scholar] [CrossRef]
- Victorian Aboriginal Heritage Council Victoria’s Current Registered Aboriginal Parties (RAP). Available online: https://www.aboriginalheritagecouncil.vic.gov.au/victorias-current-registered-aboriginal-parties (accessed on 19 January 2021).
- Cheal, D. Growth Stages and Tolerable Fire Intervals for Victoria’s Native Vegetation Data Sets; Department of Sustainability and Environment: East Melbourne, Australia, 2010.
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- BoM Climate Data Online. Available online: http://www.bom.gov.au/climate/data/index.shtml (accessed on 23 December 2020).
- VicForests. Harvesting and Regeneration Systems; Manager, Biodiversity Conservation and Research: Melbourne, Australia, 2019. [Google Scholar]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Turner, P.A.M.; Balmer, J.; Kirkpatrick, J.B. Stand-replacing wildfires?: The incidence of multi-cohort and single-cohort Eucalyptus regnans and E. obliqua forests in southern Tasmania. For. Ecol. Manag. 2009, 258, 366–375. [Google Scholar] [CrossRef]
- Forests Commission Victoria. Forests Commission Report, Financial Year 1938-39; Victorian State Government: Melbourne, Australia, 1939.
- DELWP Central Highlands Lidar 2016.
- Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Sánchez Meador, A.; Bourdon, J.F.; De Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment 2020, 251, 112061. [Google Scholar] [CrossRef]
- Wilkes, P.; Jones, S.; Suarez, L.; Mellor, A.; Woodgate, W.; Soto-Berelov, M.; Haywood, A.; Skidmore, A. Mapping Forest Canopy Height Across Large Areas by Upscaling ALS Estimates with Freely Available Satellite Data. Remote Sens. 2015, 7, 12563–12587. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, D.R.A.; Stark, S.C.; Shao, G.; Schietti, J.; Nelson, B.W.; Silva, C.A.; Gorgens, E.B.; Valbuena, R.; de Almeida Papa, D.; Brancalion, P.H.S. Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sens. 2019, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Olpenda, A.S.; Stereńczak, K.; Będkowski, K. Modeling Solar Radiation in the Forest Using Remote Sensing Data: A Review of Approaches and Opportunities. Remote Sens. 2018, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team, 2020, QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.osgeo.org (accessed on 1 June 2021).
- Tolhurst, K.; Cheney, N. Synopsis of the Knowledge Used In Prescribed Burning in Victoria; Department of Natural Resources and Environment: East Melbourne, Australia, 1999; ISBN 0731144465.
- Nyman, P.; Baillie, C.C.; Duff, T.J.; Sheridan, G.J. Eco-hydrological controls on microclimate and surface fuel evaporation in complex terrain. Agric. For. Meteorol. 2018, 252, 49–61. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, E.J.; Miller, D.L.; Simpson, G.L.; Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ 2019, 7, e6876. [Google Scholar] [CrossRef] [Green Version]
- Duff, T.J.; Bell, T.L.; York, A. Predicting continuous variation in forest fuel load using biophysical models: A case study in south-eastern Australia. Int. J. Wildland Fire 2013, 22, 318–332. [Google Scholar] [CrossRef]
- Yang, L.; Qin, G.; Zhao, N.; Wang, C.; Song, G. Using a generalized additive model with autoregressive terms to study the effects of daily temperature on mortality. BMC Med. Res. Methodol. 2012, 12, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindenmayer, D.B.; Hunter, M.L.; Burton, P.J.; Gibbons, P. Effects of logging on fire regimes in moist forests. Conserv. Lett. 2009, 2, 271–277. [Google Scholar] [CrossRef]
- Taylor, C.; McCarthy, M.A.; Lindenmayer, D.B. Nonlinear Effects of Stand Age on Fire Severity. Conserv. Lett. 2014, 7, 355–370. [Google Scholar] [CrossRef] [Green Version]
- Cawson, J.G.; Duff, T.; Tolhurst, K.G.; Baillie, C.C.; Penman, T. Fuel moisture in Mountain Ash forests with contrasting fire histories. For. Ecol. Manag. 2017, 400, 568–577. [Google Scholar] [CrossRef]
- Jolly, W.M.; Johnson, D.M. Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research. Fire 2018, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C.; Cornwell, W.K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 2015, 29, 1486–1497. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.B. Relative Humidity or Vapor Pressure Deficit. Ecology 1936, 17, 277–282. [Google Scholar] [CrossRef]
- Pickering, B.J.; Duff, T.J.; Baillie, C.; Cawson, J.G. Darker, cooler, wetter: Forest understories influence surface fuel moisture. Agric. For. Meteorol. 2021, 300, 108311. [Google Scholar] [CrossRef]
- Aussenac, G. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 2000, 57, 287–301. [Google Scholar] [CrossRef]
- Monteith, J. Evaporation and environment. In The state and movement of water in living organisms. In Proceedings of the Symposium of the Society of Experimental Biology 19; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Lee, H.; Won, M.; Yoon, S.; Jang, K. Estimation of 10-Hour Fuel Moisture Content Using Meteorological Data: A Model Inter-Comparison Study. Forests 2020, 11, 982. [Google Scholar] [CrossRef]
- Sterle, G.; Safa, H.; Hanan, E.J.; Harpold, A.A. Using Land Surface Temperature to Quantify Fuel Moisture in Complex Terrain. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2019; p. A23J-2951. [Google Scholar]
- Musselman, K.N.; Pomeroy, J.W.; Link, T.E. Variability in shortwave irradiance caused by forest gaps: Measurements, modelling, and implications for snow energetics. Agric. For. Meteorol. 2015, 207, 69–82. [Google Scholar] [CrossRef]
- Sicart, J.E.; Pomeroy, J.W.; Essery, R.L.H.; Bewley, D. Incoming longwave radiation to melting snow: Observations, sensitivity and estimation in Northern environments. Hydrol. Process. 2006, 20, 3697–3708. [Google Scholar] [CrossRef]
- Sharples, J.J.; McRae, R.H.D. Evaluation of a very simple model for predicting the moisture content of eucalypt litter. Int. J. Wildland Fire 2011, 20, 1000–1005. [Google Scholar] [CrossRef]
- Pook, E.W.; Gill, A.M. Variation of Live and Dead Fine Fuel Moisture in Pinus radiata Plantations of the Australian-Capital-Territory. Int. J. Wildland Fire 1993, 3, 155–168. [Google Scholar] [CrossRef]
- Noble, I.R.; Bary, G.A.V.; Gill, A.M. McArthur’s fire-danger meters expressed as equations. Austral. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Marsdens-Medley, J.B.; Catchpole, W.R. Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands. Int. J. Wildland Fire 1995, 5, 215–228. [Google Scholar] [CrossRef]
- Sneeuwjagt, R.J.; Peet, G.B. Forest Fire Behaviour Tables for Western Australia; Western Australia Department of Conservation and Land Management: Perth, Australia, 1985.
- Sneeuwjagt, R.J.; Peet, G.B. Forest fire behaviour tables for Western Australia. Conservation and Land Management Science 1998, 1, 59. [Google Scholar]
- Van Wagner, C.E. A Method of Computing Fine Fuel Moisture Content throughout the Diurnal Cycle; Canadian Forest Service Publications: Chalk River, ON, Canada, 1977. [Google Scholar]
- Humphrey, V.; Berg, A.; Ciais, P. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 2020, 592, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Uhl, C.; Kauffman, J.B. Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology 1990, 71, 437–449. [Google Scholar] [CrossRef]
- Ma, S.; Concilio, A.; Oakley, B.; North, M.; Chen, J. Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. For. Ecol. Manag. 2010, 259, 904–915. [Google Scholar] [CrossRef]
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Uzoh, F.C.C. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA. Int. J. Wildland Fire 2012, 21, 428–435. [Google Scholar] [CrossRef]
- Faiella, S.M.; Bailey, J.D. Fluctuations in fuel moisture across restoration treatments in semi-arid ponderosa pine forests of northern Arizona, USA. Int. J. Wildland Fire 2007, 16, 119–127. [Google Scholar] [CrossRef]
- Bigelow, S.W.; North, M.P. Microclimate effects of fuels-reduction and group-selection silviculture: Implications for fire behavior in Sierran mixed-conifer forests. For. Ecol. Manag. 2012, 264, 51–59. [Google Scholar] [CrossRef]
- Zou, C.B.; Barron-Gafford, G.A.; Breshears, D.D. Effects of topography and woody plant canopy cover on near-ground solar radiation: Relevant energy inputs for ecohydrology and hydropedology. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Collins, K.M.; Price, O.F.; Penman, T.D. Spatial patterns of wildfire ignitions in south-eastern Australia. Int. J. Wildland Fire 2015, 24, 1098–1108. [Google Scholar] [CrossRef]
- Duff, T.; Keane, R.; Penman, T.; Tolhurst, K. Revisiting Wildland Fire Fuel Quantification Methods: The Challenge of Understanding a Dynamic, Biotic Entity. Forests 2017, 8, 351. [Google Scholar] [CrossRef]
- Tumino, B.J.; Duff, T.J.; Goodger, J.Q.D.; Cawson, J.G. Plant traits linked to field-scale flammability metrics in prescribed burns in Eucalyptus forest. PLoS ONE 2019, 14, e0221403. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.M.; Resco de Dios, V.; Stefaniak, E.Z.; Bradstock, R.A. A hydroclimatic model for the distribution of fire on Earth. Biogeosciences Discuss. Biogeosci. Discuss. 2019. [Google Scholar] [CrossRef]
- Walsh, S.F.; Nyman, P.; Sheridan, G.J.; Baillie, C.C.; Tolhurst, K.G.; Duff, T.J. Hillslope-scale prediction of terrain and forest canopy effects on temperature and near-surface soil moisture deficit. Int. J. Wildland Fire 2017, 26, 191–208. [Google Scholar] [CrossRef]
- NearMap. Available online: https://www.nearmap.com/au/en (accessed on 29 April 2021).
- Hay, A.E.; Kimberley, M.O.; Kampfraath, B.M.P. Monthly diameter and height growth of young Eucalyptus fastigata, E. regnans, and E. saligna. N. Z. J. For. Sci. 1999, 29, 263–273. [Google Scholar]
Site Name | Age i | Rainfall (mm y−1) | Aspect (°) | Elevation (m asl) | Disturbance History | Coordinates | ||||
---|---|---|---|---|---|---|---|---|---|---|
1759 | 1926 | 1939 | 2009 | 2017 | ||||||
Powelltown Open | 1495 | 267 | 740 | N/A | −37.8992, 145.7310 | |||||
Acacia10 | 10 | 1322 | 134 | 558 | x | −37.9166, 145.7454 | ||||
Non-eucalypt10 | 10 | 1344 | 128 | 606 | x | x | −37.9133, 145.7459 | |||
Non-eucalypt80 | 80 | 1402 | 166 | 635 | x | x | −37.9068, 145.7419 | |||
E. regnans2 | 2 | 1481 | 153 | 735 | x | −37.9005, 145.7323 | ||||
E. regnans10 | 10 | 1337 | 142 | 588 | x | −37.9148, 145.7452 | ||||
E. regnans80 | 80 | 1448 | 204 | 672 | x | −37.9028, 145.7364 | ||||
Maroondah Open | 1318 | 263 | 769 | N/A | −37.5713, 145.6213 | |||||
E. regnans260 | 260 | 1297 | 156 | 727 | x | j | j | −37.5728, 145.6161 |
Site Name | LPI0.5 | LPI2 | LAI2 | LPICANOPY | LPIDELTA | CH95 |
---|---|---|---|---|---|---|
Acacia10 | 0.06 | 0.07 | 2.91 | 0.60 | 0.01 | 17.0 |
Non-eucalypt10 | 0.06 | 0.09 | 2.88 | 0.70 | 0.03 | 13.8 |
Non-eucalypt80 | 0.07 | 0.16 | 2.6 | 0.40 | 0.09 | 19.3 |
E. regnans2 | 0.36 | 0.65 | 0.84 | 0.65 i | 0.29 | 4.9 j |
E. regnans10 | 0.12 | 0.20 | 2.07 | 0.62 | 0.08 | 14.3 |
E. regnans80 | 0.07 | 0.16 | 1.46 | 0.6 | 0.09 | 67.4 |
E. regnans260 | 0.13 | 0.18 | 1.50 | 0.83 | 0.05 | 52.7 |
Candidate Variable | Value | Denoted as | Unit |
---|---|---|---|
Short-wave radiation | Daily sum | SWR | MJ m2 day−1 |
Air temperature | Daily minimum | Tmin | °C |
Daily maximum | Tmax | °C | |
Daily mean | Tmean | °C | |
Relative humidity | Daily minimum | RHmin | % |
Daily maximum | RHmax | % | |
Daily mean | RHmean | % | |
Wind speed | Max | Wmax | m s−1 |
Mean | Wmean | m s−1 | |
Longwave radiation | Incoming | LWin | MJ m2 day−1 |
Outgoing | LWout | MJ m2 day−1 | |
Net | LWnet | MJ m2 day−1 | |
Net radiation | Daily sum | Rnet | MJ m2 day−1 |
Precipitation | Daily sum | P | mm day−1 |
Vapor pressure deficit | Daily mean | VPD | kPa |
Potential evapotranspiration | Daily mean | Ep | mm day−1 |
Precipitationt−1 | Daily sum | Pt−1 | mm day−1 |
FMCsite(t−1) | Daily mean | FMCsite(t−1) | % |
Site ID | Powelltown-Only (n = 420) | Powelltown–Maroondah (n = 208) | ||||
---|---|---|---|---|---|---|
Proportion Days below 16% | Relative Proportion | Sum Days Available (FMC < 16%) | Proportion Days below 16% | Relative Proportion | Sum Days Available (FMC < 16%) | |
Powelltown Open | 0.32 | 1.00 | 133 | 0.18 | 1.00 | 38 |
Acacia10 | 0.27 | 0.86 | 114 | 0.24 | 1.32 | 50 |
Non-eucalypt10 | 0.18 | 0.58 | 77 | 0.15 | 0.84 | 32 |
Non-eucalypt80 | 0.04 | 0.13 | 17 | 0.04 | 0.24 | 9 |
E. regnans2 | - | - | - | 0.08 | 0.42 | 16 |
E. regnans10 | 0.20 | 0.62 | 82 | 0.12 | 0.68 | 26 |
E. regnans80 | 0.15 | 0.47 | 63 | 0.11 | 0.61 | 23 |
Maroondah Open | - | - | - | 0.29 | 1.00 | 60 |
E. regnans260 | - | - | - | 0.17 | 0.60 | 36 |
Smoothing Function | edf | Fisher Test | p-Value | |
---|---|---|---|---|
(a) | Relative humidity (%) | 2.505 | 10.536 | *** |
Max wind speed (m s−1) | 2.339 | 15.535 | *** | |
Outgoing longwave radiation (MJ m2 day−1) | 2.847 | 138.036 | *** | |
Net radiation (MJ m2 day−1) | 1.702 | 2.854 | *** | |
(b) | Relative humidity (%) | 2.082 | 21.321 | *** |
Max wind speed (m s−1) | 2.805 | 9.504 | *** | |
Outgoing longwave radiation (MJ m2 day−1) | 2.729 | 31.674 | *** | |
Net radiation (MJ m2 day−1) | 1.739 | 4.178 | *** | |
Previous day open precipitation (mm day−1) (t−1) | 2.546 | 38.741 | *** | |
Previous day subcanopy FMC (%) (t−1) | 2.907 | 756.999 | *** |
Forest Property | r2 |
---|---|
Time since disturbance | 0.07 |
CH95 | 0.22 |
LAI2m | 0.04 |
LPI0.5m | 0.22 |
LPI2m | 0.32 |
LPIDELTA | 0.43 |
LPICANOPY | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, T.P.; Inbar, A.; Duff, T.J.; Burton, J.; Noske, P.J.; Lane, P.N.J.; Sheridan, G.J. Forest Structure Drives Fuel Moisture Response across Alternative Forest States. Fire 2021, 4, 48. https://doi.org/10.3390/fire4030048
Brown TP, Inbar A, Duff TJ, Burton J, Noske PJ, Lane PNJ, Sheridan GJ. Forest Structure Drives Fuel Moisture Response across Alternative Forest States. Fire. 2021; 4(3):48. https://doi.org/10.3390/fire4030048
Chicago/Turabian StyleBrown, Tegan P., Assaf Inbar, Thomas J. Duff, Jamie Burton, Philip J. Noske, Patrick N. J. Lane, and Gary J. Sheridan. 2021. "Forest Structure Drives Fuel Moisture Response across Alternative Forest States" Fire 4, no. 3: 48. https://doi.org/10.3390/fire4030048
APA StyleBrown, T. P., Inbar, A., Duff, T. J., Burton, J., Noske, P. J., Lane, P. N. J., & Sheridan, G. J. (2021). Forest Structure Drives Fuel Moisture Response across Alternative Forest States. Fire, 4(3), 48. https://doi.org/10.3390/fire4030048