Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics. İstanbul Metropolitan Municipality Department of Fire Brigade. 2020. Available online: http://itfaiye.ibb.gov.tr/img/1459582112020__1383325458.pdf (accessed on 20 August 2021). (In Turkish)
- Statistics. İstanbul Metropolitan Municipality Department of Fire Brigade. Available online: https://itfaiye.izmir.bel.tr/en/istatislik/7/152 (accessed on 11 March 2021). (In Turkish).
- Peksen, M.F.; Uyaroglu, Y.; Soyhan, H.S. İstanbul, Ankara ve Sakarya illerinin 2018 yılı itfaiye olaylarının karşılaştırılması. Fuels Fire Combust. Eng. J. 2020, 8, 1–19. [Google Scholar]
- Campbell, R. Fires in Industrial and Manufacturing Properties; National Fire Protection Association: Quincy, MA, USA, 2018. [Google Scholar]
- Facts + Statistics. Insurance Information Institute. Available online: https://www.iii.org/fact-statistic/facts-statistics-fire (accessed on 26 June 2021).
- Mittal, M.; Guha, B.K. Industrial fires and explosions due to electrostatic ignition. Chem. Eng. Technol. 1993, 16, 325–331. [Google Scholar] [CrossRef]
- Yuan, Z.; Khakzad, N.; Khan, F.; Amyotte, P. Dust explosions: A threat to the process industries. Process. Saf. Environ. Prot. 2015, 98, 57–71. [Google Scholar] [CrossRef]
- Joseph, G.; CSB Hazard Investigation Team. Combustible dusts: A serious industrial hazard. J. Hazard. Mater. 2007, 142, 589–591. [Google Scholar] [CrossRef]
- Bekar, İ.; Tavsanoglu, C.; Pezatti, G.B.; Vacik, H.; Pausas, J.G.; Bugmann, H.; Petter, G. Cross-regional modelling of fire occurrence in the Alps and Mediterranean Basin. Int. J. Wildland Fire 2020, 29, 712. [Google Scholar] [CrossRef]
- Modugno, S.; Baltzer, H.; Cole, B.; Borelli, P. Mapping regional patterns of large fires in Wildland-Urban İnterface areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Gungoroglu, C. Determination of forest fire risk with fuzzy analytic hierarchy process and its mapping with the application of GIS: The case of Turkey/Çakırlar. Hum. Ecol. Risk Assessment Int. J. 2017, 23, 388–406. [Google Scholar] [CrossRef]
- Akay, A.E.; Erdogan, A. GIS-based multi-criteria decision analysis for forest fire risk mapping. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. In Proceedings of the 4th International GeoAdvances Workshop, Safranbolu, Karabuk, Turkey, 14–15 October 2017; Volume IV-4/W4. [Google Scholar] [CrossRef]
- Eskandari, S.; Miesel, J.R.; Pourghasemi, H.R. The temporal and spatial relationship between climatic parameters and fire occurence in northeastern Iran. Ecol. Indic. 2020, 118, 106720. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Eaturu, A.; Badarinath, K.V.S. Fire risk evaluation using multicriteria analysis—a case study. Environ. Monit. Assess. 2010, 166, 223–239. [Google Scholar] [CrossRef]
- Gheshlaghi, H.A.; Bakhtiar, F.; Blaschke, T. GIS-based forest risk mapping using the analytical network process and fuzzy logic. J. Environ. Plan. Manag. 2020, 63, 481–499. [Google Scholar] [CrossRef]
- Chu, G.Q.; Chen, T.; Sun, Z.H.; Sun, J.H. Probabilistic risk assessment for evacuees in building fires. Build. Environ. 2007, 42, 1283–1290. [Google Scholar] [CrossRef]
- An-Lee, C.; Sung, Y.C.; Lin, Y.S.; Hsiao, G.L.K. Evaluating the severity of building fires with the analytical hierarchy process, big data analysis and remote sensing. Nat. Hazards 2020, 103, 1843–1856. [Google Scholar] [CrossRef]
- Coban, H.O.; Erdin, C. Forest fire risk assessment using GIS and AHP integration in Bucak forest enterprise, Turkey. Appl. Ecol. Environ. Res. 2020, 18, 1567–1583. [Google Scholar] [CrossRef]
- Ji, J.; Tong, Q.; Khan, F.; Dadaszadeh, M.; Abbasi, R. Risk-based domino effect analysis for fire and explosion accidents considering uncertainty in processing facilities. Ind. Eng. Chem. Res. 2018, 57, 3990–4006. [Google Scholar] [CrossRef]
- Khan, F.I.; Abbasi, S.A. Models for domino effect analysis in chemical process industries. Process. Saf. Prog. 1998, 17, 107–123. [Google Scholar] [CrossRef]
- Antonioni, G.; Spadoni, G.; Cozzani, V. Application of domino effect quantitative risk assessment to an extended industrial area. J. Loss Prev. Process. Ind. 2009, 22, 614–624. [Google Scholar] [CrossRef]
- Changa, J.I.; Linb, C.C. A study of storage tank accidents. J. Loss Prev. Process. Ind. 2006, 19, 51–59. [Google Scholar] [CrossRef]
- Kadri, F.; Chatelet, E.; Lallement, P. The assessment of risk caused by fire and explosion in chemical process industry: A domino effect-based study. J. Risk Anal. Crisis Response 2013, 3, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Abdolhamidzadeh, B.; Abbasi, T.; Rashtchian, D.; Abbas, S.A. Domino effect in process-industry accidents–An inventory of past events and identification of some patterns. J. Loss Prev. Process. Ind. 2011, 24, 575–593. [Google Scholar] [CrossRef]
- Khoury, G.A. Effect of fire on concrete and concrete structures. Prog. Struct. Engng. Mater. 2000, 2, 429–447. [Google Scholar] [CrossRef]
- Crocker, W.P.; Napier, D.H. Thermal Radiation Hazards of Liquid Pool Fires and Tank Fires. I. Chem. E. Symp. Ser. 1986, 97, 159–182. [Google Scholar]
- Hightower, M.; Gritzo, L.; Luketa-Hanlin, A.; Covan, J.; Tieszen, S.; Wellman, W.; Irwin, M.; Kaneshige, M.J.; Melof, B.; Morrow, C.; et al. Guidance on Risk and Safety Implications of a Large Liqufied Natural Gas (LNG) Spill Over Water. In Sandia National Laboratories Report; Department of Energy’s Nuclear Security Administration: Albuquerque, NM, USA, 2004. [Google Scholar] [CrossRef] [Green Version]
- Cozzani, V.; Gubinelli, G.; Salzano, E. Escalation thresholds in the assessment of domino accidental events. J. Haz. Mat. A 2006, 129, 1–21. [Google Scholar] [CrossRef] [PubMed]
- De-Chingi, H.; Shen-Wen, C.; Chien-Hung, L.; Po-Ta, H.; Yi-Ting, S.; Huei-Ru, S. A Study for the evacuation of hospital on fire during construction. Procedia Eng. 2011, 11, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Shastri, B.A.; Raghov, Y.S.; Sahadev, R.; Yadov, B.P. Analysis of fire protection facilities in hospital buildings. Adv. Fire Process. Saf. 2018, 183–190. [Google Scholar] [CrossRef]
- Nadzim, N.; Taib, M. Appraisal of fine safety management systems at educational buildings. In Proceedings of the SHS Web of Conferences 11, Paris, France, 9 September 2014. [Google Scholar] [CrossRef] [Green Version]
- El-Harbawi, M.; Al-Mubaddel, F. Risk of fire and explotion in electrical substations due to the formation of flammable mixtures. Sci. Rep. 2020, 10, 6295. [Google Scholar] [CrossRef]
- Shariff, A.M.; Wahab, N.A.; Rusli, R. Assessing the hazards from a BLEVE and minimizing its impacts using the inherent safety concept. J. Loss Prev. Process. Ind. 2016, 41, 303–314. [Google Scholar] [CrossRef]
- Rajabi, F.; Molaeifar, H.; Jahangiri, M.; Taheri, S.; Banaee, S.; Farhadi, P. Occupational stressors among firefighters: Application of multi-criteria decision making (MCDM) Techniques. Heliyon 2020, 6, e03820. [Google Scholar] [CrossRef]
- Pu, H.; Luo, K.; Zhang, S. Risk assessment model for different foodstuff drying methods via AHP-FCE method: A case study of “coal-burning” fluorosis area of Yunan and Guizhou Province, China. Food Chem. 2018, 263, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Gigovic, L.; Jakovljevic, G.; Sekulovic, D.; Regodic, M. GIS multi-criteria analysis for identifiying and mapping forest fire hazard: Nevesinje, Bosnia and Herzegovina. Teh. Vjesn. 2018, 25, 891–897. [Google Scholar] [CrossRef]
- Hassanain, M.A.; Abdul Hafeez, M.; Sanni-Anibire, M.O. A ranking system for fire safety performance of student housing facilities. Saf. Sci. 2017, 92, 116–127. [Google Scholar] [CrossRef]
- Van Hoang, T.; Chou, T.Y.; Fang, Y.M.; Nguyen, N.T.; Nyguen, Q.H.; Canh, P.X.; Toan, D.N.B.; Nyguen, X.L.; Meadows, M.E. Mapping forest fire risk and development of early warning system for NW Vietnam using AHP and MCA/GIS methods. Appl. Sci. 2020, 10, 4348. [Google Scholar] [CrossRef]
- Nyimbili, P.H.; Erden, T. A Hybrid Approach Integrating Entropy-AHP and GIS for Suitability Assessment of Urban Emergency Facilities. ISPRS Int. J. Geo-Inf. 2020, 9, 419. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Setting Priorities, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Yazdani, A.A.; Moghaddam, R.T. Integration of the fish bone diagram, brainstorming, and AHP method for problem solving and decision making–a case study. Int. J. Adv. Manuf. Technol. 2012, 63, 651–657. [Google Scholar] [CrossRef]
- Harrington, S.; Teitelman, J.; Rummel, E.; Morse, B.; Chen, P.; Eisentraut, D.; McDonough, D. Validating Google Earth Pro as a Scientific Utility for Use in Accident Reconstruction. SAE Int. J. Transp. Saf. 2017, 5, 135–166. [Google Scholar] [CrossRef]
- Childs, C. Interpolating Surfaces in ArcGIS Spatial Analyst, ESRI Education Services. 2004. Available online: www.esri.com (accessed on 26 January 2021).
- Di Piazza, A.; Conti, F.L.; Viola, F.; Eccel, E.; Noto, L.V. Comparative Analysis of Spatial Interpolation Methods in the Mediterranean Area: Application to Temperature in Sicily. Water 2015, 7, 1866–1888. [Google Scholar] [CrossRef] [Green Version]
Option | Numerical Value(s) |
---|---|
Equal | 1 |
Marginally strong | 3 |
Strong | 5 |
Very strong | 7 |
Extremely strong | 9 |
Intermediate values | 2, 4, 6, 8 |
School | Hospital | Gas Station | Military Facilities | Electrical Substation | Shopping Center | |||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Weight (w) | ||
School | A | 1 | 0.17 | 0.14 | 0.50 | 3.00 | 2.00 | 0.070454 |
Hospital | B | 6.00 | 1 | 0.50 | 3.00 | 8.00 | 7.00 | 0.293135 |
Gas Station | C | 7.00 | 2.00 | 1 | 6.00 | 9.00 | 8.00 | 0.447045 |
Military Facilities | D | 2.00 | 0.33 | 0.17 | 1 | 4.00 | 3.00 | 0.111110 |
Electrical Substation | E | 0.33 | 0.13 | 0.11 | 0.25 | 1 | 0.50 | 0.031690 |
Shopping Center | F | 0.50 | 0.14 | 0.13 | 0.33 | 2.00 | 1 | 0.046564 |
TOTAL | T | 16.83 | 3.77 | 2.05 | 11.10 | 27.00 | 21.50 | 1 |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Weighted Values of Criteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Weight (AHP) | Distance(d) (m) | 1/d | Weight (IDW) | School | Hospital | Gas Station | Military Facilities | Electrical Substation | Shopping Center | |
School | 0.0705 | 50 | 0.02000 | 0.6076 | 0.0428 | 0.1781 | 0.2716 | 0.0675 | 0.0193 | 0.0283 |
Hospital | 0.2931 | 150 | 0.00670 | 0.2025 | 0.0143 | 0.0594 | 0.0905 | 0.0225 | 0.0064 | 0.0094 |
Gas station | 0.4470 | 300 | 0.00330 | 0.1013 | 0.0071 | 0.0297 | 0.0453 | 0.0113 | 0.0032 | 0.0047 |
Military facilities | 0.1111 | 600 | 0.00170 | 0.0506 | 0.0036 | 0.0148 | 0.0226 | 0.0056 | 0.0016 | 0.0024 |
Electrical substation | 0.0317 | 1200 | 0.00083 | 0.0253 | 0.0018 | 0.0074 | 0.0113 | 0.0028 | 0.0008 | 0.0012 |
Shopping center | 0.0466 | 2400 | 0.00042 | 0.0127 | 0.0006 | 0.0037 | 0.0057 | 0.0014 | 0.0004 | 0.0006 |
Total | 1 | 1 | 0.0702 | 0.2931 | 0.4470 | 0.1111 | 0.0317 | 0.0466 |
Fire Case | Risk Score | Number of Criteria in Buffer Zones Surrounding the Fire Cases | Industry Sector | |||||
---|---|---|---|---|---|---|---|---|
School | Hospital | Gas Station | Military Facilities | Electrical Substation | Shopping Center | |||
21 | 0.8657 | 29 | 8 | 9 | TechTextile production | |||
32 | 0.3797 | 13 | 9 | 8 | 6 | Cold storage of agricultural products | ||
17 | 0.3305 | 15 | 10 | 4 | 2 | Furniture and textile | ||
31 | 0.3182 | 13 | 10 | 3 | 8 | Shoe production | ||
39 | 0.1758 | 20 | 7 | 5 | 2 | 6 | Textile fabric | |
4 | 0.1668 | 15 | 6 | 3 | Food production | |||
36 | 0.1553 | 14 | 6 | 3 | Plastic items and PET bottle production | |||
23 | 0.1252 | 4 | 3 | 3 | 1 | 3 | Sea products storage | |
40 | 0.1204 | 8 | 2 | 4 | 1 | 1 | 1 | Shoe and leather industry |
34 | 0.1174 | 7 | 5 | 1 | 4 | Home appliance industry | ||
16 | 0.1115 | 13 | 6 | 1 | 3 | Plastic items production | ||
27 | 0.1027 | 3 | 3 | 1 | Shoe production | |||
2 | 0.1007 | 13 | 1 | 5 | 1 | 1 | Meat products industry | |
24 | 0.1000 | 1 | 2 | Cold storage of agricultural products | ||||
25 | 0.0989 | 2 | Cold storage of agricultural products | |||||
8 | 0.0902 | 10 | 2 | 3 | 6 | Food production | ||
13 | 0.0901 | 2 | 4 | 2 | 2 | 2 | Textile fabric | |
28 | 0.0877 | 8 | 5 | 4 | Wood structure production | |||
38 | 0.0723 | 5 | 1 | Metalworks industry | ||||
11 | 0.0695 | 12 | 4 | Cold storage of agricultural products | ||||
22 | 0.0567 | 6 | 2 | 1 | 1 | 3 | Logistics depots | |
26 | 0.0560 | 6 | 2 | 1 | 1 | 3 | Cold storage of agricultural products | |
6 | 0.0523 | 2 | 1 | Cold storage of citrus fruits | ||||
20 | 0.0422 | 2 | 2 | 1 | Shoe production | |||
19 | 0.0404 | 1 | 4 | 1 | Carpet manufacture | |||
18 | 0.0297 | 2 | 2 | Cold storage of legumes | ||||
15 | 0.0295 | 2 | 1 | 1 | Wooden furniture manufacture | |||
12 | 0.0282 | 3 | 1 | 1 | Ceramic manufacture | |||
7 | 0.0230 | 2 | Cold storage of agricultural products | |||||
37 | 0.0229 | 1 | 1 | Bicycle manufacture | ||||
14 | 0.0218 | 1 | 1 | 1 | Glass items manufacture | |||
3 | 0.0196 | 7 | 1 | 1 | Sea products storage | |||
9 | 0.0129 | 2 | 1 | Cold storage of agricultural products | ||||
1 | 0.0098 | 3 | 1 | Supermarket warehouse | ||||
29 | 0.0094 | 1 | 2 | Energy industry | ||||
35 | 0.0067 | 2 | Plastic items and PET bottle production | |||||
10 | 0.0016 | 1 | Cold storages and warehouses | |||||
5 | 0 | Package materials production | ||||||
30 | 0 | Sustainable energy industry | ||||||
33 | 0 | energy and steel industry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkış, S.; Aksoy, E.; Akpınar, K. Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS. Fire 2021, 4, 53. https://doi.org/10.3390/fire4030053
Alkış S, Aksoy E, Akpınar K. Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS. Fire. 2021; 4(3):53. https://doi.org/10.3390/fire4030053
Chicago/Turabian StyleAlkış, Saadet, Ercüment Aksoy, and Kudret Akpınar. 2021. "Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS" Fire 4, no. 3: 53. https://doi.org/10.3390/fire4030053
APA StyleAlkış, S., Aksoy, E., & Akpınar, K. (2021). Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS. Fire, 4(3), 53. https://doi.org/10.3390/fire4030053