The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Air Quality and Meteorological Data
2.3. Processing and Statistical Analysis of the Data
2.4. Backward during Wildfires
3. Results
3.1. Spatial-Temporal Distribution of Fires in Isla Salamanca Natural Park
3.2. Overview
3.3. Circulation and Regional Transport
3.4. Cases of Exceeding the Regulated Values
3.5. Backward during Wildfires 2020
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter/ Variable | Policía Station | Tres Ave Marías Station | Móvil Station | ||||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
CO | 8% | 7% | 19% | 9% | 10% | 7% | 8% | 4% | 3% |
O3 | 7% | 40% | 16% | 11% | 10% | 18% | 8% | 3% | 38% |
PM2.5 | 21% | 22% | 21% | 24% | 18% | 39% | 36% | 16% | 69% |
PM10 | 22% | 12% | 19% | 22% | 16% | 39% | 25% | 10% | 56% |
Dir. Wind | 9% | 17% | 11% | 3% | 8% | 0.05% | |||
Wind speed | 8% | 17% | 11% | 3% | 8% | 0.05% | |||
Temp. | 9% | 17% | 11% | 3% | 7% | 0.32% | |||
Rel. Hum | 9% | 18% | 11% | 4% | 12% | 0.40% | |||
Precip. | 4% | 15% | 12% | 3% | 20% | 0.03% |
References
- Rovira, J.; Domingo, J.L.; Schuhmacher, M. Air Quality, Health Impacts and Burden of Disease due to Air Pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ Model to the Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 2020, 703, 135538. [Google Scholar] [CrossRef] [PubMed]
- Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Informe del Estado de la Calidad del Aire en Colombia; IDEAM: Bogotá, Columbia, 2019; Volume 18. [Google Scholar]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Volume 1302.
- Meo, S.A.; Abukhalaf, A.A.; Alomar, A.A.; Alessa, O.M.; Sami, W.; Klonoff, D.C. Effect of Environmental Pollutants PM-2.5, Carbon Monoxide, and Ozone on the Incidence and Mortality of SARS-COV-2 Infection in Ten Wildfire Affected Counties in California. Sci. Total Environ. 2021, 757, 143948. [Google Scholar] [CrossRef] [PubMed]
- Balmes, J.R. Where There’s Wildfire, There’s Smoke. N. Engl. J. Med. 2018, 378, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Organización Mundial de la Salud (OMS). Contaminación del Aire Ambiental (Exterior). Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 10 August 2022).
- Organización Mundial de la Salud (OMS). Miles de Millones de Personas Siguen Respirando Aire Insalubre: Nuevos Datos de la OMS. Available online: https://www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data (accessed on 13 September 2022).
- Scerri, M.M.; Kandler, K.; Weinbruch, S. Disentangling the Contribution of Saharan Dust and Marine Aerosol to PM10 Levels in the Central Mediterranean. Atmos. Environ. 2016, 147, 395–408. [Google Scholar] [CrossRef]
- Donaldson, K.; Paul, B. Particle Toxicology; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Tsangari, H.; Paschalidou, A.K.; Kassomenos, A.P.; Vardoulakis, S.; Heaviside, C.; Georgiou, K.E.; Yamasaki, E.N. Extreme Weather and Air Pollution Effects on Cardiovascular and Respiratory Hospital Admissions in Cyprus. Sci. Total Environ. 2016, 542, 247–253. [Google Scholar] [CrossRef]
- Ge, E.; Lai, K.; Xiao, X.; Luo, M.; Fang, Z.; Zeng, Y.; Ju, H.; Zhong, N. Differential Effects of Size-Specific Particulate Matter on Emergency Department Visits for Respiratory and Cardiovascular Diseases in Guangzhou, China. Environ. Pollut. 2018, 243, 336–345. [Google Scholar] [CrossRef]
- Renzi, M.; Scortichini, M.; Forastiere, F.; de’ Donato, F.; Michelozzi, P.; Davoli, M.; Gariazzo, C.; Viegi, G.; Stafoggia, M.; Ancona, C.; et al. A Nationwide Study of Air Pollution from Particulate Matter and Daily Hospitalizations for Respiratory Diseases in Italy. Sci. Total Environ. 2021, 807, 151034. [Google Scholar] [CrossRef]
- Chai, G.; He, H.; Sha, Y.; Zhai, G.; Zong, S. Effect of PM2.5 on Daily Outpatient Visits for Respiratory Diseases in Lanzhou, China. Sci. Total Environ. 2019, 649, 1563–1572. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M. Observations of Emissions and the Influence of Meteorological Conditions during Wildfires: A Case Study in the USA, Brazil, and Australia during the 2018/19 Period. Atmosphere 2020, 12, 11. [Google Scholar] [CrossRef]
- Seposo, X.; Ueda, K.; Sugata, S.; Yoshino, A.; Takami, A. Short-Term Effects of Air Pollution on Daily Single- and Co-Morbidity Cardiorespiratory Outpatient Visits. Sci. Total Environ. 2020, 729, 138934. [Google Scholar] [CrossRef]
- World Health Organitation. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals. Available online: https://www.who.int/publications/i/item/9789240051157 (accessed on 13 September 2022).
- Kollanus, V.; Tiittanen, P.; Niemi, J.V.; Lanki, T. Effects of Long-Range Transported Air Pollution from Vegetation Fires on Daily Mortality and Hospital Admissions in the Helsinki Metropolitan Area, Finland. Environ. Res. 2016, 151, 351–358. [Google Scholar] [CrossRef]
- Beig, G.; Sahu, S.K.; Singh, V.; Tikle, S.; Sobhana, S.B.; Gargeva, P.; Ramakrishna, K.; Rathod, A.; Murthy, B.S. Objective Evaluation of Stubble Emission of North India and Quantifying Its Impact on Air Quality of Delhi. Sci. Total Environ. 2020, 709, 136126. [Google Scholar] [CrossRef]
- Nadal, M.; Rovira, J.; Díaz-Ferrero, J.; Schuhmacher, M.; Domingo, J.L. Human Exposure to Environmental Pollutants after a Tire Landfill Fire in Spain: Health Risks. Environ. Int. 2016, 97, 37–44. [Google Scholar] [CrossRef]
- Rissler, J.; Vestin, A.; Swietlicki, E.; Fisch, G.; Zhou, J.; Artaxo, P.; Andreae, M.O. Size Distribution and Hygroscopic Properties of Aerosol Particles from Dry-Season Biomass Burning in Amazonia. Atmos. Chem. Phys. 2006, 6, 471–491. [Google Scholar] [CrossRef] [Green Version]
- Hamburger, T.; Matisans, M.; Tunved, P.; Ström, J.; Calderon, S.; Hoffmann, P.; Hochschild, G.; Gross, J.; Schmeissner, T.; Wiedensohler, A.; et al. Long-Term in Situ Observations of Biomass Burning Aerosol at a High Altitude Station in Venezuela – Sources, Impacts and Interannual Variability. Atmos. Chem. Phys. 2013, 13, 9837–9853. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.P.; Emmons, L.K.; Gille, J.C.; Chu, A.; Attié, J.L.; Giglio, L.; Wood, S.W.; Haywood, J.; Deeter, M.N.; Massie, S.T.; et al. Satellite-Observed Pollution from Southern Hemisphere Biomass Burning. J. Geophys. Res. Atmos. 2006, 111, D14312. [Google Scholar] [CrossRef]
- Hao, W.M.; Liu, M.-H. Spatial and Temporal Distribution of Tropical Biomass Burning. Glob. Biogeochem. Cycles 1994, 8, 495–503. [Google Scholar] [CrossRef]
- Martins, L.D.; Hallak, R.; Alves, R.C.; de Almeida, D.S.; Squizzato, R.; Moreira, C.A.B.; Beal, A.; da Silva, I.; Rudke, A.; Martins, J.A. Long-Range Transport of Aerosols from Biomass Burning over Southeastern South America and Their Implications on Air Quality. Aerosol Air Qual. Res. 2018, 18, 1734–1745. [Google Scholar] [CrossRef] [Green Version]
- Hung, W.-T.; Lu, C.-H.; Shrestha, B.; Lin, H.-C.; Lin, C.-A.; Grogan, D.; Hong, J.; Ahmadov, R.; James, E.; Joseph, E. The Impacts of Transported Wildfire Smoke Aerosols on Surface Air Quality in New York State: A Case Study in Summer 2018. Atmos. Environ. 2020, 227, 117415. [Google Scholar] [CrossRef]
- Liu, J.C.; Mickley, L.J.; Sulprizio, M.P.; Dominici, F.; Yue, X.; Ebisu, K.; Anderson, G.B.; Khan, R.F.A.; Bravo, M.A.; Bell, M.L. Particulate Air Pollution from Wildfires in the Western US under Climate Change. Clim. Change 2016, 138, 655–666. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Y.; Yue, X.; Tong, S.; Gasparrini, A.; Bell, M.L.; Armstrong, B.; Schwartz, J.; Jaakkola, J.J.K.; Hashizume, M.; et al. Articles Mortality Risk Attributable to Wildfire-Related PM 2·5 Pollution: A Global Time Series Study in 749 Locations. Lancet Planet. Health 2021, 5, 579–587. [Google Scholar] [CrossRef]
- Rodríguez-Villamizar, L.A.; Rojas-Roa, N.Y.; Fernández-Niño, J.A. Short-Term Joint Effects of Ambient Air Pollutants on Emergency Department Visits for Respiratory and Circulatory Diseases in Colombia, 2011–2014. Environ. Pollut. 2019, 248, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q.; Smith, K.R. Woodsmoke Health Effects: A Review. Inhal. Toxicol. 2010, 19, 67–106. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.A.; O’Neill, S.M.; Larkin, N.K.; Holder, A.L.; Peterson, D.L.; Halofsky, J.E.; Rappold, A.G. Wildfire and Prescribed Burning Impacts on Air Quality in the United States. J. Air Waste Manag. Assoc. 2020, 70, 583–615. [Google Scholar] [CrossRef] [PubMed]
- Machado-Silva, F.; Libonati, R.; Melo de Lima, T.F.; Bittencourt Peixoto, R.; de Almeida França, J.R.; de Avelar Figueiredo Mafra Magalhães, M.; Lemos Maia Santos, F.; Abrantes Rodrigues, J.; DaCamara, C.C. Drought and Fires Influence the Respiratory Diseases Hospitalizations in the Amazon. Ecol. Indic. 2020, 109, 105817. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Frontiers 2022: Noise, Blazes and Mismatches; UNEP: Nairobi, Kenya, 2022; ISBN 9789280739176. [Google Scholar]
- Dowdy, A.J.; Ye, H.; Pepler, A.; Thatcher, M.; Osbrough, S.L.; Evans, J.P.; Di Virgilio, G.; McCarthy, N. Future Changes in Extreme Weather and Pyroconvection Risk Factors for Australian Wildfires. Sci. Rep. 2019, 9, 10073. [Google Scholar] [CrossRef] [Green Version]
- Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-Decadal Increase of Forest Burned Area in Australia Is Linked to Climate Change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation Fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Myers, R.L. Living with Fire—Sustaining Ecosystems & Livelihoods through Integrated Fire Management; Global Fire Initiative; The Nature Conservancy: Tallahassee, FL, USA, 2006; 28p. [Google Scholar]
- Vargas-Cuentas, N.I.; Roman-Gonzalez, A. Satellite-Based Analysis of Forest Fires in the Bolivian Chiquitania and Amazon Region: Case 2019. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 38–54. [Google Scholar] [CrossRef]
- Parques Nacionales Naturales de Colombia vía Parque Isla de Salamanca. Available online: https://www.parquesnacionales.gov.co/portal/es/ecoturismo/parques/region-caribe/via-parque-isla-de-salamanca/ (accessed on 18 August 2022).
- El Espectador Incendios y Deforestación: Perdiendo un Paraíso en Isla Salamanca, Frente a Barranquilla. Available online: https://www.connectas.org/especiales/colombia-sentencias-ambientales-incumplidas/isla-de-salamanca.html (accessed on 11 October 2022).
- Duarte, A.L.; Schneider, I.L.; Artaxo, P.; Oliveira, M.L.S. Spatiotemporal Assessment of Particulate Matter (PM10 and PM2.5) and Ozone in a Caribbean Urban Coastal City. Geosci. Front. 2021, 13, 101168. [Google Scholar] [CrossRef]
- Silva, L.F.O.; Schneider, I.L.; Artaxo, P.; Núñez-Blanco, Y.; Pinto, D.; Flores, É.M.M.; Gómez-Plata, L.; Ramírez, O.; Dotto, G.L. Particulate Matter Geochemistry of a Highly Industrialized Region in the Caribbean: Basis for Future Toxicological Studies. Geosci. Front. 2021, 13, 101115. [Google Scholar] [CrossRef]
- Guan, S.; Wong, D.C.; Gao, Y.; Zhang, T.; Pouliot, G. Impact of Wildfire on Particulate Matter in the Southeastern United States in November 2016. Sci. Total Environ. 2020, 724, 138354. [Google Scholar] [CrossRef]
- Vergara, E.E.G.; Molina, M.A.C. Análisis Espacial de Incendios Forestales en la Provincia Del Azuay. Polo Conoc. Rev. Científico-Prof. 2020, 5, 337–361. [Google Scholar] [CrossRef]
- Blanco-Donado, E.P.; Schneider, I.L.; Artaxo, P.; Lozano-Osorio, J.; Portz, L.; Oliveira, M.L.S. Source Identification and Global Implications of Black Carbon. Geosci. Front. 2021, 13, 101149. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 19–92. ISBN 978-0521-70596-7. [Google Scholar]
- Hoyos, N.; Correa-Metrio, A.; Sisa, A.; Ramos-Fabiel, M.A.; Espinosa, J.M.; Restrepo, J.C.; Escobar, J. The Environmental Envelope of Fires in the Colombian Caribbean. Appl. Geogr. 2017, 84, 42–54. [Google Scholar] [CrossRef]
- Bolaño-Truyol, J.; Schneider, I.L.; Cuadro, H.C.; Bolaño-Truyol, J.D.; Oliveira, M.L.S. Estimation of the Impact of Biomass Burning Based on Regional Transport of PM2.5 in the Colombian Caribbean. Geosci. Front. 2022, 13, 101152. [Google Scholar] [CrossRef]
- Rojano, R.; Arregocés, H.; Gámez Frías, E. Changes in Ambient Particulate Matter during the COVID-19 and Associations with Biomass Burning and Sahara Dust in Northern Colombia. Heliyon 2021, 7, e08595. [Google Scholar] [CrossRef]
- Ballesteros-González, K.; Sullivan, A.P.; Morales-Betancourt, R. Estimating the Air Quality and Health Impacts of Biomass Burning in Northern South America Using a Chemical Transport Model. Sci. Total Environ. 2020, 739, 139755. [Google Scholar] [CrossRef]
- Silva, L.F.O.; Milanes, C.; Pinto, D.; Ramirez, O.; Lima, B.D. Multiple Hazardous Elements in Nanoparticulate Matter from a Caribbean Industrialized Atmosphere. Chemosphere 2020, 239, 124776. [Google Scholar] [CrossRef]
- Castillo-Ramirez, M.; Berdejo, J.; Saltarín, M. Informe Anual de Calidad de Aire de Barranquilla; Establecimiento Público Ambiental Barranquilla Verde: Barranquilla, Colombia, 2018.
- de Barranquilla, A. Plan de Desarrollo Distrital de Barranquilla 2020–2023. Gac. Dist. 2020, 665, 569. [Google Scholar]
- Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH). Climatología de Los Principales Puestos Del Caribe Colombiano, Barranquilla; CIOH: Cartagena, Colombia, 2010; Volume 12. [Google Scholar]
- U.S. Environmental Protection Agency (US EPA). Measurement Quality Objectives and Validation Templates; US EPA: Washington, DC, USA, 2017; Volume II, pp. 1–54.
- Barranquilla Verde Inicio Barranquilla Verde—Establecimiento Público Ambiental. Available online: http://barranquillaverde.gov.co/ (accessed on 12 October 2022).
- Domínguez-López, D.; Adame, J.A.; Hernández-Ceballos, M.A.; Vaca, F.; De la Morena, B.A.; Bolívar, J.P. Spatial and Temporal Variation of Surface Ozone, NO and NO2 at Urban, Suburban, Rural and Industrial Sites in the Southwest of the Iberian Peninsula. Environ. Monit. Assess. 2014, 186, 5337–5351. [Google Scholar] [CrossRef] [PubMed]
- Hoaglin, D.C.; Mosteller, F.; Tukey, J.W. Understanding Robust and Exploratory Data Analysis; Wiley: Hoboken, NJ, USA, 1983; ISBN 978-0-471-38491-5. [Google Scholar]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Academic Press: Cambridge, MA, USA, 2012; ISBN 9780123870155. [Google Scholar]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics: Theory and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 403, ISBN 978-0-470-01092-1. [Google Scholar]
- Parques Nacionales Naturales de Colombia Liquidado Incendio Forestal en el vía Parque Isla de Salamanca. Available online: https://www.parquesnacionales.gov.co/portal/es/liquidado-incendio-forestal-en-el-via-parque-isla-de-salamanca/ (accessed on 19 August 2022).
- Barranquilla Verde Barranquilla en Estado de Alerta Por Quemas del vía Parque Isla Salamanca. Available online: http://www.barranquillaverde.gov.co/noticias-detalle/barranquilla-en-estado-de-alerta-por-quemas-del-parque-isla-salamanca (accessed on 20 August 2022).
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, D.C. The Openair Manual—Open-Source Tools for Analysing Airpollution Data; Manual for Version 2.6-6; University of York: York, UK, 2019. [Google Scholar]
- RStudio R: El Proyecto R Para Computación Estadística. Available online: https://www.r-project.org/ (accessed on 7 September 2022).
- Li-Ramírez, J.A.; Pérez-Zapata, Á.M.; Duque-Méndez, N.D.; Aristizábal-Zuluaga, B.H. Generación y Representación de Indicadores de Calidad de Aire: Caso de Estudio Aplicado a Manizales. Iteckne 2016, 13, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Bolaño-Ortiz, T.R.; Diaz-Gutiérrez, V.L.; Camargo-Caicedo, Y. ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia. Geosciences 2020, 10, 437. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Chen, N.; Yan, Y.; Liu, D.; Zhu, B.; Xu, K.; Cao, W.; Ding, Q.; Lan, B.; et al. Significant Changes in the Chemical Compositions and Sources of PM2.5 in Wuhan since the City Lockdown as COVID-19. Sci. Total Environ. 2020, 739, 140000. [Google Scholar] [CrossRef] [PubMed]
- Cesari, D.; De Benedetto, G.E.; Bonasoni, P.; Busetto, M.; Dinoi, A.; Merico, E.; Chirizzi, D.; Cristofanelli, P.; Donateo, A.; Grasso, F.M.; et al. Seasonal Variability of PM2.5 and PM10 Composition and Sources in an Urban Background Site in Southern Italy. Sci. Total Environ. 2018, 612, 202–213. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M. Application of Meteorology-Based Methods to Determine Local and External Contributions to Particulate Matter Pollution: A Case Study in Venice (Italy). Atmos. Environ. 2015, 119, 69–81. [Google Scholar] [CrossRef]
- Bolaño-Díaz, S.; Camargo-Caicedo, Y.; Soro, T.D.; N’Dri, A.B.; Bolaño-Ortiz, T.R. Spatio-Temporal Characterization of Fire Using MODIS Data (2000–2020) in Colombia. Fire 2022, 5, 134. [Google Scholar] [CrossRef]
- Soro, T.D.; Koné, M.; N’Dri, A.B.; N’Datchoh, E.T. Identified Main Fire Hotspots and Seasons in Côte d’Ivoire (West Africa) Using MODIS Fire Data. S. Afr. J. Sci. 2021, 117, 1–13. [Google Scholar] [CrossRef]
- Squizzato, R.; Nogueira, T.; Martins, L.D.; Martins, J.A.; Astolfo, R.; Machado, C.B.; de Andrade, M.F.; de Freitas, E.D. Beyond Megacities: Tracking Air Pollution from Urban Areas and Biomass Burning in Brazil. NPJ Clim. Atmos. Sci. 2021, 4, 17. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Mendez-Espinosa, J.F.; Belalcazar, L.C.; Morales Betancourt, R. Regional Air Quality Impact of Northern South America Biomass Burning Emissions. Atmos. Environ. 2019, 203, 131–140. [Google Scholar] [CrossRef]
- Rivera, N.; Mata, C.; Lalangui, J.; Bermeo, A.; Valdez, L.; Morocho, J. Análisis de Emisiones Contaminantes Originados por el Parque Automotor En Cuenca. Rev. Ibérica Sist. Tecnol. Inf. 2020, 30, 376–392. [Google Scholar]
- Ordónez, C.; Mathis, H.; Furger, M.; Henne, S.; Hüglin, C.; Staehelin, J.; Prévǒt, A.S.H. Changes of Daily Surface Ozone Maxima in Switzerland in All Seasons from 1992 to 2002 and Discussion of Summer 2003. Atmos. Chem. Phys. 2005, 5, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J.; Winner, D.A. Effect of Climate Change on Air Quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Augusto, S.; Ratola, N.; Tarín-Carrasco, P.; Jiménez-Guerrero, P.; Turco, M.; Schuhmacher, M.; Costa, S.; Teixeira, J.P.; Costa, C. Population Exposure to Particulate-Matter and Related Mortality Due to the Portuguese Wildfires in October 2017 Driven by Storm Ophelia. Environ. Int. 2020, 144, 106056. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Euphrasie-Clotilde, L.; Plocoste, T.; Brute, F.N. Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020. Atmosphere 2021, 12, 502. [Google Scholar] [CrossRef]
- Mayol-Bracero, O.L.; Prospero, J.M.; Ogren, J.A.; Sheridan, P.J.; Colarco, P.R.; Holben, B.; Yu, H.; Mendez-Lazaro, P.; Muller-Karger, F.E.; Otis, D.B.; et al. “Godzilla” African Dust Event of June 2020: Impacts of Air Quality in the Greater Caribbean Basin, the Gulf of Mexico and the United States. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2020; Volume 2020, p. A016-02. [Google Scholar]
Pollutant | Maximum Permissible Level (µg/m3) | Averaging Time |
---|---|---|
PM10 | 50 | Annual |
75 | 24 h | |
PM2.5 | 25 | Annual |
37 | 24 h | |
SO2 | 50 | 24 h |
100 | 1 h | |
NO2 | 60 | Annual |
200 | 1 h | |
O3 | 100 | 8 h |
CO | 5000 | 8 h |
35,000 | 1 h |
Year | Number of Fires | Total Hectares Burned |
---|---|---|
2015 | 7 | 115.97 |
2016 | 4 | 10.2 |
2017 | 7 | 101.84 |
2018 | 3 | 9.9 |
2019 | 5 | 21 |
2020 | 9 | 256.9 |
Station | O3 | PM10 | PM2.5 | Dir. Wind | Vel. from the Wind | Temp. | Rel. Hum. | Precip. | |
---|---|---|---|---|---|---|---|---|---|
Policía | CO | −0.197 | 0.157 | 0.224 | 0.013 | 0.011 | −0.037 | 0.174 | −0.024 |
O3 | 1 | 0.005 | −0.058 | −0.053 | 0.26 | 0.549 | −0.686 | −0.034 | |
PM10 | 0.005 | 1 | 0.671 | −0.037 | 0.15 | −0.078 | 0.145 | −0.085 | |
PM2.5 | −0.058 | 0.671 | N/A | 0.076 | 0.054 | −0.132 | 0.234 | −0.062 | |
Móvil | CO | −0.537 | 0.093 | 0.169 | −0.093 | 0.112 | 0.082 | −0.076 | 0.197 |
O3 | 1 | −0.235 | −0.255 | 0.069 | −0.114 | 0.189 | −0.062 | −0.211 | |
PM10 | −0.235 | 1 | 0.714 | −0.109 | 0.061 | −0.106 | 0.15 | −0.105 | |
PM2.5 | −0.255 | 0.714 | 1 | −0.039 | 0.092 | −0.055 | 0.066 | −0.095 | |
Tres Ave Marias | CO | 0.076 | 0.266 | −0.367 | 0.426 | −0.357 | −0.366 | −0.358 | −0.576 |
O3 | 1 | 0.185 | −0.205 | −0.034 | 0.058 | 0.157 | −0.457 | −0.189 | |
PM10 | 0.185 | 1 | 0.199 | 0.142 | −0.128 | −0.331 | −0.141 | −0.426 | |
PM2.5 | −0.205 | 0.199 | 1 | −0.471 | 0.46 | 0.297 | 0.575 | 0.538 |
Station | Pollutant | N | Minimum | Maximum | Average | Standard Deviation | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Policía | CO | 26,304 | 0 | 7030.28 | 445.92 | 563.45 | 439.11 | 452.73 |
O3 | 26,304 | 0 | 228.936 | 27.21 | 15.2 | 27.03 | 27.39 | |
PM10 | 26,304 | 0 | 329.54 | 49.37 | 28.96 | 49.02 | 49.72 | |
PM2.5 | 26,304 | 0 | 275.08 | 16.82 | 14.41 | 16.65 | 16.99 | |
Tres Ave Marias | CO | 26,304 | 0 | 7411.93 | 391.42 | 344.92 | 387.25 | 395.59 |
O3 | 26,304 | 0 | 172.09 | 34.98 | 14.22 | 34.81 | 35.15 | |
PM10 | 26,304 | 0 | 1424.33 | 38.06 | 28.94 | 37.71 | 38.41 | |
PM2.5 | 26,304 | 0 | 135.01 | 14.25 | 12.09 | 14.10 | 14.40 | |
Móvil | CO | 26,304 | 0 | 221.00 | 312.06 | 200.46 | 309.64 | 314.48 |
O3 | 26,304 | 0 | 2627.24 | 88.44 | 142.25 | 86.72 | 90.16 | |
PM10 | 26,304 | 0 | 263.98 | 42.11 | 27.45 | 41.78 | 42.44 | |
PM2.5 | 26,304 | 0 | 278.70 | 14.76 | 11.32 | 14.62 | 14.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolaño-Diaz, S.; Camargo-Caicedo, Y.; Tovar Bernal, F.; Bolaño-Ortiz, T.R. The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire 2022, 5, 191. https://doi.org/10.3390/fire5060191
Bolaño-Diaz S, Camargo-Caicedo Y, Tovar Bernal F, Bolaño-Ortiz TR. The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire. 2022; 5(6):191. https://doi.org/10.3390/fire5060191
Chicago/Turabian StyleBolaño-Diaz, Sindy, Yiniva Camargo-Caicedo, Fredy Tovar Bernal, and Tomás R. Bolaño-Ortiz. 2022. "The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia" Fire 5, no. 6: 191. https://doi.org/10.3390/fire5060191
APA StyleBolaño-Diaz, S., Camargo-Caicedo, Y., Tovar Bernal, F., & Bolaño-Ortiz, T. R. (2022). The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire, 5(6), 191. https://doi.org/10.3390/fire5060191