Synthesis of High-Efficiency, Eco-Friendly, and Synergistic Flame Retardant for Epoxy Resin
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of DOPO-M-rGO
2.3. Preparation of DOPO-M-rGO/EP Composite
2.4. Characterization
3. Results and Discussion
3.1. Fabrication of DOPO-M-rGO
3.2. Fabrication of DOPO-M-rGO/EP Composite
3.3. Flame-Resistant Effect of DOPO-M-rGO on EP
3.4. Mechanism for the Flame-Resistant Effect of DOPO-M-rGO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Saini, A.; Harner, T.; Chinnadhurai, S.; Schuster, J.K.; Yates, A.; Sweetman, A.; Aristizabal-Zuluaga, B.H.; Jiménez, B.; Manzano, C.A.; Gaga, E.O.; et al. GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. Environ. Pollut. 2020, 267, 115416. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.-X.; Tang, B.; Zhuang, X.; Lei, W.-X.; Wang, M.-H.; Zhang, L.-H.; Hu, K.-M. Organophosphate flame retardants and diesters in the urine of e-waste dismantling workers: Associations with indoor dust and implications for urinary biomonitoring. Environ. Sci. Process. Impacts 2020, 23, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Christia, C.; Malarvannan, G.; Liu, Y.-E.; Luo, X.-J.; Covaci, A.; Mai, B.-X.; Poma, G. Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China. Environ. Int. 2020, 143, 105972. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Wang, T.; Zeng, Y.; Fan, Y.; Chen, S.J.; Mai, B.X. Brominated Flame Retard. (BFRs) PM2.5 associated with various source sectors in southern China. Environ. Sci.-Proc. Imp. 2021, 23, 179–187. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, L.; Zou, Z.; Liu, X.; Zhong, G.; Mo, Y.; Wang, Y.; Tian, Y.; Li, J.; Guo, H.; et al. Probing Legacy and Alternative Flame Retardants in the Air of Chinese Cities. Environ. Sci. Technol. 2021, 55, 9450–9459. [Google Scholar] [CrossRef]
- Li, H.; Song, A.; Liu, H.; Li, Y.; Liu, M.; Sheng, G.; Peng, P.; Ying, G. Occurrence of Dechlorane series flame retardants in sediments from the Pearl River Delta, South China. Environ. Pollut. 2021, 279, 116902. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Y.; Cheng, Y.; Chen, Y.; Chen, L.; Xie, C.; Dai, S.; Luo, X.; Zhang, L.; Mai, B. Halogenated flame retardants in surface sediments from fourteen estuaries, South China. Mar. Pollut. Bull. 2021, 164, 112099. [Google Scholar] [CrossRef]
- Li, Z.; He, C.; Thai, P.; Wang, X.; Bräunig, J.; Yu, Y.; Luo, X.; Mai, B.; Mueller, J.F. Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions. Environ. Pollut. 2020, 262, 114260. [Google Scholar] [CrossRef]
- Pastore, R.; Albano, M.; Delfini, A.; Santoni, F.; Marchetti, M. Thermoplastic Polymeric Materials for Spacecraft Applications: Flame Retardant Properties and UV/AtOx Aging Analysis. Appl. Sci. 2021, 11, 949. [Google Scholar] [CrossRef]
- Huang, P.-H.; Chang, S.-J.; Li, C.-C. Encapsulation of flame retardants for application in lithium-ion batteries. J. Power Source 2017, 338, 82–90. [Google Scholar] [CrossRef]
- Li, S.; Chen, M.; Su, L.; Lin, X.; Liu, C. Highly efficient multielement flame retardant for multifunctional epoxy resin with satisfactory thermal, flame-retardant, and mechanical properties. Polym. Adv. Technol. 2019, 31, 146–159. [Google Scholar] [CrossRef]
- Mu, X.; Zhou, X.; Wang, W.; Xiao, Y.; Liao, C.; Longfei, H.; Kan, Y.; Song, L. Design of compressible flame retardant grafted porous organic polymer based separator with high fire safety and good electrochemical properties. Chem. Eng. J. 2020, 405, 126946. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, C.; Jin, Z.; Wang, J.; He, L.; Mu, X.; Song, L.; Hu, Y. Functional covalent organic framework for exceptional Fe2+, Co2+ and Ni2+ removal: An upcycling strategy to achieve water decontamination and reutilization as smoke suppressant and flame retardant simultaneously. Chem. Eng. J. 2020, 421, 127837. [Google Scholar] [CrossRef]
- Geng, J.; Qin, J.; He, J. Preparation of Intercalated Organic Montmorillonite DOPO-MMT by Melting Method and Its Effect on Flame Retardancy to Epoxy Resin. Polymers 2021, 13, 3496. [Google Scholar] [CrossRef]
- Wang, N.; Teng, H.; Li, L.; Zhang, J.; Kang, P. Synthesis of Phosphated K-Carrageenan and Its Application for Flame-Retardant Waterborne Epoxy. Polymers 2018, 10, 1268. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Yu, B.; Shi, Y.; Mao, L.; Xie, J.; Pan, H.; Liu, Y.; Wang, W. Insight into Hyper-Branched Aluminum Phosphonate in Combination with Multiple Phosphorus Synergies for Fire-Safe Epoxy Resin Composites. Polymers 2020, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shi, C.; Qian, X.; Jing, J.; Jin, L. DOPO/Silicon/CNT Nanohybrid Flame Retardants: Toward Improving the Fire Safety of Epoxy Resins. Polymers 2022, 14, 565. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, L.; Zeng, B.; Yi, X.; Huang, C.; Du, K.; Liu, X.; Xu, Y.; Yuan, C.; Dai, L. Diblock Copolymers Containing Titanium-Hybridized Polyhedral Oligomeric Silsesquioxane Used as a Macromolecular Flame Retardant for Epoxy Resin. Polymers 2022, 14, 1708. [Google Scholar] [CrossRef]
- Wu, F.; Bao, X.; Wang, J. One-Step Reduction of Graphene Oxide with Phosphorus/Silicon-Containing Compound and Its Flame Retardancy in Epoxy Resin. Polymers 2021, 13, 3985. [Google Scholar] [CrossRef]
- Attia, N.F.; Elashery, S.E.; Zakria, A.M.; Eltaweil, A.S.; Oh, H. Recent advances in graphene sheets as new generation of flame retardant materials. Mater. Sci. Eng. B 2021, 274, 115460. [Google Scholar] [CrossRef]
- Cai, W.; Wang, B.-B.; Wang, X.; Zhu, Y.-L.; Li, Z.-X.; Xu, Z.-M.; Song, L.; Hu, W.-Z.; Hu, Y. Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites. Chin. J. Polym. Sci. 2021, 39, 935–956. [Google Scholar] [CrossRef]
- Haeri, Z.; Ramezanzadeh, B.; Ramezanzadeh, M. Recent progress on the metal-organic frameworks decorated graphene oxide (MOFs-GO) nano-building application for epoxy coating mechanical-thermal/flame-retardant and anti-corrosion features improvement. Prog. Org. Coat. 2021, 163, 106645. [Google Scholar] [CrossRef]
- Madhad, H.V.; Vasava, D.V. Review on recent progress in synthesis of graphene–polyamide nanocomposites. J. Thermoplast. Compos. Mater. 2019, 35, 570–598. [Google Scholar] [CrossRef]
- Szeluga, U.; Pusz, S.; Kumanek, B.; Olszowska, K.; Kobyliukh, A.; Trzebicka, B. Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites—A review. Crit. Rev. Solid State Mater. Sci. 2020, 46, 152–187. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, G.; Zhong, F.; Dong, S.; Yang, Z.; Chen, C.; Wang, M.; Zou, R. Synergistic effect of carbon nanotubes bonded graphene oxide to enhance the flame retardant performance of waterborne intumescent epoxy coatings. Prog. Org. Coat. 2021, 162, 106598. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Duan, R.; Zhang, K.; Meng, W.; Li, Y.; Qu, H. Graphene doped Sn flame retardant prepared by ball milling and synergistic with hexaphenoxy cyclotriphosphazene for epoxy resin. J. Mater. Res. Technol. 2022, 17, 774–788. [Google Scholar] [CrossRef]
- Dong, S.; Xiao, G.; Chen, C.; Chen, C.; Yang, Z.; Zhong, F.; Wang, M.; Zou, R. Zn-Al layered double metal hydroxide anchored reduced graphene oxide for enhancing the fire performance of composite coatings. Colloids Surf. A Physicochem. Eng. Asp. 2021, 632, 127736. [Google Scholar] [CrossRef]
- Duan, R.; Wu, H.; Li, J.; Zhou, Z.; Meng, W.; Liu, L.; Qu, H.; Xu, J. Phosphor nitrile functionalized UiO-66-NH2/graphene hybrid flame retardants for fire safety of epoxy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128093. [Google Scholar] [CrossRef]
- Yang, P.; Wu, H.; Yang, F.; Yang, J.; Wang, R.; Zhu, Z. A Novel Self-Assembled Graphene-Based Flame Retardant: Synthesis and Flame Retardant Performance in PLA. Polymers 2021, 13, 4216. [Google Scholar] [CrossRef]
- Fang, F.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Compos. Part B Eng. 2019, 165, 406–416. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z. In-situ preparation of layered zinc N, N’-piperazine (bismethylene phosphonate) functionalizing reduced graphene oxide for epoxy resin with reduced fire hazards and improved thermal/mechanical properties. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106588. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, L.; Wang, Z. Iron-phosphorus-nitrogen functionalized reduced graphene oxide for epoxy resin with reduced fire hazards and improved impact toughness. Compos. Part B Eng. 2020, 199, 108283. [Google Scholar] [CrossRef]
- Qu, L.; Sui, Y.; Zhang, C.; Li, P.; Dai, X.; Xu, B.; Fang, D. POSS-functionalized graphene oxide hybrids with improved dispersive and smoke-suppressive properties for epoxy flame-retardant application. Eur. Polym. J. 2019, 122, 109383. [Google Scholar] [CrossRef]
- Xiao, Y.; Jin, Z.; He, L.; Ma, S.; Wang, C.; Mu, X.; Song, L. Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Compos. Part B Eng. 2019, 182, 107616. [Google Scholar] [CrossRef]
- Guo, W.; Yu, B.; Yuan, Y.; Song, L.; Hu, Y. In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites. Compos. Part B Eng. 2017, 123, 154–164. [Google Scholar] [CrossRef]
- Hu, C.; Yu, T.; Li, Y. Novel DOPO-Modified Graphene: Synthesis and Characterization. J. Nanosci. Nanotechnol. 2017, 17, 4894–4900. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, B.; Chen, Y.; Jia, Y. Synthesis of a novel multi-structure synergistic POSS-GO-DOPO ternary graft flame retardant and its application in polypropylene. Compos. Part A Appl. Sci. Manuf. 2018, 117, 345–356. [Google Scholar] [CrossRef]
- Shi, X.; Peng, X.; Zhu, J.; Lin, G.; Kuang, T. Synthesis of DOPO-HQ-functionalized graphene oxide as a novel and efficient flame retardant and its application on polylactic acid: Thermal property, flame retardancy, and mechanical performance. J. Colloid Interface Sci. 2018, 524, 267–278. [Google Scholar] [CrossRef]
- Wang, Y.; Qing, Y.; Sun, Y.; Zhu, M.; Dong, S. A study on preparation of modified Graphene Oxide and flame retardancy of polystyrene composite microspheres. Des. Monomers Polym. 2020, 23, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Wang, R.; Wang, D.; Peng, X.; Zhao, Y.; Liu, Q. A phosphorus-containing hyperbranched phthalocyanine flame retardant for epoxy resins. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Wei, S.; Zhao, S.; Qian, L.; Chen, Y.; Shan, H.; Zhang, Q. A Phosphorous-Based Bi-Functional Flame Retardant Based on Phosphaphenanthrene and Aluminum Hypophosphite for an Epoxy Thermoset. Int. J. Mol. Sci. 2022, 23, 11256. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-H.; Liu, P.-L.; Hsiao, M.-C.; Teng, C.-C.; Wang, C.-A.; Ger, M.-D.; Chiang, C.-L. One-Step Reduction and Functionalization of Graphene Oxide with Phosphorus-Based Compound to Produce Flame-Retardant Epoxy Nanocomposite. Ind. Eng. Chem. Res. 2012, 51, 4573–4581. [Google Scholar] [CrossRef]
- Luo, F.; Wu, K.; Guo, H.; Zhao, Q.; Lu, M. Simultaneous reduction and surface functionalization of graphene oxide for enhancing flame retardancy and thermal conductivity of mesogenic epoxy composites. Polym. Int. 2016, 66, 98–107. [Google Scholar] [CrossRef]
- Zhi, M.; Liu, Q.; Chen, H.; Chen, X.; Feng, S.; He, Y. Thermal Stability and Flame Retardancy Properties of Epoxy Resin Modified with Functionalized Graphene Oxide Containing Phosphorus and Silicon Elements. ACS Omega 2019, 4, 10975–10984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, P.; Cui, Y.; Liu, D.; Zhang, T.; Lv, J. The Bi-DOPO derivative functionalized graphene oxide: Preparation and its flame-retardation on epoxy resin. Polym. Adv. Technol. 2021, 32, 2843–2855. [Google Scholar] [CrossRef]
- Feng, Y.; Li, X.; Zhao, X.; Ye, Y.; Zhou, X.; Liu, H.; Liu, C.; Xie, X. Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating “Branch-Like” Flame-Retardant Functionalized Graphene. ACS Appl. Mater. Interfaces 2018, 10, 21628–21641. [Google Scholar] [CrossRef]
- Qian, X.; Song, L.; Yu, B.; Wang, B.; Yuan, B.; Shi, Y.; Hu, Y.; Yuen, R.K.K. Novel organic–inorganic flame retardants containing exfoliated graphene: Preparation and their performance on the flame retardancy of epoxy resins. J. Mater. Chem. A 2013, 1, 6822–6830. [Google Scholar] [CrossRef]
- Aljamal, A.; Szolnoki, B.; Marosi, G. Improving thermal and flame retardant properties of sorbitol-based bioepoxy systems by phosphorus-based flame retardants. Fire Mater. 2021, 46, 605–614. [Google Scholar] [CrossRef]
- Hu, X.; Li, M.; Yang, J.; Liu, F.; Huang, H.; Pan, H.; Yang, H. In situ fabrication of melamine hydroxy ethylidene diphosphonate wrapped montmorillonite for reducing the fire hazards of epoxy resin. Appl. Clay Sci. 2021, 201, 105934. [Google Scholar] [CrossRef]
- Qin, P.; Yi, D.; Hao, J.; Ye, X.; Gao, M.; Song, T. Fabrication of melamine trimetaphosphate 2D supermolecule and its superior performance on flame retardancy, mechanical and dielectric properties of epoxy resin. Compos. Part B Eng. 2021, 225, 109269. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, J.; Deng, H.; Lyu, R.; Wei, Y.; Lan, X. Improved Pyrolysis Performance of a Cyclic Phosphate-Melamine Intumescent Fire-Retardant Coating System Using Ceria as an Additive. ChemistrySelect 2022, 7, e202200062. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Wen, H.; Wang, Q. Synthesis of a hyperbranched polyamide charring agent and its flame-retarding and toughening behavior in epoxy resin. Polym. Degrad. Stab. 2021, 184, 109479. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Jiang, S.-D.; Bai, Z.-M.; Tang, G.; Hu, Y.; Song, L. Synthesis of ZnS Decorated Graphene Sheets for Reducing Fire Hazards of Epoxy Composites. Ind. Eng. Chem. Res. 2014, 53, 6708–6717. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, F. Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites. J. Therm. Anal. 2014, 118, 1561–1568. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Ai, Y.; Tan, X.; Hayat, T.; Hu, W.; Wang, X. Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides. J. Mater. Chem. A 2016, 4, 5654–5662. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, S.; Zhao, G.; Wang, Q.; Wang, X. Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides. Chem. Asian J. 2013, 8, 2755–2761. [Google Scholar] [CrossRef]
- Varganici, C.-D.; Rosu, L.; Bifulco, A.; Rosu, D.; Mustata, F.; Gaan, S. Recent advances in flame retardant epoxy systems from reactive DOPO–based phosphorus additives. Polym. Degrad. Stab. 2022, 202, 110020. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Dai, S.; Wang, X.; Pan, Z.; Zhou, H. Synergistic effect of chitosan derivative and DOPO for simultaneous improvement of flame retardancy and mechanical property of epoxy resin. Cellulose 2021, 29, 907–925. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. A novel Co(II)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017, 152, 231–242. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, J.; Meng, X.; Zhang, J.; Yan, H. A novel high-efficient P/N/Si-containing APP-based flame retardant with a silane coupling agent in its molecular structure for epoxy resin. Chin. J. Chem. Eng. 2022, 30, e202200221. [Google Scholar] [CrossRef]
Sample | Pure EP | 1.5% rGO/EP | 1.5% DOPO-M/EP | 1.5% DOPO-M-rGO/EP |
---|---|---|---|---|
pHRR (kW/m2) | 1593 | 991 | 839 | 719 |
Time to pHRR (s) | 156 | 167 | 162 | 141 |
THR (MJ/m2) | 125 | 130 | 99 | 88 |
TSP (m2/kg) | 65 | 45 | 74 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Wu, H.; Xiao, Y.; Ma, W.; Xu, F.; Wang, R.; Zhu, Z. Synthesis of High-Efficiency, Eco-Friendly, and Synergistic Flame Retardant for Epoxy Resin. Fire 2023, 6, 14. https://doi.org/10.3390/fire6010014
Gao J, Wu H, Xiao Y, Ma W, Xu F, Wang R, Zhu Z. Synthesis of High-Efficiency, Eco-Friendly, and Synergistic Flame Retardant for Epoxy Resin. Fire. 2023; 6(1):14. https://doi.org/10.3390/fire6010014
Chicago/Turabian StyleGao, Jiaxiang, Hanguang Wu, Yang Xiao, Wenjing Ma, Fei Xu, Rui Wang, and Zhiguo Zhu. 2023. "Synthesis of High-Efficiency, Eco-Friendly, and Synergistic Flame Retardant for Epoxy Resin" Fire 6, no. 1: 14. https://doi.org/10.3390/fire6010014
APA StyleGao, J., Wu, H., Xiao, Y., Ma, W., Xu, F., Wang, R., & Zhu, Z. (2023). Synthesis of High-Efficiency, Eco-Friendly, and Synergistic Flame Retardant for Epoxy Resin. Fire, 6(1), 14. https://doi.org/10.3390/fire6010014