Fire Hazard: Undesirable Ecosystem Function of Orchard Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Territory
2.2. Characteristics of the Sour Cherry Orchard
2.3. Methodology of Evaluation of the Vegetation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schaeckermann, J.; Pufal, G.; Mandelik, Y.; Klein, A.M. Agro-ecosystem services and dis-ervices in almond orchards are differentially influenced by the surrounding landscape. Ecol. Entomol. 2015, 40, 12–21. [Google Scholar] [CrossRef]
- Gkisakis, V.; Volakakis, N.; Kollaros, D.; Bàrberi, P.; Kabourakis, E.M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Environ. 2016, 218, 178–189. [Google Scholar] [CrossRef]
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem services in orchards. A review. Agron. Sustain. Dev. 2017, 37, 1–21. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié, A.; Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrateaccumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, L.; Wang, Y.; Tao, H.; Fan, J.; Zhao, Z.; Guo, Y. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’apple. Sci. Hortic. 2019, 258, 108753. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, L.; Li, Y.; Zeng, J.; Dai, Z. Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China. Agric. Water Manag. 2019, 222, 221–230. [Google Scholar] [CrossRef]
- Lakso, A.N. Water relations of apples. In Apples: Botany, Production and Uses; Ferree, D., Warrington, I.J., Eds.; CABI: Wallingford, UK, 2003; pp. 167–194. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Jia, X.M.; Zheng, Y.Q.; He, S.L.; Deng, L.; Ma, Y.Y.; Xie, R.J.; Yi, S.L.; Lv, Q. Fruit yield and quality response of Newhall navel orange to different irrigation regimes and ground cover in Chongqing Three Gorges Reservoir area. Sci. Hortic. 2018, 241, 57–64. [Google Scholar] [CrossRef]
- Hueso, A.; Camacho, G.; Gomez-del-Campo, M. Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina). Agric. Water Manag. 2021, 248, 106695. [Google Scholar] [CrossRef]
- Vignozzi, N.; Agnelli, A.E.; Brandi, G.; Gagnarli, E.; Goggioli, D.; Lagomarsino, A.; Pellegrini, S.; Simoncini, S.; Simoni, S.; Valboa, G.; et al. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Appl. Soil Ecol. 2019, 134, 64–76. [Google Scholar] [CrossRef]
- Simoni, S.; Caruso, G.; Vignozzi, N.; Gucci, R.; Valboa, G.; Pellegrini, S.; Palai, G.; Goggioli, D.; Gagnarli, E. Effect of long-term soil management practices on tree growth, yield and soil biodiversity in a high-density olive agro-ecosystem. Agronomy 2021, 11, 1036. [Google Scholar] [CrossRef]
- González-Gómez, L.; Intrigliolo, D.S.; Rubio-Asensio, J.S.; Buesa, I.; Ramírez-Cuesta, J.M. Assessing almond response to irrigation and soil management practices using vegetation indexes time-series and plant water status measurements. Agric. Ecosyst. Environ. 2022, 339, 108124. [Google Scholar] [CrossRef]
- Merwin, I.A.; Stiles, W.C.; van Es, H.M. Orchard groundcover management impacts on soil physical properties. J. Am. Soc. Hortic. Sci. 1994, 119, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Atucha, A.; Merwin, I.; Brown, M.; Gardiazabal, F.; Mena, F.; Adriazola, C.; Lehmann, J. Soil erosion, runoff and nutrient losses in an avocado (Persea americana mill) hillside orchard under different groundcover management systems. Plant Soil 2013, 368, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Giacalone, G.; Peano, C.; Isocrono, D.; Sottile, F. Are cover crops affecting the quality and sustainability of fruit production? Agriculture 2021, 11, 1201. [Google Scholar] [CrossRef]
- Schmid, A.; Weibel, F. Das sandwich system–ein Verfahren zur herbizidfreien Baumstreifenbewirtschaftung? [the sandwich system, a procedure for herbicide free in-row weed control?]. Obstbau 2000, 25, 214–217. [Google Scholar]
- Mia, M.J.; Massetani, F.; Murri, G.; Neri, D. Sustainable alternatives to chemicals for weed control in the orchard—A review. Hortic. Sci. 2020, 47, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mia, M.J.; Furmanczyk, E.M.; Golian, J.; Kwiatkowska, J.; Malusá, E.; Neri, D. Living Mulch with Selected Herbs for Soil Management in Organic Apple Orchards. Horticulturae 2021, 7, 59. [Google Scholar] [CrossRef]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.M.; Penke, N.; Kriechbaum, M.; Kratschmer, S.; Jung, V.; Chollet, S.; Guernion, M.; Nicolai, A.; Burel, F.; Fertil, A.; et al. Vegetation management intensity and landscape diversity alter plant species richness, functional traits and community composition across European vineyards. Agric. Syst. 2020, 177, 102706. [Google Scholar] [CrossRef]
- Żelazny, W.R.; Licznar-Małańczuk, M. Soil quality and tree status in a twelve-year-old apple orchard under three mulch-based floor management systems. Soil Tillage Res. 2018, 180, 250–258. [Google Scholar] [CrossRef]
- Merwin, I.A.; Stiles, W.C. Orchard groundcover management impacts on apple tree growth and yield, and nutrient availability and uptake. J. Am. Soc. Hortic. Sci. 1994, 119, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Herz, A.; Cahenzli, F.; Penvern, S.; Pfiffner, L.; Tasin, M.; Sigsgaard, L. Managing floral resources in apple orchards for pest control: Ideas, experiences and future directions. Insects 2019, 10, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paušič, A.; Tojnko, S.; Lešnik, M. Permanent, undisturbed, in-row living mulch: A realistic option to replace glyphosate-dominated chemical weed control in intensive pear orchards. Agric. Ecosyst. Environ. 2021, 318, 107502. [Google Scholar] [CrossRef]
- Lisek, J. Synanthropic orchard flora in West Mazovia–central Poland. J. Fruit Ornam. Plant Res. 2012, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Jezova, M.; Hanzl, J.; Winkler, J. Evaluation of the occur-rence of weeds in orchard. In Proceedings of the International PhD Students Conference MendelNet; Polák, O., Cerkal, R., Škarpa, P., Eds.; Mendel University in Brno: Brno, Czech Republic, 2014; pp. 19–20. [Google Scholar]
- Licznar-Małańczuk, M.; Sygutowska, I. The weed composition in an orchard as a result of long-term foliar herbicide application. Acta Agrobot. 2016, 69, 1685. [Google Scholar] [CrossRef] [Green Version]
- Granatstein, D.; Sánchez, E. Research knowledge and needs for orchard floor management in organic tree fruit systems. Int. J. Fruit Sci. 2009, 9, 257–281. [Google Scholar] [CrossRef]
- Leary, J.; De Frank, J. Living mulches for organic farming systems. Horttechnology 2000, 10, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Żelazny, W.R.; Licznar-Małańczuk, M. Living mulch persistence in an apple orchard and its effect on the weed flora in temperate climatic conditions. Weed Res. 2022, 62, 85–99. [Google Scholar] [CrossRef]
- Pfiffner, L.; Cahenzli, F.; Steinemann, B.; Jamar, L.; Bjørn, M.C.; Porcel, M.; Tasin, M.; Telfser, J.; Kelderer, M.; Lisek, J.; et al. Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: A pan-European study. Agric. Ecosyst. Environ. 2019, 278, 61–71. [Google Scholar] [CrossRef]
- Denan, N.; Wan Zaki, W.M.; Norhisham, A.R.; Sanusi, R.; Nasir, D.M.; Nobilly, F.; Ashton-Butt, A.; Lechner, A.M.; Azhar, B. Predation of potential insect pests in oil palm plantations, rubber tree plantations, and fruit orchards. Ecol. Evol. 2020, 10, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Sofo, A.; Mininni, A.N.; Ricciuti, P. Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy 2020, 10, 456. [Google Scholar] [CrossRef] [Green Version]
- Aponte, C.; de Groot, W.J.; Wotton, B.M. Forest fires and climate change: Causes, consequences and management options. Int. J. Wildland Fire 2016, 25, I–II. [Google Scholar] [CrossRef]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [Green Version]
- Agoston, R. The effects of global climate change on fire service Human resource view. Procedia Eng. 2018, 211, 1–7. [Google Scholar] [CrossRef]
- Winkler, J.; Malovcová, M.; Adamcová, D.; Ogrodnik, P.; Pasternak, G.; Zumr, D.; Kosmala, M.; Koda, E.; Vaverková, M.D. Significance of Urban Vegetation on Lawns Regarding the Risk of Fire. Sustainability 2021, 13, 11027. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Winkler, J.; Uldrijan, D.; Ogrodnik, P.; Vespalcová, T.; Aleksiejuk Gawron, J.; Adamcová, D.; Koda, E. Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management. Renew. Sustain. Energy Rev. 2022, 162, 112491. [Google Scholar] [CrossRef]
- Keane, R.E. Wildland Fuel Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2015; Volume 11, p. 191. [Google Scholar]
- Li, T.; Jeřábek, J.; Winkler, J.; Vaverková, M.D.; Zumr, D. Effects of prescribed fire on topsoil properties: A small-scale straw burning experiment. J. Hydrol. Hydromech. 2022, 70, 4. [Google Scholar] [CrossRef]
- Brotan, J.; Trnka, M.; Hlavinka, P.; Semerádová, D.; Žalud, Z. Climatic and agroclimatic conditions of Žabčice in the period 1961–2010. In Folia Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 6th ed.; Mendel University in Brno: Brno, Czech Republic, 2013; 52p, ISBN 978-80-7375-907-0. [Google Scholar]
- Chytrý, M.; Danihelka, J.; Kaplan, Z.; Wild, J.; Holubová, D.; Novotný, P.; Řezníčková, M.; Rohn, M.; Dřevojan, P.; Grulich, V.; et al. Pladias Database of the Czech Flora and Vegetation. Preslia 2021, 93, 1–87. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Hlavinka, P.; Trnka, M.; Balek, J.; Semerádová, D.; Hayes, M.; Svoboda, M.; Eitzinger, J.; Možný, M.; Fischer, M.; Hunt, E.; et al. Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agric. Water Manag. 2011, 98, 1249–1261. [Google Scholar] [CrossRef]
- Trnka, M.; Kersebaum, K.C.; Eitzinger, J.; Hayes, M.; Hlavinka, P.; Svoboda, M.; Dubrovský, M.; Semerádová, D.; Wardlow, B.; Pokorný, E.; et al. Consequences of climate change for the soil climate in Central Europe and the central plains of the United States. Clim. Chang. 2013, 120, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computingcrop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Pereira, P.; Cerdà, A.; Lopez, A.J.; Zavala, L.M.; Mataix-Solera, J.; Arcenegui, V.; Misiune, I.; Keesstra, S.; Novara, A. Short-term vegetation recovery after a grassland fire in lithuania: The effects of fire severity, slope position and aspect. Land Degrad Dev. 2016, 27, 1523–1534. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires as an ecosystem service. Front. Ecol. Environ. 2019, 17, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Klink, C.A.; Sato, M.N.; Cordeiro, G.G.; Ramos, M.I.M. The role of vegetation on the dynamics of water and fire in the Cerrado ecosystems: Implications for management and conservation. Plants 2020, 9, 1803. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.V.; Petri, C.A.; Broggio, I.S.; Chagas, G.O.; Macul, M.S.; Leite, C.C.; Ferrari, E.M.; Amim, C.G.; Freitas, A.L.; Motta, A.Z.; et al. Drivers of fire anomalies in the Brazilian Amazon: Lessons learned from the 2019 fire crisis. Land 2020, 9, 516. [Google Scholar] [CrossRef]
- Nunes, L.J.; Raposo, M.A.; Pinto Gomes, C.J. A historical perspective of landscape and human population dynamics in Guimarães (Northern Portugal): Possible implications of rural fire risk in a changing environment. Fire 2021, 4, 49. [Google Scholar] [CrossRef]
- Lima, G.P.A.; Barbosa, J.D.V.; Beal, V.E.; Gonçalves, M.A.M.S.; Machado, B.A.S.; Gerber, J.Z.; Lazarus, B.S. Exploratory analysis of fire statistical data and prospective study applied to security and protection systems. Int. J. Disaster Risk Reduct. 2021, 61, 102308. [Google Scholar] [CrossRef]
- Syswerda, S.P.; Robertson, G.P. Ecosystem services along a management gradient in Michigan (USA) cropping systems. Agric. Ecosyst. Environ. 2014, 189, 28–35. [Google Scholar] [CrossRef]
- Žalud, Z.; Brotan, J.; Hlavinka, P.; Trnka, M. Trends in temperature and precipitation in the period of 1961–2010 in Žabčice locality. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 152. [Google Scholar] [CrossRef]
- McWethy, D.B.; Pauchard, A.; García, R.A.; Holz, A.; González, M.E.; Veblen, T.T.; Stahl, J.; Currey, B. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 2018, 13, e0201195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colantoni, A.; Egidi, G.; Quaranta, G.; D’Alessandro, R.; Vinci, S.; Turco, R.; Salvati, L. Sustainable land management, wildfire risk and the role of grazing in Mediterranean urban-rural interfaces: A regional approach from Greece. Land 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Fares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J.L.; Xanthopoulos, G.; Guijarro, M.; Madrigal, J.; Hernando, C.; Corona, P. Characterizing potential wildland fire fuel in live vegetation in the mediterranean region. Ann. For. Sci. 2017, 74, 1. [Google Scholar] [CrossRef] [Green Version]
- Noss, R.F.; Franklin, J.F.; Baker, W.L.; Schoennagel, T.; Moyle, P.B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 2006, 4, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 2013, 110, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Oliveras, I.; Anderson, L.O.; Malhi, Y. Application of remote sensing to understanding fire regimes and biomass burning emissions of the tropical Andes. Glob. Biogeochem. Cycles 2014, 28, 480–496. [Google Scholar] [CrossRef]
- Marcos, R.; Turco, M.; Bedía, J.; Llasat, M.C.; Provenzale, A. Seasonal predictability of summer fires in a Mediterranean environment. Int. J. Wildland Fire 2015, 24, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Lasanta, T.; Khorchani, M.; Pérez-Cabello, F.; Errea, P.; Sáenz-Blanco, R.; Nadal-Romero, E. Clearing shrubland and extensive livestock farming: Active prevention to control wildfires in the Mediterranean mountains. J. Environ. Manag. 2018, 227, 256–266. [Google Scholar] [CrossRef]
- Fletcher, M.S.; Romano, A.; Connor, S.; Mariani, M.; Maezumi, S.Y. Catastrophic bushfires, indigenous fire knowledge and reframing science in Southeast Australia. Fire 2021, 4, 61. [Google Scholar] [CrossRef]
- Wilschut, R.A.; Geisen, S. Nematodes as drivers of plant performance in natural systems. Trends Plant Sci. 2021, 26, 237–247. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M. Fire-induced changes in soil and implications on soil sorption capacity and remediation methods. Appl. Sci. 2019, 9, 3447. [Google Scholar] [CrossRef] [Green Version]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total. Environ. 2017, 601–602, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Salemme, R.K.; Fraterrigo, J.M. Grass invasion reduces the resilience of tree regeneration to fire in the Central Hardwoods Region. For. Ecol. Manag. 2021, 491, 119202. [Google Scholar] [CrossRef]
- Lisek, J.; Buler, Z. Growth and yield of plum trees in response to in-row orchard floor management. Turk. J. Agric. For. 2018, 42, 97–102. [Google Scholar] [CrossRef]
- Hoagland, L.O.R.I.; Carpenter-Boggs, L.; Granatstein, D.; Mazzola, M.; Smith, J.; Peryea, F.; Reganold, J.P. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biol. Fertil. Soils 2008, 45, 11–18. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Arrobas, M. Cover cropping for increasing fruit production and farming sustainability. Fruit Crops 2020, 279–295. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Krofcheck, D.J.; Loudermilk, E.L.; Hiers, J.K.; Scheller, R.M.; Hurteau, M.D. The effects of management on long-term carbon stability in a southeastern US forest matrix under extreme fire weather. Ecosphere 2019, 10, e02631. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.; Miranda, H.S.; Soares-Filho, B.; Rodrigues, L.; Oliveira, U.; Bustamante, M.M. Responses of plant biomass in the Brazilian savanna to frequent fires. Front. For. Glob. Chang. 2020, 3, 507710. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Cienciala, E.; Čermák, P.; Semerádová, D.; Jurečka, F.; Hlavinka, P.; Farda, A.; Skalák, P.; Beranová, J.; et al. Observed and expected changes in wildfire-conducive weather and fire events in peri-urban zones and key nature reserves of the Czech Republic. Clim. Res. 2020, 82, 33–54. [Google Scholar] [CrossRef]
Management Preference | Group of Species | Taxa of Plants (Abbreviations) |
---|---|---|
Greening | Annual dicots | Geranium pusillum (GerPusi), Polygonum aviculare (PolAvic), Veronica arvensis (VerArve). |
Perennial dicots | Achillea millefolium (AchMill), Artemisia vulgaris (ArtVulg), Carduus acanthoides (CarAcan), Cichorium intybus (CicInty), Cirsium arvense (CirArve), Conyza canadensis (ConCana), Echium vulgare (EchVulg), Eryngium campestre (EryCamp), Falcaria vulgaris (FalVulg), Plantago major (PlaMajo), Potentilla argentea (PotArge), Reseda lutea (ResLute), Rumex acetosella (RumAcet), Silene latifolia (SilLati), Tragopogon pratensis (TraPrat), Trifolium repens (TriRepe). | |
Perennial monocots | Arrhenatherum elatius (ArrElat), Dactylis glomerata (DacGlom), Elytrigia repens (ElyRepe), Festuca pratensis (FesPrat), Lolium perenne (LolPere), Poa pratensis (PoaPrat). | |
Greening + Under trees | Annual dicots | Capsella bursa-pastoris (CapBurs), Erigeron annuus (EriAnnu), Erodium cicutarium (EroCicu), Holosteum umbellatum (HolUmbe), Lycopsis arvensis (LycArve), Veronica polita (VerPoli). |
Perennial dicots | Glechoma hederacea (GleHede), Medicago lupulina (MedLupu), Taraxacum sect. Taraxacum (TarSect). | |
Annual monocots | Bromus hordeaceus (BroHord), Bromus sterilis (BroSter), Bromus tectorum (BroTect). | |
Perennial monocots | Festuca rubra (FesRubr). | |
Under trees | Annual dicots | Arenaria serpyllifolia (AreSerp), Epilobium adenocaulon (EpiAden), Filago arvensis (FilArve), Fumaria officinalis (FumOffi), Lactuca serriola (LacSerr). |
Perennial dicots | Bryonia alba (BryAlba), Plantago lanceolata (PlaLanc), Rosa canina (RosCani). | |
Annual monocots | Digitaria sanguinalis (DigSang), Hordeum murinum (HorMuri). | |
Perennial monocots | Festuca ovina (FesOvin). | |
Under trees + bare soil | Annual dicots | Chenopodium album (CheAlbu), Chenopodium pedunculare (ChePedu), Chenopodium strictum (CheStri), Lamium amplexicaule (LamAmpl), Lamium purpureum (LamPurp), Stellaria media (SteMedi), Veronica persica (VerPers). |
Perennial dicots | Convolvulus arvensis (ConArve), Malva neglecta (MalNegl). | |
Bare soil | Annual dicots | Amaranthus powelli (AmaPowe), Amaranthus retroflexus (AmaRetr), Amaranthus albus (AmaAlbu), Anagallis arvensis (AnaArve), Anagallis foemina (AnagFoem), Chenopodium hybridum (CheHybr), Chenopodium pumilio (ChePumi), Portulaca oleracea (PorOler), Senecio vulgaris (SenVulg), Sonchus oleraceus (SonOler), Thlaspi arvense (ThlArve), Trifolium arvense (TriArve), Tripleurospermum inodorum (TriInod), Veronica hederifolia (VerHede), Veronica triphyllos (VerTrip), Viola arvensis (VioArve). |
Annual monocots | Echinochloa crus-galli (EchCrus), Panicum miliaceum (PanMili), Poa annua (PoaAnnu), Setaria pumila (SetPumi), Setaria viridis (SetViri). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkler, J.; Ježová, M.; Punčochář, R.; Hurajová, E.; Martínez Barroso, P.; Kopta, T.; Semerádová, D.; Vaverková, M.D. Fire Hazard: Undesirable Ecosystem Function of Orchard Vegetation. Fire 2023, 6, 25. https://doi.org/10.3390/fire6010025
Winkler J, Ježová M, Punčochář R, Hurajová E, Martínez Barroso P, Kopta T, Semerádová D, Vaverková MD. Fire Hazard: Undesirable Ecosystem Function of Orchard Vegetation. Fire. 2023; 6(1):25. https://doi.org/10.3390/fire6010025
Chicago/Turabian StyleWinkler, Jan, Markéta Ježová, Radek Punčochář, Erika Hurajová, Petra Martínez Barroso, Tomáš Kopta, Daniela Semerádová, and Magdalena Daria Vaverková. 2023. "Fire Hazard: Undesirable Ecosystem Function of Orchard Vegetation" Fire 6, no. 1: 25. https://doi.org/10.3390/fire6010025
APA StyleWinkler, J., Ježová, M., Punčochář, R., Hurajová, E., Martínez Barroso, P., Kopta, T., Semerádová, D., & Vaverková, M. D. (2023). Fire Hazard: Undesirable Ecosystem Function of Orchard Vegetation. Fire, 6(1), 25. https://doi.org/10.3390/fire6010025