Modification and Comparison of Methods for Predicting the Moisture Content of Dead Fuel on the Surface of Quercus mongolica and Pinus sylvestris var. mongolica under Rainfall Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Methods
2.2.1. Indoor Simulated Rainfall Experiment
2.2.2. Field Experiments
2.3. Data Analysis
2.3.1. Constructing a Model for the Relationship between Rainfall and Fuel Moisture Content
2.3.2. Wild Fuel Moisture Content Prediction
- Direct estimation method
- 2.
- modified direct estimation method
- 3.
- Convolutional neural network model (CNN)
2.3.3. Model Evaluation and Comparison
3. Results
3.1. Dynamic Changes in Indoor Fuel Moisture Content
3.2. Ranking of Factors Influencing the Growth of Moisture Content of Fuels
3.3. Rainfall–Fuel Moisture Content Growth Model
3.4. Dynamics of Wild Fuel Moisture Content
3.5. Modified Direct Estimation Method
3.6. Convolutional Neural Network Model
3.6.1. Relative Importance Screening of Meteorological Factors in Random Forest Models
3.6.2. Convolutional Neural Network Model Tuning Parameters
3.6.3. Convolutional Neural Network Model Prediction Results
3.7. Model Performance Evaluation
3.7.1. Comparison of Scatter Fitting for Prediction Results of Different Models
3.7.2. Time Series Comparison of Different Model Prediction Results
4. Discussion
4.1. The Influence of Rainfall on the Construction of a Model for Predicting Fuel Moisture Content
4.2. Driving Factors of Fuel Moisture Content under Rainfall Conditions
4.3. Model Evaluation and Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McColl-Gausden, S.C.; Bennett, L.T.; Clarke, H.G.; Ababei, D.A.; Penman, T.D. The fuel-climate-fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change? Glob. Chang. Biol. 2022, 28, 5211–5226. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78. [Google Scholar] [CrossRef]
- Cawson, J.G.; Duff, T.J. Forest fuel bed ignitability under marginal fire weather conditions in Eucalyptus forests. Int. J. Wildland Fire 2019, 28, 198–204. [Google Scholar] [CrossRef]
- Batchelor, J.L.; Rowell, E.; Prichard, S.; Nemens, D.; Cronan, J.; Kennedy, M.C.; Moskal, L.M. Quantifying Forest Litter Fuel Moisture Content with Terrestrial Laser Scanning. Remote Sens. 2023, 15, 1482. [Google Scholar] [CrossRef]
- Brown, T.P.; Inbar, A.; Duff, T.J.; Lane, P.N.J.; Sheridan, G.J. The sensitivity of fuel moisture to forest structure effects on microclimate. Agric. For. Meteorol. 2022, 316, 108857. [Google Scholar] [CrossRef]
- Alen, S.; Anderson, W.R.; Matthews, S.; Anderson, D.H. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. Int. J. Wildland Fire 2018, 27, 109–202. [Google Scholar]
- Jyoteeshkumar Reddy, P.; Sharples, J.J.; Lewis, S.C.; Perkins-Kirkpatrick, S.E. Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the Southeast Australian region. Weather. Clim. Extrem. 2021, 31, 100300. [Google Scholar] [CrossRef]
- Pellizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 2007, 16, 232–241. [Google Scholar] [CrossRef]
- Mondal, N.; Sukumar, R. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient. PLoS ONE 2017, 11, e0159691. [Google Scholar] [CrossRef]
- Lopes, S.; Viegas, D.X.; Lemos, L.d.; Viegas, M.T. Rainfall effects on fine forest fuels moisture content. In Advances in Forest Fire Research; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; pp. 1256–1263. [Google Scholar]
- Bilgili, E.; Coskuner, K.A.; Usta, Y.; Saglam, B.; Kucuk, O.; Berber, T.; Goltas, M. Diurnal surface fuel moisture prediction model for Calabrian pine stands in Turkey. Iforest-Biogeosciences For. 2019, 12, 262–271. [Google Scholar] [CrossRef]
- Alvarado, S.T.; Andela, N.; Silva, T.S.F.; Archibald, S. Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents. Glob. Ecol. Biogeogr. 2020, 29, 331–344. [Google Scholar] [CrossRef]
- González, A.D.a.R.; Hidalgo, J.A.V.; González, J.G.Ã.l. Construction of empirical models for predicting Pinus sp. dead fine fuel moisture in NW Spain. I: Response to changes in temperature and relative humidity. Int. J. Wildland Fire 2009, 18, 71–83. [Google Scholar] [CrossRef]
- de Jong, M.C.; Wooster, M.J.; Kitchen, K.; Manley, C.; Gazzard, R. Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the UK. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 3, 6997–7051. [Google Scholar] [CrossRef]
- Simard, A.J. The moisture content of forest fuels-1. A review of the basic concepts; Information Report FF-X-14; Canadian Department of Forest and Rural Development, Forest Fire Research Institute: Ottawa, ON, Canada, 1968. [Google Scholar]
- Nelson, R.M., Jr. A method for describing equilibrium moisture content of forest fuels. Can. J. For. Res. 1984, 14, 597–600. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kwon, C.-G.; Lee, M.-W.; Lee, H.-P.; Cha, J.Y. Development of Prediction Model of Fuel Moisture Changes in the Spring for the Pine Forest Located the Yeongdong Region (Focused on the Fallen Leaves and Soil Moisture Level). Fire Sci. Eng. 2010, 24, 67–75. [Google Scholar]
- Chunquan, F.; Binbin, H. A Physics-Guided Deep Learning Model for 10-h Dead Fuel Moisture Content Estimation. Forests 2021, 12, 933. [Google Scholar]
- Masinda, M.M. Prediction Models of Dead Fuel Moisture Content and Estimation of Forest Fire Risk in a Typical Forest Ecosystem in the Northeast of China; Northeast Forestry University: Harbin, China, 2021. [Google Scholar]
- Singh, D.V.; Vaibhav, M.S.; Geeta, R.; Deepak, S.; Kavita; Fazal, I.M.; Marcin, W. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases. Sensors 2021, 21, 4749. [Google Scholar]
- Lei, W.D.; Yu, Y.; Li, X.H.; Xing, J. Estimating dead fine fuel moisture content of forest surface, based on wireless sensor network and back-propagation neural network. Int. J. Wildland Fire 2022, 31, 369–378. [Google Scholar] [CrossRef]
- Dios, V.R.d.; Fellows, A.W.; Nolan, R.H.; Boer, M.M.; Bradstock, R.A.; Domingo, F.; Goulden, M.L. A semi-mechanistic model for predicting the moisture content of fine litter. Agric. For. Meteorol. 2015, 203, 64–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, P. Study on the Diurnal Dynamic Changes and Prediction Models of the Moisture Contents of Two Litters. Forests 2020, 11, 95. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, P.; Man, Z. Effects of indoor simulated rainfall on moisture contents of litter beds of red pine and Mongolian oak. J. Cent. South Univ. For. Technol. 2020, 40, 1–10. [Google Scholar]
- Masinda, M.M.; Li, F.; Liu, Q.; Sun, L.; Hu, T. Prediction model of moisture content of dead fine fuel in forest plantations on Maoer Mountain, Northeast China. J. For. Res. 2021, 32, 2023–2035. [Google Scholar] [CrossRef]
- Mbusa, M.M.; Fei, L.; Liu, Q.; Long, S.; Tongxin, H. Forest fire risk estimation in a typical temperate forest in Northeastern China using the Canadian forest fire weather index: Case study in autumn 2019 and 2020. Nat. Hazards 2021, 111, 1085–1101. [Google Scholar]
- Yu, H.Z.; Liu, H.; Zhang, Y.L.; Ning, J.B.; Guo, Y.; Hu, T.X.; Yang, G. Design and Experiment of Monitoring System for Surface Fine Fuel Moisture. For. Eng. 2022, 38, 38–47. [Google Scholar]
- Fan, J.L.; Hu, T.X.; Ren, J.S.; Liu, Q.; Sun, L. A comparison of five models in predicting surface dead fine fuel moisture content of typical forests in Northeast China. Front. For. Glob. Chang. 2023, 6, 1122087. [Google Scholar] [CrossRef]
- Chang, C.; Yu, C.; Meng, G.; Yuanman, H. Modelling the dead fuel moisture content in a grassland of Ergun City, China. J. Arid. Land 2023, 15, 710–723. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- McGraw-Hill. Dictionary of Environmental Science; Choice Reviews Online: New York, NY, USA, 2003; Volume 41. [Google Scholar]
- Catchpole, E.A.; Catchpole, W.R.; Viney, N.R.; McCaw, W.L.; Marsden-Smedley, J.B. Estimating fuel response time and predicting fuel moisture content from field data. Int. J. Wildland Fire 2001, 10, 215–222. [Google Scholar] [CrossRef]
- Yann, L.; Yoshua, B.; Geoffrey, H. Deep learning. Nature. 2015, 521, 436–444. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Zhao, L.; Yebra, M.; van Dijk, A.I.J.M.; Cary, G.J. Representing vapour and capillary rise from the soil improves a leaf litter moisture model. J. Hydrol. 2022, 612, 128087. [Google Scholar] [CrossRef]
- Viktorovich, B.N.; Andreevna, K.V. Forest Fuel Drying, Pyrolysis and Ignition Processes during Forest Fire: A Review. Processes 2022, 10, 89. [Google Scholar]
- Viegas, D.; Viegas, M.; Ferreira, A. Moisture Content of Fine Forest Fuels and Fire Occurrence in Central Portugal. Int. J. Wildland Fire 1992, 2, 69–86. [Google Scholar] [CrossRef]
- Bakšić, N.; Bakšić, D.; Jazbec, A. Hourly fine fuel moisture model for Pinus halepensis (Mill.) litter. Agric. For. Meteorol. 2017, 243, 93–99. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Fu, S.L.; Feng, D.J.; Guang, Y.; Qi, L.; Hao, L.J.; Yong, Z.H. Prediction models and the extrapolation effects for water content of surface dead fuels in the typical stand of the Great Xing’an Mountains of China by one-hour time step. Ying Yong Sheng Tai Xue Bao 2018, 29, 3959–3968. [Google Scholar]
- Slijepcevic, A.; Anderson, W.R.; Matthews, S.; Anderson, D.H. Evaluating models to predict daily fine fuel moisture content in eucalypt forest. For. Ecol. Manag. 2015, 335, 261–269. [Google Scholar] [CrossRef]
- Ganatsas, P.; Antonis, M.; Marianthi, T. Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry. Agric. For. Meteorol. 2010, 151, 241–250. [Google Scholar] [CrossRef]
- Matthews, S. A process-based model of fine fuel moisture. Int. J. Wildland Fire 2006, 15, 155–168. [Google Scholar] [CrossRef]
- Anderson, S.A.J.; Anderson, W.R. Predicting the elevated dead fine fuel moisture content in gorse (Ulex europaeus L.) shrub fuels. Can. J. For. Res. 2009, 39, 2355–2368. [Google Scholar] [CrossRef]
- Keane, R.E.; Holsinger, L.M.; Smith, H.Y.; Sikkink, P.G. Drying rates of saturated masticated fuelbeds from Rocky Mountain mixed-conifer stands. Int. J. Wildland Fire 2020, 29, 57–69. [Google Scholar] [CrossRef]
- Cruz, M.G.; Kidnie, S.; Matthews, S.; Hurley, R.J.; Slijepcevic, A.; Nichols, D.; Gould, J.S. Evaluation of the predictive capacity of dead fuel moisture models for Eastern Australia grasslands. Int. J. Wildland Fire 2016, 25, 995–1001. [Google Scholar] [CrossRef]
- Oddi, F.J.; Miguez, F.E.; Ghermandi, L.; Bianchi, L.O.; Garibaldi, L.A. A nonlinear mixed-effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example. Ecol. Evol. 2019, 9, 10225–10240. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.F.; Wang, C.M. A nonlinear rainfall-runoff model embedded with an automated calibration method—Part 1: The model. J. Hydrol. 2007, 341, 186–195. [Google Scholar] [CrossRef]
- Britton, C.M.; Countryman, C.M.; Wright, H.A.; Walvekar, A.G. The effect of humidity, air temperature, and wind speed on fine fuel moisture content. Fire Technol. 1973, 9, 46–55. [Google Scholar] [CrossRef]
- Jili, Z.; Xiaoyang, C.; Rui, W.; Yan, H.; Xueying, D. Evaluating the applicability of predicting dead fine fuel moisture based on the hourly Fine Fuel Moisture Code in the south-eastern Xing’an Mountains of China. Int. J. Wildland Fire 2017, 26, 167–175. [Google Scholar]
- Barberá, I.; Paritsis, J.; Ammassari, L.; Manuel, M.J.; Kitzberger, T. Microclimate and species composition shape the contribution of fuel moisture to positive fire-vegetation feedbacks. Agric. For. Meteorol. 2023, 330, 109289. [Google Scholar] [CrossRef]
- Schunk, C.; Leutner, C.; Leuchner, M.; Wastl, C.; Menzel, A. Equilibrium moisture content of dead fine fuels of selected central European tree species. Int. J. Wildland Fire 2013, 22, 797–809. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A.; Groot, W.J.d.; Johnston, J.; Jurko, N.; Cantin, A.S. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Chang. 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Hiers, J.K.; Stauhammer, C.L.; O’Brien, J.J.; Gholz, H.L.; Martin, T.A.; Hom, J.; Starr, G. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agric. For. Meteorol. 2019, 266–267, 20–28. [Google Scholar] [CrossRef]
- David, R.; Dan, N.; Paulo, B. Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: Results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytol. 2010, 187, 720–732. [Google Scholar]
- Schiks, J.T.; Wotton, M.B. Modifying the Canadian Fine Fuel Moisture Code for masticated surface fuels. Int. J. Wildland Fire 2015, 24, 79–91. [Google Scholar] [CrossRef]
- Viney, N. A Review of Fine Fuel Moisture Modelling. Int. J. Wildland Fire 1991, 1, 215–234. [Google Scholar] [CrossRef]
- Mun, C.H.; Ram, J.B.; Young, L.S.; Shoji, O. Effects of Weather Factors on Fuel Moisture Contents of Forestland in Chuncheon, South Korea. J. Fac. Agric. Kyushu Univ. 2017, 62, 23–29. [Google Scholar]
- Wang, S.; Feng, Z.K.; Yu, Z.; Zhang, H.Y. Prediction model of surface dead fine fuel moisture content by a one-hour time step in typical stand under simulated rainfall in the Chongli District, Zhangjiakou City, China. Chin. J. Appl. Environ. Biol. 2023, 29, 913–921. [Google Scholar] [CrossRef]
- Hongzhou, Y.; Lifu, S.; Guang, Y.; Jifeng, D. Comparison of vapour-exchange methods for predicting hourly twig fuel moisture contents of larch and birch stands in the Daxinganling Region, China. Int. J. Wildland Fire 2021, 30, 462–466. [Google Scholar]
- Zhang, Y.; Xiang, M.; Ding, B. Applicability analysis of direct estimation method for predicting litter moisture content in different layers. J. Cent. South Univ. For. Technol. 2022, 42, 9–19. [Google Scholar]
- Pickering, B.J.; Duff, T.J.; Baillie, C.; Cawson, J.G. Darker, cooler, wetter: Forest understories influence surface fuel moisture. Agric. For. Meteorol. 2021, 300, 108311. [Google Scholar] [CrossRef]
- HoonTaek, L.; Myoungsoo, W.; Sukhee, Y.; Keunchang, J. Estimation of 10-Hour Fuel Moisture Content Using Meteorological Data: A Model Inter-Comparison Study. Forests 2020, 11, 982. [Google Scholar]
- Wu, X.H.; Hua, Y.J.; Guan, Y.H.; Wang, W.W.; Liu, R.Y. Application of CNN-Attention-BP to precipitation forecast. Nanjing Univ. Inf. Sci. Technol. 2022, 14, 148–155. [Google Scholar]
- Aguado, I.; Chuvieco, E.; Borén, R.; Nieto, H. Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. Int. J. Wildland Fire 2007, 16, 390–397. [Google Scholar] [CrossRef]
- Ekaterina, R.; Scott, S.; Sally, T. Soil moisture influences on Sierra Nevada dead fuel moisture content and fire risks. For. Ecol. Manag. 2021, 496, 119379. [Google Scholar]
- Zewen, L.; Fan, L.; Wenjie, Y.; Shouheng, P.; Jun, Z. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar]
- Assaf, S.; Yiftach, Z.; Eyal, H. Machine-Learning-based evaluation of the time-lagged effect of meteorological factors on 10-hour dead fuel moisture content. For. Ecol. Manag. 2022, 505, 119897. [Google Scholar]
Forest Type | Altitude (m) | Location | Aspect | Mean DBH (cm) | Canopy Density | Mean Height (m) | Mean Litter Thickness (cm) |
---|---|---|---|---|---|---|---|
Quercus mongolica | 395 | Middle | Northeast | 18.40 | 0.70 | 15.20 | 7.20 |
Pinus. sylvestris var. mongolica | 380 | Middle | Southwest | 15.80 | 0.40 | 16.47 | 4.90 |
Fuel Type | Model | Equation | R2 | MAE (%) | MRE (%) |
---|---|---|---|---|---|
Quercus mongolica | Linear model | 0.74 | 32.12 | 24.39 | |
Nonlinear model | 0.78 | 29.82 | 18.91 | ||
Relational model | 0.80 | 11.32 | 9.79 | ||
Pinus sylvestris var. mongolica | Linear model | 0.82 | 19.61 | 16.44 | |
Nonlinear model | 0.87 | 12.32 | 18.83 | ||
Relational model | 0.73 | 27.54 | 20.03 |
Model | Parameters/Errors | Modified Direct Estimation Method | Unmodified Direct Estimation Method | ||
---|---|---|---|---|---|
Quercus mongolica | Pinus sylvestris var. mongolica | Quercus mongolica | Pinus sylvestris var. mongolica | ||
Nelson | α | 1.081 | 2.144 | 0.595 | 0.445 |
β | −0.294 | −0.209 | −0.161 | −0.091 | |
λ | 0.982 | 0.994 | 0.899 | 0.921 | |
R2 | 0.96 | 0.95 | 0.85 | 0.90 | |
MAE (%) | 8.27 | 6.86 | 18.33 | 9.85 | |
MRE (%) | 7.84 | 6.12 | 10.91 | 17.18 | |
Simard | λ | 0.999 | 0.988 | 0.989 | 0.995 |
R2 | 0.94 | 0.96 | 0.90 | 0.94 | |
MAE (%) | 10.74 | 7.19 | 10.74 | 12.19 | |
MAE (%) | 14.48 | 3.53 | 14.48 | 3.97 |
Forest Type | R2 | MAE (%) | MRE (%) |
---|---|---|---|
Quercus mongolica | 0.93 | 6.05 | 8.87 |
Pinus sylvestris var. mongolica | 0.90 | 8.11 | 4.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Ma, L.; Gao, Y.; Fan, J.; Sun, L. Modification and Comparison of Methods for Predicting the Moisture Content of Dead Fuel on the Surface of Quercus mongolica and Pinus sylvestris var. mongolica under Rainfall Conditions. Fire 2023, 6, 379. https://doi.org/10.3390/fire6100379
Hu T, Ma L, Gao Y, Fan J, Sun L. Modification and Comparison of Methods for Predicting the Moisture Content of Dead Fuel on the Surface of Quercus mongolica and Pinus sylvestris var. mongolica under Rainfall Conditions. Fire. 2023; 6(10):379. https://doi.org/10.3390/fire6100379
Chicago/Turabian StyleHu, Tongxin, Linggan Ma, Yuanting Gao, Jiale Fan, and Long Sun. 2023. "Modification and Comparison of Methods for Predicting the Moisture Content of Dead Fuel on the Surface of Quercus mongolica and Pinus sylvestris var. mongolica under Rainfall Conditions" Fire 6, no. 10: 379. https://doi.org/10.3390/fire6100379
APA StyleHu, T., Ma, L., Gao, Y., Fan, J., & Sun, L. (2023). Modification and Comparison of Methods for Predicting the Moisture Content of Dead Fuel on the Surface of Quercus mongolica and Pinus sylvestris var. mongolica under Rainfall Conditions. Fire, 6(10), 379. https://doi.org/10.3390/fire6100379