Optimizing Fuel Treatments Allocation to Protect the Wildland–Urban Interface from Large-Scale Wildfires in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Land Cover Groups, Classes, and Fuel Models
2.3. Input Data for Wildfire Simulations
2.4. Suitability and the Analytical Hierarchical Process
2.5. Criteria Description and Application
2.5.1. Slope of the Land Surface
2.5.2. Ownership of the Land
2.5.3. Protected Natural Areas
2.5.4. Fuel Treatment Grid
2.5.5. Suitable Fuel Models
2.5.6. Proximity to the Road Network
2.5.7. Proximity to Urban Development Areas
2.5.8. Fire Transmission to Houses
2.6. Assigning Weights to Criteria
3. Results
3.1. Spatial Optimization Model
3.2. Fire Transmission to the Houses and Fuel Treatment Grid
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bovio, G.; Marchetti, M.; Tonarelli, L.; Salis, M.; Vacchiano, G.; Lovreglio, R.; Elia, M.; Fiorucci, P.; Ascoli, D. Forest Fires Are Changing: Let’s Change the Fire Management Strategy. For. @-J. Silvic. For. Ecol. 2017, 14, 202. [Google Scholar] [CrossRef] [Green Version]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing Prescribed Fire Allocation for Managing Fire Risk in Central Catalonia. Sci. Total Environ. 2018, 621, 872–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire Management in Mediterranean-Type Regions: Paradigm Change Needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Aparício, B.A.; Pereira, J.M.C.; Santos, F.C.; Bruni, C.; Sá, A.C.L. Combining Wildfire Behaviour Simulations and Network Analysis to Support Wildfire Management: A Mediterranean Landscape Case Study. Ecol. Indic. 2022, 137, 108726. [Google Scholar] [CrossRef]
- Bar-Massada, A.; Stewart, S.I.; Hammer, R.B.; Mockrin, M.H.; Radeloff, V.C. Using Structure Locations as a Basis for Mapping the Wildland Urban Interface. J. Environ. Manag. 2013, 128, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Calkin, D.E.; Cohen, J.D.; Finney, M.A.; Thompson, M.P. How Risk Management Can Prevent Future Wildfire Disasters in the Wildland-Urban Interface. Proc. Natl. Acad. Sci. USA 2014, 111, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chas-Amil, M.L.; Touza, J.; García-Martínez, E. Forest Fires in the Wildland–Urban Interface: A Spatial Analysis of Forest Fragmentation and Human Impacts. Appl. Geogr. 2013, 43, 127–137. [Google Scholar] [CrossRef]
- Scott, J.H.; Thompson, M.P.; Gilbertson-Day, J.W. Examining Alternative Fuel Management Strategies and the Relative Contribution of National Forest System Land to Wildfire Risk to Adjacent Homes—A Pilot Assessment on the Sierra National Forest, California, USA. For. Ecol. Manag. 2016, 362, 29–37. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Caballero, D.; Galante, M.; Alexandrian, D.; Rigolot, E.; Marzano, R. Forest Fuels Management in Europe. In Fuels Management-How to Measure Success: Conference Proceedings; U.S. Department of Agriculture: Fort Collins, CO, USA, 2006. [Google Scholar]
- Hellenic Republic Ministerial Decision YPEN/DPD/61247/2789/2020. Available online: https://diavgeia.gov.gr/doc/%CE%A9%CE%963%CE%A04653%CE%A08-%CE%98%CE%9A0 (accessed on 11 December 2022).
- Hellenic Forest Service. Fire Protection Project for the Peninsula of Kassandra, Chalkidiki; Hellenic Forest Service: Kassandria, Greece, 2021. [Google Scholar]
- Agee, J. The Fallacy of Passive Management Managing for Firesafe Forest Reserves. Conserv. Pract. 2006, 3, 18–26. [Google Scholar] [CrossRef]
- Graham, R.T.; McCaffrey, S.; Jain, T.B. Science Basis for Changing Forest Structure to Modify Wildfire Behavior and Severity; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2004. [Google Scholar]
- Stratton RD Assessing the Effectiveness of Landscape Fuel treatments on Fire Growth and Behavior. J. For. 2004, 102, 32–40.
- Ager, A.; Vaillant, N.; Finney, M.A. Application of Fire Behavior Models and Geographic Information Systems for Wildfire Risk Assessment and Fuel Management Planning. J. Combust. 2011, 2011, 572452. [Google Scholar] [CrossRef] [Green Version]
- Elia, M.; Lafortezza, R.; Colangelo, G.; Sanesi, G. A Streamlined Approach for the Spatial Allocation of Fuel Removals in Wildland–Urban Interfaces. Landsc. Ecol. 2014, 29, 1771–1784. [Google Scholar] [CrossRef]
- Chung, W. Optimizing Fuel Treatments to Reduce Wildland Fire Risk. Curr. For. Rep. 2015, 1, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Palma, J.; Graves, A.R.; Burgess, P.J.; van der Werf, W.; Herzog, F. Integrating Environmental and Economic Performance to Assess Modern Silvoarable Agroforestry in Europe. Ecol. Econ. 2007, 63, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Finney, M.A. A Computational Method for Optimising Fuel Treatment Locations. Int. J. Wildland Fire 2007, 16, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Kalabokidis, K.; Omi, P.N. Reduction of Fire Hazard Through Thinning/Residue Disposal in the Urban Interface. Int. J. Wildland Fire 1998, 8, 29–35. [Google Scholar] [CrossRef]
- Ager, A.A.; Finney, M.A.; Kerns, B.K.; Maffei, H. Modeling Wildfire Risk to Northern Spotted Owl (Strix Occidentalis Caurina) Habitat in Central Oregon, USA. Ecol. Manag. 2007, 246, 45–56. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. A Comparison of Landscape Fuel Treatment Strategies to Mitigate Wildland Fire Risk in the Urban Interface and Preserve Old Forest Structure. Ecol. Manag. 2010, 259, 1556–1570. [Google Scholar] [CrossRef]
- Ager, A.A.; Barros, A.M.G.; Houtman, R.; Seli, R.; Day, M.A. Modelling the Effect of Accelerated Forest Management on Long-Term Wildfire Activity. Ecol. Model. 2020, 421, 108962. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Day, M.A. Development of Comprehensive Fuel Management Strategies for Reducing Wildfire Risk in Greece. Forests 2020, 11, 789. [Google Scholar] [CrossRef]
- Zagas, T.; Raptis, D.; Zagas, D.; Karamanolis, D. Planning and Assessing the Effectiveness of Traditional Silvicultural Treatments for Mitigating Wildfire Hazard in Pine Woodlands of Greece. Nat. Hazards 2013, 65, 545–561. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; McMahan, A. Restoration of Fire in Managed Forests: A Model to Prioritize Landscapes and Analyze Tradeoffs. Ecosphere 2013, 4, art29. [Google Scholar] [CrossRef]
- Salis, M.; Laconi, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Lozano, O.; Fernandes de Oliveira, A.; Spano, D. Evaluating Alternative Fuel Treatment Strategies to Reduce Wildfire Losses in a Mediterranean Area. Ecol. Manag. 2016, 368, 207–221. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Galatsidas, S.; Papalampros, L.; Day, M.A. Spatial Optimization and Tradeoffs of Alternative Forest Management Scenarios in Macedonia, Greece. Forests 2021, 12, 697. [Google Scholar] [CrossRef]
- Kontos, T.D.; Komilis, D.P.; Halvadakis, C.P. Siting MSW Landfills on Lesvos Island with a GIS-Based Methodology. Waste Manag. Res. 2003, 21, 262–277. [Google Scholar] [CrossRef]
- Gemitzi, A.; Petalas, C.; Tsihrintzis, V.A.; Pisinaras, V. Assessment of Groundwater Vulnerability to Pollution: A Combination of GIS, Fuzzy Logic and Decision Making Techniques. Environ. Geol. 2006, 49, 653–673. [Google Scholar] [CrossRef]
- Gemitzi, A.; Tsihrintzis, V.A.; Voudrias, E.; Petalas, C.; Stravodimos, G. Combining Geographic Information System, Multicriteria Evaluation Techniques and Fuzzy Logic in Siting MSW Landfills. Environ. Geol. 2007, 51, 797–811. [Google Scholar] [CrossRef]
- Chalkias, C. Geographical Analysis with the Use of GIS; Association of Greek Academic Libraries: Athens, Greece, 2015. [Google Scholar]
- Zambrano-Asanza, S.; Quiros-Tortos, J.; Franco, J.F. Optimal Site Selection for Photovoltaic Power Plants Using a GIS-Based Multi-Criteria Decision Making and Spatial Overlay with Electric Load. Renew. Sustain. Energy Rev. 2021, 143, 110853. [Google Scholar] [CrossRef]
- Afsari, R.; Shorabeh, S.N.; Kouhnavard, M.; Homaee, M.; Arsanjani, J.J. A Spatial Decision Support Approach for Flood Vulnerability Analysis in Urban Areas: A Case Study of Tehran. ISPRS Int. J. Geoinf. 2022, 11, 380. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Küçük, Ö. Modeling Forest Fire Risk Based on GIS-Based Analytical Hierarchy Process and Statistical Analysis in Mediterranean Region. Ecol. Inf. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Gheshlaghi, H.A.; Feizizadeh, B.; Blaschke, T. GIS-Based Forest Fire Risk Mapping Using the Analytical Network Process and Fuzzy Logic. J. Environ. Plan. Manag. 2020, 63, 481–499. [Google Scholar] [CrossRef]
- Bachantourian, M.; Chaleplis, K.; Gemitzi, A.; Kalabokidis, K.; Palaiologou, P.; Vasilakos, C. Evaluation of MODIS, Climate Change Initiative, and CORINE Land Cover Products Based on a Ground Truth Dataset in a Mediterranean Landscape. Land 2022, 11, 1453. [Google Scholar] [CrossRef]
- Ntafis, S. Forestry Impementation; Aristotelio University of Thessaloniki, Ed.; Giachoudi-Giapouli: Thessaloniki, Greece, 1992. [Google Scholar]
- Dimitrakopoulos, A.P. Mediterranean Fuel Models and Potential Fire Behaviour in Greece. Int. J. Wildland Fire 2002, 11, 127–130. [Google Scholar] [CrossRef]
- Hellenic Repuplic Low No 86/1969. Available online: https://www.kodiko.gr/nomothesia/document/524554/n.d.-86-1969 (accessed on 11 December 2022).
- Raptis, D.; Kazaklis, A.; Kazana, V.; Stamatiou, C.; Koutsona, P. Assessment of Woody Mass during the Impelementation of Field Sampling Campaigns. 2016. Available online: https://fmproadmap.files.wordpress.com/2016/09/b3_report.pdf (accessed on 27 June 2022). (In Greek).
- Hellenic Cadastre Forest Maps in Regional Unit of Chalkidiki Forest Maps in Regional Unit of Chalkidiki. Available online: https://gis.ktimanet.gr/gis/forestsuspension (accessed on 11 December 2022).
- OPEKEPE Greek Payment Authority of Common Agricultural Policy. Available online: https://www.opekepe.gr/ (accessed on 15 May 2022).
- Hellenic Republic Law No 4164/2013. Available online: https://www.kodiko.gr/nomothesia/document/73667/nomos-4164-2013 (accessed on 10 December 2022).
- Hellenic Forest Service. Forest Road Network Maintenance and Fire Protection Project for the Peninsula of Kassandra Chalkidiki; Hellenic Forest Service: Thessaloniki, Greece, 2021. [Google Scholar]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; Gen. Tech. Rep. RMRS-GTR-153; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; p. 72. [Google Scholar]
- Anderson, H. Aids to Determining Fuel Models for Estimating Fire Behavior; General technical report INT; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1981. [Google Scholar]
- BehavePlus Software and Manuals. BehavePlus Software and Manuals. Available online: https://www.frames.gov/behaveplus/software-manuals (accessed on 15 May 2022).
- Finney, M.A. An Overview of FlamMap Fire Modeling Capabilities. In Fuels Management-How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; Proceedings RMRS-P-41; Andrews, P.L., Butler, B.W., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 41, pp. 213–220. [Google Scholar]
- Hellenic Cadastre Land Registry—Datasets. Available online: Https://Data.Ktimatologio.Gr/Dataset/D4c9eb3a-73c2-440a-B068-6b532ea459a9 (accessed on 15 May 2022).
- Athanasiou, M. Crown Fires in Mediterranean Pine Forests of Greece: Comparisons of Observed Fire Behaviour to CFIS Predictions and an Empirical Approach to Predict Their Behaviour. Proceeding of the 19th Hellenic Forestry Conference, Pieria, Greece, 29 September–2 October 2019; pp. 279–292. Available online: https://www.researchgate.net/publication/336242707 (accessed on 15 May 2022). (In Greek with English Abstract).
- Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Canopy Fuel Characteristics and Potential Crown Fire Behavior in Aleppo Pine (Pinus Halepensis Mill.) Forests. Ann. Sci. 2007, 64, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Finney, M.A. Fire Growth Using Minimum Travel Time Methods. Can. J. For. Res. 2002, 32, 1420–1424. [Google Scholar] [CrossRef] [Green Version]
- Ronald Eastman, J. IDRISI Kilimanjaro Guide to GIS and Image Processing; Clark Labs, Clark University: Worcester, MA, USA, 2003. [Google Scholar]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Ager, A.A.; Day, M.A.; Vogler, K. Production Possibility Frontiers and Socioecological Tradeoffs for Restoration of Fire Adapted Forests. J. Environ. Manag. 2016, 176, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Wildfire Spread, Hazard and Exposure Metric Raster Grids for Central Catalonia. Data Brief 2018, 17, 1–5. [Google Scholar] [CrossRef]
- Hans van der Kwast QGISHydro Webinar 2: Import Tables and Spatial Interpolation. Available online: https://www.youtube.com/watch?v=84cq3CmBwck (accessed on 11 December 2022).
- Pavlikakis, G.E.; Tsihrintzis, V.A. Ecosystem Management: A Review of a New Concept and Methodology. Water Resour. Manag. 2000, 14, 257–283. [Google Scholar] [CrossRef]
- Pavlikakis, G.; Tsihrintzis, V. A Quantitative Method for Accounting Human Opinion, Preferences and Perceptions in Ecosystem Management. J. Environ. Manag. 2003, 68, 193–205. [Google Scholar] [CrossRef]
- Ager, A.A.; Evers, C.R.; Day, M.A.; Alcasena, F.J.; Houtman, R. Planning for Future Fire: Scenario Analysis of an Accelerated Fuel Reduction Plan for the Western United States. Landsc. Urban Plan 2021, 215, 104212. [Google Scholar] [CrossRef]
- Hartsough, B.R.; Abrams, S.; Barbour, R.J.; Drews, E.S.; McIver, J.D.; Moghaddas, J.J.; Schwilk, D.W.; Stephens, S.L. The Economics of Alternative Fuel Reduction Treatments in Western United States Dry Forests: Financial and Policy Implications from the National Fire and Fire Surrogate Study. Policy Econ. 2008, 10, 344–354. [Google Scholar] [CrossRef]
- Hunter, M.E.; Taylor, M.H. The Economic Value of Fuel Treatments: A Review of the Recent Literature for Fuel Treatment Planning. Forests 2022, 13, 2042. [Google Scholar] [CrossRef]
- Hellenic Fire Service. Digital Data for Wildfires in Kassandra; Hellenic Fire Service: Kassandria, Greece, 2021. [Google Scholar]
- Wu, Z.; Hu, Y.; Wen, J.X.; Zhou, F.; Ye, X. A Review for Solar Panel Fire Accident Prevention in Large-Scale PV Applications. IEEE Access 2020, 8, 132466–132480. [Google Scholar] [CrossRef]
- Hume, A.M.; Chen, H.Y.H.; Taylor, A.R. Intensive Forest Harvesting Increases Susceptibility of Northern Forest Soils to Carbon, Nitrogen and Phosphorus Loss. J. Appl. Ecol. 2018, 55, 246–255. [Google Scholar] [CrossRef] [Green Version]
- James, J.; Page-Dumroese, D.; Busse, M.; Palik, B.; Zhang, J.; Eaton, B.; Slesak, R.; Tirocke, J.; Kwon, H. Effects of Forest Harvesting and Biomass Removal on Soil Carbon and Nitrogen: Two Complementary Meta-Analyses. Ecol. Manag. 2021, 485, 118935. [Google Scholar] [CrossRef]
- Goldammer, J.G.; Xanthopoulos, G.; Eftychidis, G.; Mallinis, G.; Mitsopoulos, I.; Dimitrakopoulos, A. Report of the Independent Committee Tasked to Analyze the Underlying Causes and Explore the Perspectives for the Future Management of Landscape Fires in Greece; Global Fire Monitoring Center: Geneva, Switzerland, 2019; Available online: https://gfmc.online/wp-content/uploads.FLFM-Greece-Committee-Report-07-February-2019.Pdf (accessed on 17 February 2023).
- Omi, P.N. Theory and Practice of Wildland Fuels Management. Curr. For. Rep. 2015, 1, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Keane, R.E. Wildland Fuel Fundamentals and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; ISBN 9783319090153. [Google Scholar]
- Benali, A.; Sá, A.C.L.; Pinho, J.; Fernandes, P.M.; Pereira, J.M.C. Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal. Forest 2021, 5, 522. [Google Scholar] [CrossRef]
LC Group | LC Classes | Fuel Model Code | Fuel Model Name | LC Class PERCENTAGE | Km2 | LC Group Percentage |
---|---|---|---|---|---|---|
Artificial surfaces | Urban/Suburban developed | 91 | NB1 | 2.91 | 10.19 | 9.61 |
WUI | 102 | GR2 | 6.70 | 23.51 | ||
Agricultural areas | Croplands | 101 | GR1 | 27.65 | 96.92 | 44.43 |
Olive groves | 161 | TU1 | 16.78 | 58.83 | ||
Forest | Shrublands/moderate load | 142 | SH2 | 0.64 | 2.24 | 43.96 |
Sclerophyllous vegetation/Mediterranean maquis | 147 | SH7 | 8.13 | 28.48 | ||
Coniferous forest/Treated | 161 | TU1 | 1.84 | 6.47 | ||
Coniferous forest/Dwarf conifer | 164 | TU4 | 9.10 | 31.90 | ||
Coniferous forest | 165 | TU5 | 23.96 | 83.99 | ||
Broad-leaved forest | 182 | TL2 | 0.29 | 1.00 | ||
Wetlands | Open water | 98 | NB8 | 0.66 | 2.32 | 0.66 |
Barren | Bare ground | 99 | NB9 | 1.34 | 4.69 | 1.34 |
Total | 100.00 | 350.55 | 100.00 |
Parameter | Value | Units |
---|---|---|
1 h fuel moisture (0–0.64 cm) | 3 | % |
10 h fuel moisture (0.65–2.5 cm) | 4 | % |
100 h fuel moisture (2.6–7.5 cm) | 5 | % |
Live herbaceous fuel moisture (LH) | 30 | % |
Live woody fuel moisture (LW) | 60 | % |
Wind direction | 90 | (0) |
Wind speed | 62 | Km × h−1 |
Foliar moisture content | 70 | % |
Spot Probability | 0.25 | |
Resolution of calculation | 30 | m |
Rule | Target Theme | Abbreviation | Rule Description |
---|---|---|---|
1 | Crown Base Height | CBH | SET CBH × 2 IF FM = (164 OR 165) AND CBH ≥ 3 AND CBH ≤ 6 |
2 | Crown Base Height | CBH | SET CBH × 3 IF FM = (164 OR 165) AND CBH ≤ 2.9 |
3 | Crown Base Height | CBH | SET CBH × 2 IF FM = (161) AND CBD ≥ 0.06 |
4 | Canopy Cover | CC | SET CC −20% IF CC ≥ 70% |
5 | Fuel Model | FM | SET FM = 141 IF FM = (142 OR 147) |
6 | Fuel Model | FM | SET FM = 161 IF FM = (164 OR 165) |
7 | Crow Bulk Density | CBD | CBD × 0.7 IF FM = (161 OR 164 OR 165 OR 182) AND CBD ≥ 0.12 |
SFM | PRN | PUD | FTH | Factor Weights | |
---|---|---|---|---|---|
SFM | 1.00 | 5.00 | 3.00 | 1.00 | 0.41 |
PRN | 0.20 | 1.00 | 0.20 | 0.20 | 0.07 |
PUD | 0.33 | 5.00 | 1.00 | 1.00 | 0.21 |
FTH | 1.00 | 5.00 | 1.00 | 1.00 | 0.31 |
SFM | PRN | PUD | FTH | |
---|---|---|---|---|
Scenario 1 | 0.25 | 0.25 | 0.25 | 0.25 |
Scenario 2 | 0.41 | 0.07 | 0.21 | 0.31 |
Suitability Class | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|
Area (km2) | Proportion % | Area (km2) | Proportion % | |
Low | 4.64 | 1.33 | 13.57 | 3.90 |
Medium | 61.62 | 17.71 | 85.44 | 24.56 |
High | 141.08 | 40.55 | 95.34 | 27.40 |
Very high | 140.62 | 40.41 | 153.46 | 44.14 |
Priority Class | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|
Area (km2) | Proportion % | Area (km2) | Proportion % | |
Excluded | 281.36 | 80.94 | 281.36 | 80.94 |
Low | 0.50 | 0.15 | 0.38 | 0.11 |
Medium | 18.03 | 5.19 | 6.17 | 1.78 |
High | 47.70 | 13.72 | 59.69 | 17.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachantourian, M.; Kalabokidis, K.; Palaiologou, P.; Chaleplis, K. Optimizing Fuel Treatments Allocation to Protect the Wildland–Urban Interface from Large-Scale Wildfires in Greece. Fire 2023, 6, 75. https://doi.org/10.3390/fire6020075
Bachantourian M, Kalabokidis K, Palaiologou P, Chaleplis K. Optimizing Fuel Treatments Allocation to Protect the Wildland–Urban Interface from Large-Scale Wildfires in Greece. Fire. 2023; 6(2):75. https://doi.org/10.3390/fire6020075
Chicago/Turabian StyleBachantourian, Margarita, Kostas Kalabokidis, Palaiologos Palaiologou, and Kyriakos Chaleplis. 2023. "Optimizing Fuel Treatments Allocation to Protect the Wildland–Urban Interface from Large-Scale Wildfires in Greece" Fire 6, no. 2: 75. https://doi.org/10.3390/fire6020075
APA StyleBachantourian, M., Kalabokidis, K., Palaiologou, P., & Chaleplis, K. (2023). Optimizing Fuel Treatments Allocation to Protect the Wildland–Urban Interface from Large-Scale Wildfires in Greece. Fire, 6(2), 75. https://doi.org/10.3390/fire6020075