Preface: Special Issue on Advances in the Measurement of Fuels and Fuel Properties
1. Introduction
2. Highlights
3. Future Direction
Acknowledgments
Conflicts of Interest
References
- Abatzoglou, J.; Kolden, C.; Williams, P.; Lutz, J.; Smith, A.M.S. Climatic influences on inter-annual variability in regional burn severity across western US forests. Int. J. Wildland Fire 2017, 26, 269–275. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Tinkham, W.T.; Roy, D.P.; Boschetti, L.; Kremens, R.L.; Kumar, S.S.; Sparks, A.M.; Falkowski, M.J. Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals. Geophys. Res. Lett. 2013, 40, 6298–6302. [Google Scholar] [CrossRef]
- Keane, R.E.; Dickinson, L.J. The Photoload Sampling Technique: Estimating Surface Fuel Loading from Downward Looking Photographs of Synthetic Fuelbeds; General Technical Report, RMRS-GTR-190; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Hoffman, C.M.; Canfield, J.M.; Vakili, E.; Reich, R.M. Using the photoload technique with double sampling to improve surface fuel loading estimates. Int. J. Wildland Fire 2015, 25, 224–228. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Hoffman, C.M.; Ex, S.; Battaglia, M.A.; Saralecos, J.D. Ponderosa pine forest restoration treatment longevity: Implications of regeneration on fire hazard. Forests 2016, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Ex, S.A.; Ziegler, J.P.; Tinkham, W.T.; Hoffman, C.M. Long-term impacts of fuel treatment placement with respect to forest cover type on potential fire behavior across a mountainous landscape. Forests 2019, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Kato, A.; Bright, B.C.; Loudermilk, E.L.; Hawley, C.; Restaino, J.C.; Ottmar, R.D.; Prata, G.A.; Cabo, C.; Prichard, S.J.; et al. Towards spatially explicit quantification of pre- and postfire fuels and fuel consumption from traditional and point cloud measurements. For. Sci. 2020, 66, 428–442. [Google Scholar] [CrossRef]
- McCarley, T.R.; Hudak, A.T.; Restaino, J.C.; Billmire, M.; French, N.H.F.; Ottmar, R.D.; Hass, B.; Zarzana, K.; Goulden, T.; Volkamer, R. A comparison of multitemporal airborne laser scanning data and the fuel characteristics classification system for estimating fuel load and consumption. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006733. [Google Scholar] [CrossRef]
- Keane, R.E.; Drury, S.A.; Karau, E.C.; Hessburg, P.F.; Reynolds, K.M. A method for mapping fire hazard and risk across multiple scales and its application in fire management. Ecol. Model. 2010, 221, 2–18. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Sieg, C.H.; Linn, R.R.; Mell, W.; Parsons, R.A.; Ziegler, J.P.; Hiers, J.K. Advancing the science of wildland fire dynamics using process-based models. Fire 2018, 1, 32. [Google Scholar] [CrossRef] [Green Version]
- Hiers, Q.A.; Loudermilk, E.L.; Hawley, C.M.; Hiers, J.K.; Pokswinski, S.; Hoffman, C.M.; O’Brien, J.J. Non-destructive fuel volume measurements can estimate fine-scale biomass across surface fuel types in a frequently burned ecosystem. Fire 2021, 4, 36. [Google Scholar] [CrossRef]
- Wallace, L.; Hillman, S.; Hally, B.; Taneja, R.; White, A.; McGlade, J. Terrestrial laser scanning: An operational tool for fuel hazard mapping? Fire 2022, 5, 85. [Google Scholar] [CrossRef]
- Marsden-Smedley, J.B.; Anderson, W.R.; Pyrke, A.F. Fuel in Tasmanian dry eucalypt forests: Prediction of fuel load and fuel hazard rating from fuel age. Fire 2022, 5, 103. [Google Scholar] [CrossRef]
- Seielstad, C.A.; Queen, L.P. Using Airborne Laser Altimetry to Determine Fuel Models for Estimating Fire Behavior. J. For. 2003, 101, 10–15. [Google Scholar] [CrossRef]
- Peterson, B.; Nelson, K.J.; Seielstad, C.; Jolly, E.M.; Parson, R. Automated integration of lidar into the LANDFIRE product suite. Remote Sens. Lett. 2015, 6, 247–256. [Google Scholar] [CrossRef]
- Reutebuch, S.E.; Anderson, H.-E.; McGaqughey, R.J. Light Detection and Ranging (LIDAR): An Emerging Tool for Multiple Resource Inventory. J. For. 2005, 103, 286–292. [Google Scholar] [CrossRef]
- Evans, J.; Hudak, A.; Faux, R.; Smith, A.M.S. Discrete return lidar in natural resources: Recommendations for project planning, data processing, and deliverables. Remote Sens. 2009, 1, 776–794. [Google Scholar] [CrossRef] [Green Version]
- Swayze, N.P.; Tinkham, W.T.; Creasy, M.B.; Vogeler, J.C.; Hudak, A.T.; Hoffman, C.M. Influence of UAS flight altitude and speed on aboveground biomass prediction. Remote Sens. 2022, 14, 1989. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Valbuena, R.; Cardil, A.; Mohan, M.; de Almedia, D.R.A.; Broadbent, E.N.; Zambrano, A.M.A.; Wilkinson, B.; et al. Treetop: A Shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists. Methods Ecol. Evol. 2022, 13, 1164–1176. [Google Scholar] [CrossRef]
- Hudak, A.T.; Fekety, P.A.; Kan, V.R.; Kennedy, R.E.; Filippelli, S.K.; Falkowski, M.J.; Tinkham, W.T.; Smith, A.M.S.; Crookston, N.L.; Domnke, G.M.; et al. A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA. Environ. Res. Lett. 2020, 15, 095003. [Google Scholar] [CrossRef]
- Swayze, N.P.; Tinkham, W.T. Application of Unmanned Aerial System Structure from Motion Point Cloud Detected Tree Heights and stem diameters to model missing stem diameters. MethodsX 2022, 9, 101729. [Google Scholar] [CrossRef]
- Leite, R.V.; Silva, C.A.; Broadbent, E.N.; do Amaral, C.H.; Liesenberg, V.; de Almeida, D.R.A.; Mohan, M.; Godinho, S.; Cardil, A.; Hamamura, C.; et al. Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sens. Environ. 2022, 268, 112764. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Furlaud, J.M.; Porter, M.; Williamson, G.J. The fuel moisture index based on understory hygrochron iButton humidity and temperature measurements reliably predicts fine fuel moisture content in Tasmanian eucalyptus forests. Fire 2022, 5, 130. [Google Scholar] [CrossRef]
- dos Santos, J.F.; Kovalsyki, B.; Ferreira, T.S.; Batista, A.C.; Tetto, A.F. Adjustment of the grass fuel moisture code for grasslands in southern Brazil. Fire 2022, 5, 209. [Google Scholar] [CrossRef]
- Zhang, Y. Indoor experiments on the moisture dynamic response to wind velocity for fuelbeds with different degrees of compactness. Fire 2023, 6, 90. [Google Scholar] [CrossRef]
- Melnik, O.M.; Paskaluk, S.A.; Ackerman, M.Y.; Melnik, K.O.; Thompson, D.K.; McAllister, S.S.; Flannigan, M.D. New in-flame flammability testing method applied to monitor seasonal changes in live fuel. Fire 2022, 5, 1. [Google Scholar] [CrossRef]
- Burton, J.E.; Filkov, A.I.; Pickering, B.J.; Penman, T.D.; Cawson, J.G. Quantifying litter bed ignitability: Comparison of a laboratory and field method. Fire 2023, 6, 24. [Google Scholar] [CrossRef]
- Kreye, J.K.; Brewer, N.W.; Morgan, P.; Varner, J.M.; Smith, A.M.S.; Hoffman, C.M.; Ottmar, R.D. Fire behavior in masticated fuels: A review. For. Ecol. Manag. 2014, 314, 193–207. [Google Scholar] [CrossRef]
- Matvienko, O.; Kasymov, D.; Loboda, E.; Lutsenko, A.; Daneyko, O. Modeling of wood surface ignition by wildland firebrands. Fire 2022, 5, 38. [Google Scholar] [CrossRef]
- Viegas, D.X.; Oliveira, R.; Almeida, M.; Kim, D. Ignition of fuel beds by cigarettes: A conceptual model to assess fuel bed moisture content and wind velocity effect on the ignition time and probability. Fire 2021, 4, 35. [Google Scholar] [CrossRef]
- Cao, Y.; Boruff, B.J.; McNeill, I.M. Is a picture worth a thousand words? Evaluating the effectiveness of maps for delivering wildfire warning information. Int. J. Disaster Risk Reduct. 2016, 19, 179–196. [Google Scholar] [CrossRef]
- Brown, T.P.; Inbar, A.; Duff, T.J.; Burton, J.; Noske, P.J.; Lane, P.N.J.; Sheridan, G.J. Forest structure drives fuel moisture response across alternative forest states. Fire 2021, 4, 48. [Google Scholar] [CrossRef]
- Pickering, B.J.; Burton, J.E.; Penman, T.D.; Grant, M.A.; Cawson, J.G. Long-term response of fuel to mechanical mastication in south-eastern Australia. Fire 2022, 5, 76. [Google Scholar] [CrossRef]
- Gannon, B.; Wei, Y.; Belval, E.; Young, J.; Thompson, M.; O’Connor, C.; Calkin, D.; Dunn, C. A quantitative analysis of fuel break effectiveness drivers in Southern California National Forest. Fire 2023, 6, 104. [Google Scholar] [CrossRef]
- Sabrabadi, M.T.; Innocente, M.S. Forest fuel type classification using cartographic data for prediction of wildfire behavior. Fire 2023, 6, 76. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For. Ecol. Manag. 2005, 217, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Aragoneses, E.; Chuvieco, E. Generation and mapping of fuel types for fire risk assessment. Fire 2021, 4, 59. [Google Scholar] [CrossRef]
- Alipour, M.; La Puma, I.; Picotte, J.; Shamsaei, K.; Rowell, E.; Watts, A.; Kosovic, B.; Ebrahimian, H.; Taciroglu, E. A multimodal data fusion and deep learning framework for large-scale wildfire surface fuel mapping. Fire 2023, 6, 36. [Google Scholar] [CrossRef]
- Lister, A.J.; Andersen, H.; Frescino, T.; Gatziolis, D.; Healy, S.; Heath, L.S.; Liknes, G.C.; McRoberts, R.; Moisen, G.G.; Nelson, M.; et al. Use of remote sensing data to improve the efficiency of national forest inventories: A case study from the united states national forest inventory. Forests 2020, 11, 1364. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Smith, A.M.S.; Hudak, A.T.; Gessler, P.E.; Vierling, L.A.; Crookston, N.L. Automated estimation of individual conifer tree height and crown diameter via Two-dimensional spatial wavelet analysis of lidar data. Can. J. Remote Sens. 2006, 32, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Evans, J.S.; Robinson, A.P.; Steele, C.M. A cross-comparison of field, spectral, and lidar estimates of forest canopy cover. Can. J. Remote Sens. 2009, 35, 447–459. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Smith, A.M.S.; Affleck, D.; Saralecos, J.D.; Falkowski, M.J.; Hoffman, C.M.; Hudak, A.T.; Wulder, M.A. Development of height-volume relationships in second growth Abies grandis for use with aerial LiDAR. Can. J. Remote Sens. 2016, 42, 400–410. [Google Scholar] [CrossRef]
- Sparks, A.M.; Corrao, M.V.; Smith, A.M.S. Cross-comparison of Seven Individual Tree Detection Methods using Low and High Pulse Density Airborne Laser Scanning Data. Remote Sens. 2022, 14, 3480. [Google Scholar] [CrossRef]
- Fang, R.; Strimbu, B.M. Comparison of mature Douglas-firs’ crown structures developed with two quantitative structural models using TLS point clouds for neighboring trees in a natural regime stand. Remote Sens. 2019, 11, 1661. [Google Scholar] [CrossRef] [Green Version]
- Garms, C.G.; Strimbu, B.M. Impacts of stem lean on estimation of Douglas-fir (Pseudotsuga menziesii) diameter and volume using mobile lidar scans. Can. J. For. Res. 2021, 51, 1117–1130. [Google Scholar] [CrossRef]
- Creasy, M.B.; Tinkham, W.T.; Hoffman, C.M.; Vogeler, J.C. Potential for individual tree monitoring in ponderosa pine-dominated forests using unmanned aerial system structure from motion point clouds. Can. J. For. Res. 2021, 51, 1093–1105. [Google Scholar] [CrossRef]
- Swayze, N.P.; Tinkham, W.T.; Vogeler, J.C.; Hudak, A.T. Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density. Remote Sens. Environ. 2021, 263, 112540. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Swayze, N.P.; Hoffman, C.M.; Lad, L.E.; Battaglia, M.A. Modeling the missing DBHs: Influence of model form on UAV DBH characterization. Forests 2022, 13, 2077. [Google Scholar] [CrossRef]
- Hanan, E.J.; Kennedy, M.C.; Ren, J.; Johnson, M.C.; Smith, A.M.S. Missing climate feedbacks in fire models: Limitations and uncertainties in fuel loadings and the role of decomposition in fine fuel succession. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002818. [Google Scholar] [CrossRef]
- Shuman, J.K.; Balch, J.K.; Barnes, R.T.; Higuera, P.E.; Roos, C.I.; Schwilk, D.W.; Stavros, E.N.; Banerjee, T.; Bela, M.; Bendix, J.; et al. Reimagine fire science for the Anthropocene. PNAS Nexus 2022, 1, pgac115. [Google Scholar] [CrossRef]
- Rocha, K.D.; Silva, C.A.; Cosenza, D.N.; Mohan, M.; Klauberg, C.; Schlickmann, M.B.; Xia, J.; Leite, R.V.; Almeida, D.R.A.D.; Atkins, J.W.; et al. Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus palustris Mill.) Forest Ecosystem. Remote Sens. 2023, 15, 1002. [Google Scholar] [CrossRef]
- Kremens, R.; Smith, A.M.S.; Dickinson, M. Fire Metrology: Current and future directions in physics-based measurements. Fire Ecol. 2010, 6, 13–35. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.P.; Freeborn, P.; Boschetti, L.; Justice, C.O.; Ichoku, C.M.; Schroeder, W.; Davies, D.K.; et al. Satellite Remote Sensing of Active Fires: History and Current Status, Applications and Future Requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinkham, W.T.; Lad, L.E.; Smith, A.M.S. Preface: Special Issue on Advances in the Measurement of Fuels and Fuel Properties. Fire 2023, 6, 108. https://doi.org/10.3390/fire6030108
Tinkham WT, Lad LE, Smith AMS. Preface: Special Issue on Advances in the Measurement of Fuels and Fuel Properties. Fire. 2023; 6(3):108. https://doi.org/10.3390/fire6030108
Chicago/Turabian StyleTinkham, Wade T., Lauren E. Lad, and Alistair M. S. Smith. 2023. "Preface: Special Issue on Advances in the Measurement of Fuels and Fuel Properties" Fire 6, no. 3: 108. https://doi.org/10.3390/fire6030108
APA StyleTinkham, W. T., Lad, L. E., & Smith, A. M. S. (2023). Preface: Special Issue on Advances in the Measurement of Fuels and Fuel Properties. Fire, 6(3), 108. https://doi.org/10.3390/fire6030108