Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pellet Processing
2.2. Physicochemical Pellet Characterization
2.3. Combustion and Emission Monitoring
2.4. Statistical Analysis
3. Results and Discussion
3.1. Biomass Characterization
3.2. Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luque, R.; Herrero-Davila, L.; Campelo, J.M.; Clark, J.H.; Hidalgo, J.M.; Luna, D.; Marinas, J.M.; Romero, A.A. Biofuels: A Technological Perspective. Energy Environ. Sci. 2008, 1, 542–564. [Google Scholar] [CrossRef]
- Verma, V.K.; Bram, S.; De Ruyck, J. Small Scale Biomass Heating Systems: Standards, Quality Labelling and Market Driving Factors—An EU Outlook. Biomass Bioenergy 2009, 33, 1393–1402. [Google Scholar] [CrossRef]
- Kaliyan, N.; Vance Morey, R. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Labbé, R.; Paczkowski, S.; Knappe, V.; Russ, M.; Wöhler, M.; Pelz, S. Effect of Feedstock Particle Size Distribution and Feedstock Moisture Content on Pellet Production Efficiency, Pellet Quality, Transport and Combustion Emissions. Fuel 2020, 263, 116662. [Google Scholar] [CrossRef]
- Thrän, D.; Peetz, D.; Schaubach, K.; Trømborg, E.; Pellini, A.; Lamers, P.; Richard Hess, J.; Schipfer, F.; Hektor, B.; Olsson, O.; et al. Global Wood Pellet Industry and Trade Study 2017. Available online: https://www.researchgate.net/profile/Kay-Schaubach/publication/322505965_Global_Wood_Pellet_Industry_and_Trade_Study_2017/links/5a5cc10ea6fdcc68fa96df32/Global-Wood-Pellet-Industry-and-Trade-Study-2017.pdf (accessed on 6 July 2023).
- Palma, A.; Paris, E.; Carnevale, M.; Vincenti, B.; Perilli, M.; Guerriero, E.; Cerasa, M.; Proto, A.R.; Papandrea, S.F.; Bonofiglio, R.; et al. Biomass combustion: Evaluation of pops emissions (VOC, PAH, PCB, PCDD/F) from three different biomass prunings (olive, citrus and grapevine). Atmosphere 2022, 13, 1665. [Google Scholar] [CrossRef]
- Uddin, S.N.; Barreto, L. Biomass-Fired Cogeneration Systems with CO2 Capture and Storage. Renew Energy 2007, 32, 1006–1019. [Google Scholar] [CrossRef]
- Thomas, M.; Van Zuilichem, D.J.; Van Der Poel, A.F.B. Physical Quality of Pelleted Animal Feed. 2. Contribution of Processes and Its Conditions. Anim. Feed Sci. Technol. 1997, 64, 173–192. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. A Study of Bonding and Failure Mechanisms in Fuel Pellets from Different Biomass Resources. Biomass Bioenergy 2011, 35, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, E.F.; Kristensen, J.K. Development and Test of Small-Scale Batch-Fired Straw Boilers in Denmark. Biomass Bioenergy 2004, 26, 561–569. [Google Scholar] [CrossRef]
- Dias, J.; Costa, M.; Azevedo, J.L.T. Test of a Small Domestic Boiler Using Different Pellets. Biomass Bioenergy 2004, 27, 531–539. [Google Scholar] [CrossRef]
- Vicente, E.D.; Vicente, A.M.; Evtyugina, M.; Tarelho, L.A.C.; Almeida, S.M.; Alves, C. Emissions from Residential Combustion of Certified and Uncertified Pellets. Renew Energy 2020, 161, 1059–1071. [Google Scholar] [CrossRef]
- González, J.; González-García, C.; Ramiro, A.; González, J.; Sabio, E.; Gañán, J.; Rodríguez, M. Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 2004, 27, 145–154. [Google Scholar] [CrossRef]
- Proto, A.R.; Benalia, S.; Papandrea, S.; Bernardi, B.; Bonofiglio, R.; Leuzzi, A.; Zimbalatti, G.; Tonolo, A.; Pari, L.; Gallucci, F. Harvesting citrus and olive pruning residues for energy use in Southern Italy. In Proceedings of the European Biomass Conference and Exhibition Proceedings, Lisbon, Portugal, 27–30 May 2019; pp. 393–396. [Google Scholar]
- Kallis, K.X.; Pellegrini Susini, G.A.; Oakey, J.E. A Comparison between Miscanthus and Bioethanol Waste Pellets and Their Performance in a Downdraft Gasifier. Appl. Energy 2013, 101, 333–340. [Google Scholar] [CrossRef]
- Fusi, A.; Bacenetti, J.; Proto, A.R.; Tedesco, D.; Pessina, D.; Facchinetti, D. Pellet production from miscanthus: Energy and environmental assessment. Energies 2021, 14, 73. [Google Scholar] [CrossRef]
- Greinert, A.; Mrówczyńska, M.; Grech, R.; Szefner, W. The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces. Energies 2020, 13, 463. [Google Scholar] [CrossRef] [Green Version]
- Miranda, T.; Román, S.; Montero, I.; Nogales-Delgado, S.; Arranz, J.I.; Rojas, C.V.; González, J.F. Study of the emissions and kinetic parameters during combustion of grape pomace: Dilution as an effective way to reduce pollution. Fuel Process. Technol. 2012, 103, 160–165. [Google Scholar] [CrossRef]
- Verma, V.K.; Bram, S.; Delattin, F.; Laha, P.; Vandendael, I.; Hubin, A.; De Ruyck, J. Agro-Pellets for Domestic Heating Boilers: Standard Laboratory and Real Life Performance. Appl. Energy 2012, 90, 17–23. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of Agricultural Residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Öhman, M.; Boman, C.; Hedman, H.; Nordin, A.; Boström, D. Slagging Tendencies of Wood Pellet Ash during Combustion in Residential Pellet Burners. Biomass Bioenergy 2004, 27, 585–596. [Google Scholar] [CrossRef]
- Andreasen, P.; Larsen, M.G. Straw Pellets as Fuel in Biomass Combustion Units. In Proceedings of the 9th European Bioenergy Conference, Copenhagen, Denmark, 24–27 June 1996. [Google Scholar]
- Burvall, J. Influence of Harvest Time and Soil Type on Fuel Quality in Reed Canary Grass (Phalaris arundinacea L.). Biomass Bioenergy 1997, 12, 149–154. [Google Scholar] [CrossRef]
- Paulrud, S.; Nilsson, C. Briquetting and Combustion of Spring-Harvested Reed Canary-Grass: Effect of Fuel Composition. Biomass Bioenergy 2001, 20, 25–35. [Google Scholar] [CrossRef]
- Winter, F.; Wartha, C.; Hofbauer, H. NO and N2O Formation during the Combustion of Wood, Straw, Malt Waste and Peat. Bioresour. Technol. 1999, 70, 39–49. [Google Scholar] [CrossRef]
- Thomson, H.; Liddell, C. The Suitability of Wood Pellet Heating for Domestic Households: A Review of Literature. Renew. Sustain. Energy Rev. 2015, 42, 1362–1369. [Google Scholar] [CrossRef]
- Venturini, E.; Vassura, I.; Agostini, F.; Pizzi, A.; Toscano, G.; Passarini, F. Effect of Fuel Quality Classes on the Emissions of a Residential Wood Pellet Stove. Fuel 2018, 211, 269–277. [Google Scholar] [CrossRef]
- Wiinikka, H.; Gebart, R. Critical Parameters for Particle Emissions in Small-Scale Fixed-Bed Combustion of Wood Pellets. Energy Fuels 2004, 18, 897–907. [Google Scholar] [CrossRef]
- Klason, T.; Bai, X.S. Computational Study of the Combustion Process and NO Formation in a Small-Scale Wood Pellet Furnace. Fuel 2007, 86, 1465–1474. [Google Scholar] [CrossRef]
- Lamberg, H.; Tissari, J.; Jokiniemi, J.; Sippula, O. Fine Particle and Gaseous Emissions from a Small-Scale Boiler Fueled by Pellets of Various Raw Materials. Energy Fuels 2013, 27, 7044–7053. [Google Scholar] [CrossRef]
- Nižetić, S.; Papadopoulos, A.; Radica, G.; Zanki, V.; Arıcı, M. Using Pellet Fuels for Residential Heating: A Field Study on Its Efficiency and the Users’ Satisfaction. Energy Build 2019, 184, 193–204. [Google Scholar] [CrossRef]
- Verma, V.K.; Bram, S.; Vandendael, I.; Laha, P.; Hubin, A.; De Ruyck, J. Residential Pellet Boilers in Belgium: Standard Laboratory and Real Life Performance with Respect to European Standard and Quality Labels. Appl. Energy 2011, 88, 2628–2634. [Google Scholar] [CrossRef]
- Wiinikka, H.; Gebart, R.; Boman, C.; Boström, D.; Öhman, M. Influence of Fuel Ash Composition on High Temperature Aerosol Formation in Fixed Bed Combustion of Woody Biomass Pellets. Fuel 2007, 86, 181–193. [Google Scholar] [CrossRef]
- Win, K.M.; Persson, T. Emissions from Residential Wood Pellet Boilers and Stove Characterized into Start-up, Steady Operation, and Stop Emissions. Energy Fuels 2014, 28, 2496–2505. [Google Scholar] [CrossRef]
- Wöhler, M.; Jaeger, D.; Reichert, G.; Schmidl, C.; Pelz, S.K. Influence of Pellet Length on Performance of Pellet Room Heaters under Real Life Operation Conditions. Renew Energy 2017, 105, 66–75. [Google Scholar] [CrossRef]
- Samuelsson, R.; Larsson, S.H.; Thyrel, M.; Lestander, T.A. Moisture Content and Storage Time Influence the Binding Mechanisms in Biofuel Wood Pellets. Appl. Energy 2012, 99, 109–115. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gómez, M.; Fernández, M.; Esteban, L.S.; Carrasco, J.E. Study on the Effects of Raw Materials Composition and Pelletization Conditions on the Quality and Properties of Pellets Obtained from Different Woody and Non Woody Biomasses. Fuel 2015, 139, 629–636. [Google Scholar] [CrossRef]
- Proto, A.R.; Palma, A.; Paris, E.; Papandrea, S.F.; Vincenti, B.; Carnevale, M.; Guerriero, E.; Bonofiglio, R.; Gallucci, F. Assessment of Wood Chip Combustion and Emission Behavior of Different Agricultural Biomasses. Fuel 2021, 289, 119758. [Google Scholar] [CrossRef]
- Adamovics, A.; Platace, R.; Gulbe, I.; Ivanovs, S. The content of carbon and hydrogen in grass biomass and its influence on heating value. Eng. Rural. Dev. 2018, 17, 1277–1281. [Google Scholar] [CrossRef]
- Arvelakis, S.; Vourliotis, P.; Kakaras, E.; Koukios, E.G. Effect of Leaching on the Ash Behavior of Wheat Straw and Olive Residue during Fluidized Bed Combustion. Biomass Bioenergy 2001, 20, 459–470. [Google Scholar] [CrossRef]
- Quaak, P.; Knoef, H.; Sfassen, H. Energy from Biomass. A Review of Combustion and Gasification Technologies; World Bank Technical Papers; World Bank Publications: Washington, DC, USA, 1999. [Google Scholar]
- Spliethoff, H.; Scheurer, W.; Hein, K.R.G. Effect of Co-Combustion of Sewage Sludge and Biomass on Emissions and Heavy Metals Behaviour. Process Saf. Environ. Prot. 2000, 78, 33–39. [Google Scholar] [CrossRef]
- Glarborg, P.; Jensen, A.D.; Johnsson, J.E. Fuel Nitrogen Conversion in Solid Fuel Fired Systems. Prog. Energy Combust. Sci. 2003, 29, 89–113. [Google Scholar] [CrossRef]
- Glarborg, P.; Miller, J.A.; Ruscic, B.; Klippenstein, S.J. Modeling Nitrogen Chemistry in Combustion. Prog. Energy Combust. Sci. 2018, 67, 31–68. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, M.F.; Marcu, V.M.; Iordache, E.; Zimbalatti, G.; Proto, A.R.; Borz, S.A. Performance of forwarding operations in biomass recovery from dismantled apple orchards. Small-Scale For. 2022, 21, 349–367. [Google Scholar] [CrossRef]
Biomass | Mean | Std. Dev. | |
---|---|---|---|
O-p | Durability % | 94.5 | 1.17 |
D mm | 6.25 | 0.11 | |
L mm | 19.0 | 2.34 | |
C-p | Durability % | 93.3 | 1.20 |
D mm | 6.221 | 0.01 | |
L mm | 18.56 | 1.97 | |
OC-p | Durability % | 90.6 | 0.982 |
D mm | 5.852 | 0.077 | |
L mm | 17.94 | 2.91 |
Parameter | Unit | Value |
---|---|---|
Stack Diameter | [m] | 0.25 |
Stack Area | [m2] | 0.05 |
Flue Density | [kg/Nm3] | 1.29 |
Flue Velocity | [m/s] | 2.05 |
Stack Temperature | [°C] | 201.1 |
Stack Pressure | [kPa] | 102.2 |
Velocity at Nozzle | [m/s] | 1.850 |
Filter Box Temperature | [°C] | 137.8 |
Environment Pressure | [kPa] | 102.4 |
Biomass | Moisture [%] | Ash [%] | C [%] | H [%] | N [%] | LHV [MJ/kg] |
---|---|---|---|---|---|---|
O-p | 6.67 ± 0.09 | 1.94 ± 0.05 | 40.44 ± 1.38 | 1.86 ± 0.03 | 1.37 ± 0.25 | 19.18 ± 0.04 |
C-p | 7.36 ± 0.78 | 4.57 ± 0.18 | 35.76 ± 1.05 | 2.29 ± 0.25 | 3.64 ± 0.56 | 16.94 ± 0.08 |
OC-p | 5.30 ± 0.26 | 2.75 ± 0.15 | 37.61 ± 0.54 | 1.45 ± 0.32 | 2.77 ± 0.81 | 17.85 ± 0.03 |
[mg/kg] | O-p | C-p | CO-p |
---|---|---|---|
Li | 1.04 | 0.85 | 0.58 |
B | 17.00 | 13.76 | 14.04 |
Na | 320.14 | 247.24 | 267.92 |
Mg | 755.40 | 734.20 | 711.95 |
Al | 372.82 | 518.31 | 241.63 |
K | 7005.92 | 2648.86 | 5400.85 |
Ca | 1079.85 | 3223.64 | 1591.99 |
Cr | 1.14 | 0.80 | 0.58 |
Mn | 19.83 | 16.24 | 11.83 |
Fe | 584.96 | 549.17 | 319.61 |
Co | 0.21 | 0.24 | 0.30 |
Ni | 1.57 | 0.65 | 0.64 |
Cu | 29.78 | 4.98 | 18.84 |
Zn | 32.98 | 12.90 | 18.60 |
Cd | 0.07 | 0.02 | 0.04 |
Pb | 3.66 | 0.32 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, A.; Gallucci, F.; Papandrea, S.; Carnevale, M.; Paris, E.; Vincenti, B.; Salerno, M.; Di Stefano, V.; Proto, A.R. Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler. Fire 2023, 6, 288. https://doi.org/10.3390/fire6080288
Palma A, Gallucci F, Papandrea S, Carnevale M, Paris E, Vincenti B, Salerno M, Di Stefano V, Proto AR. Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler. Fire. 2023; 6(8):288. https://doi.org/10.3390/fire6080288
Chicago/Turabian StylePalma, Adriano, Francesco Gallucci, Salvatore Papandrea, Monica Carnevale, Enrico Paris, Beatrice Vincenti, Mariangela Salerno, Valerio Di Stefano, and Andrea Rosario Proto. 2023. "Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler" Fire 6, no. 8: 288. https://doi.org/10.3390/fire6080288
APA StylePalma, A., Gallucci, F., Papandrea, S., Carnevale, M., Paris, E., Vincenti, B., Salerno, M., Di Stefano, V., & Proto, A. R. (2023). Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler. Fire, 6(8), 288. https://doi.org/10.3390/fire6080288