All Lives Matter: A Model for Resource Allocation to Fire Departments in Portugal
Abstract
:1. Introduction
Portuguese Law for RAFD
2. The Literature Review
Paper | ReTyp | FDPA Model | RAFD Model | EqM | GIS | Sim | SoEco | SpTe | Case Study |
---|---|---|---|---|---|---|---|---|---|
Schilling et al., 1979 [31] | Veh | - | LP | - | - | - | Yes | Yes | US |
Marianov et al., 1992 [32] | Veh | - | LP | - | - | - | Yes | Yes | - |
Melolidakis, 1993 [29] | Veh | - | S–S index | Yes | - | - | - | - | Greece |
Jayaraman et al., 1995 [33] | Veh | - | LP | - | - | - | - | Yes | - |
Revelle et al., 1995 [34] | Veh | - | LP | - | - | - | Yes | Yes | - |
Athanassopoulos, 1998 [35] | FF and Veh | DEA | TABRA | Yes | - | - | Yes | - | UK |
Peace, 2001 [12] | Veh | - | Risk-based | - | - | - | Yes | Yes | UK |
Araz et al., 2007 [36] | Veh | - | LP | - | - | - | Yes | Yes | - |
Lan et al., 2007 [2] | FF | DEA | MSRAA | - | - | - | - | - | Taiwan |
Huang et al., 2007 [28] | Veh | - | LP | - | Yes | Yes | - | Yes | Singapore |
Cheu et al., 2008 [37] | Veh | - | LP | - | - | - | - | Yes | Singapore |
Fang et al., 2008 [30] | Bud and FF | DEA | DEA | - | - | - | Yes | - | China |
Lan et al., 2009 [38] | FF | DEA | MSRAA | - | - | - | - | - | Taiwan |
Cheu et al., 2010 [39] | Veh | - | LP | - | - | - | - | Yes | US |
Lan et al., 2011 [11] | FF | DEA | TEBSA | - | - | - | Yes | - | Taiwan |
Chevalier et al., 2012 [40] | FF and Veh | - | LP | Yes | Yes | - | Yes | Yes | Belgium |
Chalfant et al., 2016 [41] | Veh | - | Distance-based | - | - | - | Yes | Yes | US |
Perez et al., 2016 [42] | Veh | - | LP | - | Yes | - | - | Yes | Chile |
Wang et al., 2016 [43] | Veh | - | LP | - | - | - | - | Yes | China |
Perez et al., 2016 [44] | Veh | - | LP | - | - | - | - | Yes | Chile |
Alavi et al., 2018 [7] | Veh | - | LP | - | - | - | - | - | Iran |
Yeboah & Park, 2018 [18] | Veh | - | Risk-based | - | - | - | - | Yes | Canada |
Kumar et al., 2019 [14] | Veh | - | LP | - | - | - | Yes | Yes | India |
Behrendt et al., 2019 [15] | Bud | - | LP | Yes | - | - | Yes | - | US |
Kovalenko, 2019 [17] | Veh | - | LP | - | - | - | Yes | Yes | Ukraine |
Lim et al., 2020 [16] | Budget | DEA | DEA | - | - | - | - | - | Republic of Korea |
Maqbool et al., 2020 [45] | Veh | - | LP | - | Yes | Yes | - | Yes | Pakistan |
Kumar et al., 2020 [46] | Veh | - | LP | - | - | - | Yes | Yes | India |
Rodriguez et al., 2020 [10] | Veh | - | LP | - | Yes | - | Yes | Yes | Chile |
Liu et al., 2021 [47] | Veh | - | Risk-based | - | Yes | - | - | Yes | China |
Ghasemi et al., 2021 [48] | Veh | - | Simulation | - | - | Yes | - | Yes | Iran |
Hajipour et al., 2022 [49] | Veh | - | LP | - | - | - | - | Yes | - |
Ming et al., 2022 [13] | Veh | - | LP | - | - | Yes | - | Yes | China |
Rodriguez et al., 2023 [50] | Veh | - | LP | - | Yes | Yes | Yes | Yes | Chile |
Liu et al., 2023 [51] | Veh | - | Time-based | - | Yes | - | - | Yes | China |
This Paper | Bud | DEA | LP | Yes | Yes | Yes | Yes | Yes | Portugal |
3. Research Methodology
3.1. First Stage: Data Gathering
- Category 1, response and operation time data: The duration values in the ANEPC dataset were the vehicle’s idle time, not the incident response time. In other words, the provided duration was the time between a vehicle’s departure from the station and its return, not until its arrival at the incident location. Therefore, an ABM has been used to simulate the interaction between PT-FDs, vehicles, and fire incidents to find the response time based on geographical data. Further details about the ABM are provided within the analysis stage section;
- Category 2, PT census and economic data: the public database of the National Institute of Statistics of Portugal [52] was utilized for accessing Portuguese data, including the Gross Reported Income (GRI), and population at district level in 2020, and the public database of the World Bank [53] for the Gross National Income (GNI) per capita of US and PT;
- Categories 3 and 4, PT FDs, incidents, and spatiotemporal data: The ANEPC played a crucial role in providing these two categories of information regarding PT-FDs and 72,176 urban incidents over the years 2012–2020. Considering the RAFD framework [9], the majority of the required data for RAFD analysis were included in the ANEPC’s datasets, which are the FD’s number of firefighters, vehicles, locations, annual governmental budget, covered area, and incidents’ times, locations, durations, and number and severity of injuries. However, the fire cost, which is one of the important metrics for the RAFD [9,15], was not available in the ANEPC’s databases at the time of this research.
3.2. Second Stage: Data Preprocessing
3.3. Third Stage: Analysis
- The ABM for simulating the interactions between FDs and incidents and gathering the response time and suppression operation durations;
- The Data Envelopment Analysis (DEA) for conducting the PT-FDPA analysis and calculating the efficiencies of PT-FDs;
- The MILP for finding the optimized version of the RA that minimizes the cost of fire and improves the performance of PT-FDs;
- The ANEPC’s experts and decision-makers had the responsibility of validating and confirming the reliability of the analytical process and findings of this study. This expert group consisted of the former director of the ANEPC and the current dean of Portugal’s National School of Firefighters, the ANEPC’s national senior chief technician, and two chief commanders of FDs.
3.3.1. Agent-Based Modeling (ABM)
3.3.2. Data Envelopment Analysis (DEA)
3.3.3. Mixed-Integer Linear Programming (MILP)
- n is the number of FDs that are evaluated with respect to one another;
- t is the reference year;
- V is the value statistical life;
- li is the (≥0) value of the actual loss in FDi (i = 1, …, n);
- ci is the (≥0) value of the total cost of fire in FDi;
- fi is the efficiency of FDi where (1 ≥ fi > 0);
- bi is the (≥0) value of the financial budget of FDi.
3.4. Fourth Stage: Reporting
4. Findings
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviation | Full Phrase | Abbreviation | Full Phrase |
---|---|---|---|
ABM | Agent-Based Modeling | IP | Integer Programming |
ANEPC | Autoridade Nacional de Emergência e Proteção Civil (National Authority for Emergency and Civil Protection) | MILP | Mixed-Integer Linear Programming |
DEA | Data Envelopment Analysis | PT | Portuguese/Portugal |
FD | Fire Department | RA | Resource Allocation |
FDPA | Fire Departments’ Performance Assessments | RAFD | Resource Allocation in Fire Departments |
FPS | Fire Protection Services | SBM | Slack-Based Model |
GIS | Geographic Information System | VSL | Value statistical life |
FD Code | FD Name | Curr Eff % | Relax C5% | Use C5% | FD Code | FD Name | Curr Eff% | Relax C5% | Use C5% | FD Code | FD Name | Curr Eff% | Relax C5% | Use C5% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | Aveiro | 37 | 39 | 35 | 903 | Gouveia | 48 | 48 | 57 | 1329 | Leixões | 100 | 100 | 100 |
102 | Ílhavo | 38 | 40 | 35 | 904 | Pinhel | 44 | 48 | 46 | 1330 | Paços Ferreira | 47 | 47 | 40 |
104 | Ovar | 43 | 45 | 40 | 905 | Cast Rodrigo | 70 | 70 | 66 | 1331 | Avintes | 63 | 63 | 55 |
105 | OliVAzeméis | 35 | 37 | 29 | 906 | Meda | 43 | 46 | 58 | 1332 | Leça Balio | 100 | 100 | 68 |
106 | Aveiro | 33 | 34 | 34 | 907 | Trancoso | 36 | 39 | 42 | 1333 | Paço Sousa | 46 | 49 | 49 |
107 | Feira | 50 | 50 | 48 | 908 | Almeida | 50 | 50 | 60 | 1334 | Baião | 41 | 43 | 45 |
108 | Estarreja | 41 | 43 | 39 | 909 | VN Foz Côa | 59 | 59 | 59 | 1335 | Lordelo | 54 | 54 | 48 |
109 | Alberg Velha | 32 | 33 | 32 | 910 | Seia | 38 | 41 | 45 | 1336 | Trofa | 39 | 41 | 35 |
110 | Pampilhosa | 54 | 54 | 56 | 912 | Celorico Beira | 37 | 39 | 48 | 1337 | Vila Aves | 53 | 53 | 52 |
111 | Arrifana | 61 | 61 | 57 | 914 | Fornos Algodres | 45 | 47 | 62 | 1338 | Rebordosa | 44 | 47 | 43 |
112 | Mealhada | 53 | 53 | 53 | 915 | Aguiar Beira | 57 | 57 | 62 | 1339 | S Pedro Cova | 49 | 49 | 46 |
114 | S João Madeira | 50 | 50 | 52 | 916 | Manteigas | 61 | 61 | 67 | 1340 | Vila Meã | 38 | 41 | 44 |
115 | Vagos | 46 | 48 | 40 | 917 | São Romão | 46 | 46 | 56 | 1341 | Melres | 100 | 100 | 100 |
116 | Esmoriz | 42 | 45 | 46 | 919 | Soito | 61 | 61 | 77 | 1344 | Pedrouços | 100 | 100 | 100 |
117 | Anadia | 50 | 50 | 46 | 922 | VFranca Naves | 60 | 60 | 70 | 2203 | Portuenses | 72 | 72 | 60 |
118 | Águeda | 27 | 29 | 25 | 1001 | Alcobaça | 38 | 40 | 35 | 1404 | Benavente | 46 | 48 | 61 |
119 | Sever Vouga | 46 | 48 | 51 | 1003 | Caldas Rainha | 29 | 31 | 25 | 1405 | Rio Maior | 47 | 47 | 51 |
120 | Vale Cambra | 35 | 37 | 37 | 1004 | Marinha Grande | 44 | 47 | 37 | 1406 | Ourém | 27 | 29 | 29 |
121 | Lourosa | 39 | 41 | 34 | 1005 | Martinh Porto | 51 | 51 | 60 | 1408 | Constância | 40 | 42 | 56 |
122 | OliVBairro | 45 | 47 | 44 | 1006 | Pombal | 21 | 23 | 17 | 1409 | VN Barquinha | 53 | 53 | 62 |
123 | Castelo Paiva | 29 | 31 | 30 | 1007 | Bombarral | 55 | 55 | 61 | 1411 | Torres Novas | 33 | 35 | 32 |
124 | Arouca | 38 | 40 | 37 | 1008 | Óbidos | 37 | 39 | 44 | 1412 | Salvat Magos | 54 | 54 | 55 |
125 | Murtosa | 46 | 49 | 47 | 1009 | Nazaré | 53 | 53 | 51 | 1414 | Mação | 50 | 50 | 59 |
126 | Fajões | 49 | 49 | 51 | 1010 | Peniche | 36 | 37 | 36 | 1416 | Golegã | 75 | 75 | 87 |
201 | Beja | 28 | 30 | 27 | 1011 | Figueiró Vinhos | 37 | 40 | 49 | 1417 | Ferreira Zêzere | 53 | 53 | 60 |
202 | Odemira | 45 | 47 | 40 | 1012 | Alvaiázere | 47 | 47 | 53 | 1418 | Entroncamento | 62 | 62 | 62 |
203 | Moura | 39 | 41 | 38 | 1013 | Vieira Leiria | 50 | 50 | 61 | 1420 | Almeirim | 56 | 56 | 57 |
204 | Aljustrel | 70 | 70 | 67 | 1014 | Cast Pêra | 56 | 56 | 73 | 1421 | Chamusca | 62 | 62 | 62 |
206 | Cuba | 100 | 100 | 100 | 1015 | Porto Mós | 42 | 44 | 43 | 1425 | Caxarias | 58 | 58 | 62 |
207 | F Alentejo | 54 | 54 | 59 | 1016 | Ansião | 44 | 47 | 47 | 1426 | Samora Correia | 47 | 47 | 53 |
209 | Almodôvar | 72 | 72 | 73 | 1018 | Batalha | 39 | 42 | 38 | 1428 | Fátima | 42 | 45 | 46 |
210 | Ourique | 66 | 66 | 69 | 1019 | Pataias | 75 | 75 | 73 | 1429 | Abrantes | 35 | 37 | 35 |
211 | Serpa | 52 | 52 | 45 | 1020 | Maceira | 32 | 34 | 31 | 1502 | Setúbal | 50 | 50 | 41 |
213 | Castro Verde | 71 | 71 | 67 | 1021 | Mira Aire | 76 | 76 | 100 | 1503 | Cacilhas | 33 | 34 | 30 |
214 | Vidigueira | 65 | 65 | 69 | 1022 | Leiria | 27 | 29 | 24 | 1504 | Sul e Sueste | 39 | 41 | 41 |
215 | VN Milfontes | 87 | 87 | 93 | 1023 | Juncal | 65 | 65 | 69 | 1505 | Sesimbra | 38 | 40 | 34 |
303 | Guimarães | 39 | 42 | 29 | 1024 | Benedita | 47 | 47 | 51 | 1506 | Montijo | 40 | 43 | 37 |
304 | Vizela | 38 | 41 | 36 | 1025 | Ortigosa | 54 | 54 | 46 | 1507 | Alcacér Sal | 77 | 77 | 70 |
305 | Barcelos | 36 | 37 | 27 | 1101 | Barcarena | 49 | 49 | 56 | 1508 | Almada | 51 | 51 | 57 |
307 | Fafe | 33 | 35 | 29 | 1102 | VFranca Xira | 52 | 52 | 50 | 1509 | Santiago Cacém | 62 | 62 | 53 |
308 | VN Famalicão | 28 | 29 | 23 | 1103 | Cascais | 57 | 57 | 48 | 1510 | Barreiro | 45 | 48 | 44 |
309 | Esposende | 72 | 72 | 63 | 1104 | Loures | 36 | 38 | 35 | 1511 | Trafaria | 51 | 51 | 55 |
310 | Póvoa Lanhoso | 37 | 39 | 38 | 1105 | Arruda Vinhos | 54 | 54 | 54 | 1512 | Moita | 55 | 55 | 48 |
311 | Amares | 45 | 47 | 46 | 1106 | Colares | 53 | 53 | 65 | 1513 | Palmela | 43 | 45 | 42 |
312 | Barcelinhos | 33 | 35 | 27 | 1107 | Sintra | 34 | 35 | 43 | 1514 | Sines | 62 | 62 | 58 |
313 | Vila Verde | 39 | 41 | 37 | 1109 | Bucelas | 68 | 68 | 74 | 1515 | Alcochete | 50 | 50 | 51 |
314 | Fão | 69 | 69 | 54 | 1110 | Oeiras | 44 | 46 | 40 | 1516 | Grândola | 41 | 43 | 41 |
315 | Celorico Basto | 36 | 38 | 35 | 1111 | Paço Arcos | 77 | 77 | 66 | 1517 | Pinhal Novo | 46 | 49 | 46 |
316 | Famalicenses | 26 | 28 | 21 | 1113 | Odivelas | 42 | 44 | 36 | 1519 | Cercal Alentejo | 61 | 61 | 77 |
317 | Vieira Minho | 48 | 48 | 51 | 1114 | Sacavém | 36 | 38 | 35 | 1520 | Seixal | 28 | 29 | 27 |
318 | Cab Basto | 43 | 45 | 49 | 1115 | Alhandra | 65 | 65 | 62 | 1521 | Águas Moura | 51 | 51 | 62 |
319 | Riba Ave | 49 | 49 | 48 | 1116 | Algés | 100 | 100 | 100 | 1522 | Canha | 46 | 49 | 57 |
321 | Viatodos | 50 | 50 | 51 | 1117 | Torres Vedras | 25 | 27 | 21 | 1524 | Santo André | 89 | 89 | 92 |
322 | Terras Bouro | 47 | 48 | 55 | 1118 | Amadora | 45 | 47 | 43 | 1525 | Alvalade | 100 | 100 | 100 |
401 | Mirandela | 32 | 34 | 31 | 1119 | SPedro Sintra | 46 | 47 | 51 | 1526 | Amora | 57 | 57 | 46 |
402 | Bragança | 25 | 27 | 25 | 1120 | Carcavelos-S D R | 50 | 50 | 49 | 1603 | Ponte Lima | 25 | 26 | 25 |
403 | M Cavaleiros | 35 | 36 | 39 | 1121 | Dafundo | 53 | 53 | 58 | 1604 | Arcos Valdevez | 46 | 48 | 49 |
404 | F Espada Cinta | 42 | 44 | 58 | 1122 | Carnaxide | 62 | 62 | 57 | 1605 | Caminha | 56 | 56 | 61 |
405 | Carraz Ansiães | 53 | 53 | 65 | 1123 | S Monte Agraço | 53 | 53 | 56 | 1606 | Monção | 48 | 48 | 52 |
406 | Mogadouro | 42 | 44 | 42 | 1124 | Cadaval | 53 | 53 | 57 | 1607 | VPraia Âncora | 73 | 73 | 79 |
407 | Vimioso | 57 | 57 | 61 | 1125 | Queluz | 56 | 56 | 55 | 1608 | Valença | 58 | 58 | 58 |
408 | Torre Moncorvo | 36 | 38 | 46 | 1127 | Camarate | 66 | 66 | 70 | 1609 | PCoura | 49 | 49 | 58 |
409 | Alfândega Fé | 50 | 50 | 65 | 1128 | Belas | 39 | 41 | 38 | 1610 | Ponte Barca | 56 | 56 | 64 |
410 | Vinhais | 37 | 40 | 42 | 1129 | Parede | 48 | 48 | 51 | 1611 | VN Cerveira | 54 | 54 | 58 |
411 | Vila Flor | 42 | 44 | 54 | 1130 | Alverca | 53 | 53 | 48 | 1612 | Melgaço | 52 | 52 | 57 |
412 | Miranda Douro | 59 | 59 | 64 | 1131 | Alcabideche | 39 | 41 | 39 | 1701 | Peso Régua | 43 | 45 | 51 |
413 | Torre Chama | 61 | 61 | 86 | 1132 | Moscavide | 100 | 100 | 100 | 1702 | Flaviense | 39 | 40 | 48 |
414 | Sendim | 54 | 54 | 100 | 1133 | Mafra | 38 | 40 | 41 | 1703 | Verde-VReal | 28 | 30 | 31 |
501 | Covilhã | 24 | 25 | 24 | 1134 | Lourinhã | 39 | 41 | 39 | 1704 | Sanfins Douro | 87 | 87 | 100 |
502 | Sertã | 20 | 21 | 29 | 1135 | Fanhões | 72 | 72 | 79 | 1705 | Sabrosa | 66 | 66 | 83 |
503 | Fundão | 20 | 22 | 21 | 1137 | Ericeira | 57 | 57 | 53 | 1706 | Branca-VReal | 23 | 25 | 29 |
504 | Castelo Branco | 21 | 21 | 21 | 1138 | Agualva-Cacém | 56 | 56 | 60 | 1707 | Favaios | 100 | 100 | 100 |
505 | Penamacor | 56 | 56 | 61 | 1139 | Azambuja | 58 | 58 | 56 | 1708 | VPouca Aguiar | 39 | 41 | 47 |
506 | Oleiros | 34 | 35 | 53 | 1140 | Alcoentre | 55 | 55 | 64 | 1709 | Mondim Basto | 45 | 45 | 63 |
507 | Proença Nova | 33 | 34 | 45 | 1141 | Alenquer | 33 | 36 | 31 | 1711 | Murça | 64 | 64 | 76 |
508 | Idanha Nova | 100 | 100 | 100 | 1142 | Póvoa Sta Iria | 67 | 67 | 60 | 1714 | Montenegro | 74 | 74 | 96 |
509 | Velha Ródão | 73 | 73 | 100 | 1143 | Malveira | 40 | 42 | 43 | 1715 | Alijó | 65 | 65 | 74 |
510 | Belmonte | 57 | 57 | 64 | 1144 | Alg Mem-Martins | 37 | 38 | 38 | 1716 | Valpaços | 46 | 48 | 50 |
511 | Vila Rei | 57 | 57 | 76 | 1145 | Cast Ribatejo | 84 | 84 | 78 | 1717 | Chaves | 64 | 64 | 62 |
512 | Cern Bonjardim | 35 | 37 | 49 | 1146 | Vialonga | 68 | 68 | 57 | 1718 | Mesão Frio | 56 | 56 | 67 |
604 | Coimbra | 100 | 100 | 100 | 1147 | Caneças | 60 | 60 | 67 | 1719 | Montalegre | 47 | 47 | 50 |
605 | Cantanhede | 29 | 31 | 25 | 1148 | Pontinha | 87 | 87 | 90 | 1720 | Fontes | 60 | 60 | 80 |
607 | Soure | 30 | 32 | 32 | 1149 | Merceana | 59 | 59 | 65 | 1721 | Vidago | 38 | 39 | 66 |
608 | OliVHospital | 32 | 34 | 35 | 1150 | Montelavar | 57 | 57 | 66 | 1722 | Boticas | 47 | 47 | 60 |
609 | Condeixa Nova | 35 | 38 | 33 | 1201 | Portalegre | 34 | 37 | 35 | 1724 | Ribeira Pena | 60 | 60 | 74 |
610 | Penacova | 31 | 33 | 32 | 1203 | Ponte Sôr | 30 | 32 | 33 | 1725 | de Cerva | 100 | 100 | 100 |
611 | Montemor Velho | 38 | 40 | 38 | 1204 | Elvas | 34 | 36 | 33 | 1726 | Sta M Penaguião | 100 | 100 | 100 |
612 | Arganil | 58 | 58 | 54 | 1205 | Nisa | 62 | 62 | 59 | 1727 | Salto | 63 | 63 | 100 |
613 | VN Oliveirinha | 47 | 47 | 63 | 1209 | Campo Maior | 73 | 73 | 79 | 1802 | Lamego | 38 | 40 | 36 |
614 | Tábua | 40 | 43 | 48 | 1210 | Avis | 100 | 100 | 100 | 1803 | Castro D’Aire | 38 | 40 | 43 |
616 | Lagares Beira | 61 | 61 | 66 | 1213 | Monforte | 100 | 100 | 100 | 1804 | Pedro Sul | 53 | 53 | 61 |
617 | Miranda Corvo | 34 | 36 | 37 | 1302 | Matosinhos-Leça | 56 | 56 | 47 | 1805 | Vouzela | 37 | 39 | 45 |
618 | VN Poiares | 52 | 52 | 54 | 1303 | Póvoa Varzim | 42 | 44 | 34 | 1807 | SJ Pesqueira | 57 | 57 | 74 |
620 | Coja | 43 | 46 | 57 | 1304 | Santo Tirso | 50 | 50 | 49 | 1808 | Santa Comba Dão | 40 | 43 | 47 |
621 | Pampilhosa Serra | 43 | 45 | 100 | 1305 | Penafiel | 39 | 41 | 38 | 1809 | Nelas | 44 | 46 | 62 |
622 | Penela | 35 | 37 | 44 | 1306 | Paredes | 45 | 47 | 46 | 1810 | Tondela | 37 | 39 | 37 |
623 | Mira | 50 | 50 | 52 | 1307 | Lixa | 41 | 43 | 41 | 1811 | Mortágua | 42 | 45 | 45 |
701 | Évora | 34 | 36 | 30 | 1308 | Valongo | 43 | 45 | 43 | 1813 | Moimenta Beira | 34 | 36 | 40 |
702 | Vendas Novas | 56 | 56 | 58 | 1309 | Felgueiras | 38 | 40 | 35 | 1814 | Mangualde | 38 | 41 | 40 |
703 | Montemor Novo | 39 | 42 | 34 | 1310 | Coimbrões | 49 | 49 | 41 | 1815 | Farejinhas | 67 | 67 | 73 |
704 | Estremoz | 47 | 47 | 48 | 1311 | Carvalhos | 45 | 47 | 42 | 1816 | Oliveira Frades | 60 | 60 | 70 |
705 | Arraiolos | 62 | 62 | 59 | 1312 | Vila Conde | 34 | 36 | 26 | 1817 | Canas Senhorim | 51 | 51 | 63 |
706 | Regueng Monsar | 53 | 53 | 58 | 1313 | Gondomar | 53 | 53 | 45 | 1818 | Armamar | 59 | 59 | 67 |
707 | Vila Viçosa | 53 | 53 | 64 | 1314 | Valadares | 56 | 56 | 51 | 1819 | Cabanas Viriato | 53 | 53 | 71 |
710 | Redondo | 72 | 72 | 73 | 1315 | Mamed Infesta | 54 | 54 | 52 | 1820 | Tabuaço | 43 | 46 | 56 |
712 | Portel | 76 | 76 | 79 | 1316 | Amarante | 29 | 30 | 30 | 1821 | Carregal Sal | 47 | 47 | 54 |
802 | Lagos | 46 | 49 | 45 | 1317 | Ermesinde | 45 | 47 | 46 | 1822 | Penalva Castelo | 49 | 49 | 54 |
804 | VR Sto António | 37 | 39 | 38 | 1318 | Areosa-Rio Tinto | 66 | 66 | 56 | 1823 | Resende | 45 | 47 | 53 |
806 | Silves | 39 | 41 | 39 | 1319 | Entre-os-Rios | 49 | 49 | 52 | 1824 | Ervedosa Douro | 73 | 73 | 86 |
807 | Portimão | 29 | 30 | 29 | 1320 | Marco Canaveses | 29 | 31 | 25 | 1825 | Sernancelhe | 62 | 62 | 69 |
809 | S. Brás Alportel | 57 | 57 | 61 | 1321 | Aguda | 55 | 55 | 46 | 1826 | Cinfães | 33 | 35 | 43 |
811 | Monchique | 100 | 100 | 100 | 1322 | Cête | 47 | 47 | 53 | 1827 | Penedono | 79 | 79 | 100 |
812 | Aljezur | 41 | 44 | 55 | 1323 | Moreira Maia | 33 | 35 | 27 | 1828 | Nespereira | 47 | 47 | 54 |
813 | S Bart Messines | 43 | 46 | 47 | 1324 | Valbom | 55 | 55 | 52 | 1829 | Tarouca | 52 | 52 | 52 |
814 | Albufeira | 29 | 30 | 36 | 1325 | Baltar | 45 | 48 | 42 | 1830 | VNova Paiva | 47 | 47 | 58 |
815 | Lagoa | 33 | 35 | 37 | 1326 | Tirsenses | 38 | 40 | 41 | 1831 | Sátão | 43 | 46 | 47 |
816 | Vila Bispo | 73 | 73 | 72 | 1327 | Lousada | 35 | 37 | 33 | 1832 | Vale Besteiros | 64 | 64 | 55 |
902 | Sabugal | 42 | 44 | 55 | 1328 | Freamunde | 35 | 37 | 40 |
References
- Donahue, A.K. The influence of management on the cost of fire protection. J. Policy Anal. Manag. 2004, 23, 71–92. [Google Scholar] [CrossRef]
- Lan, C.H.; Chuang, L.L.; Chang, C.C. An Efficiency-Based Approach on Human Resource Management: A Case Study of Tainan County Fire Branches in Taiwan. Public Pers. Manag. 2007, 36, 143–164. [Google Scholar] [CrossRef]
- Choi, S.O. Relative efficiency of fire and emergency services in Florida: An application and test of data envelopment analysis. Int. J. Emerg. Manag. 2005, 2, 218. [Google Scholar] [CrossRef]
- Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P.; Rodrigues, J.P.C.; Lopes, J.P. A Framework for Fire Departments’ Performance Assessment: A Systematic Literature Review. Int. J. Public Sect. Manag. 2022, 35, 349–369. [Google Scholar] [CrossRef]
- Aleisa, E. The fire station location problem: A literature survey. Int. J. Emerg. Manag. 2018, 14, 291. [Google Scholar] [CrossRef]
- Ashe, B.; McAneney, J.; Pitman, A. Is the allocation of resources towards mitigation and response to fire in Australia optimal? J. Risk Res. 2011, 14, 381–393. [Google Scholar] [CrossRef]
- Alavi, E.S.; Ghanbari, R. A limited resource assignment problem with shortage in the fire department. Numer. Anal. Optim. 2018, 8, 129–141. [Google Scholar] [CrossRef]
- Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P. A Model for Fire Departments’ Performance Assessment in Portugal. Fire 2023, 6, 31. [Google Scholar] [CrossRef]
- Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P. A Framework for Resource Allocation in Fire Departments: A Structured Literature Review. Fire 2022, 5, 109. [Google Scholar] [CrossRef]
- Rodriguez, S.A.; De la Fuente, R.A.; Aguayo, M.M. A facility location and equipment emplacement technique model with expected coverage for the location of fire stations in the Concepción province, Chile. Comput. Ind. Eng. 2020, 147, 106522. [Google Scholar] [CrossRef]
- Lan, C.H.; Chuang, L.L.; Chen, Y.F. Optimal human resource allocation model: A case study of Taiwan fire service. J. Stat. Manag. Syst. 2011, 14, 187–216. [Google Scholar] [CrossRef]
- Peace, D.M.S. Planning New Standards of Fire Service Emergency Cover for the United Kingdom. Fire Technol. 2001, 37, 279–290. [Google Scholar] [CrossRef]
- Ming, J.; Richard, J.-P.P.; Zhu, J. A Facility Location and Allocation Model for Cooperative Fire Services. IEEE Access 2021, 9, 90908–90918. [Google Scholar] [CrossRef]
- Kumar, V.; Ramamritham, K.; Jana, A. Resource allocation for handling emergencies considering dynamic variations and urban spaces: Firefighting in Mumbai. In Proceedings of the Tenth International Conference on Information and Communication Technologies and Development—ICTDX ’19, Ahmedabad, India, 4–7 January 2019; ACM Press: New York, NY, USA, 2019; pp. 1–11. [Google Scholar]
- Behrendt, A.; Payyappalli, V.M.; Zhuang, J. Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study. RISK Anal. 2019, 39, 1358–1381. [Google Scholar] [CrossRef]
- Lim, D.; Kim, M.; Lee, K. A revised dynamic data envelopment analysis model with budget constraints. Int. Trans. Oper. Res. 2020, 29, 1012–1024. [Google Scholar] [CrossRef]
- Kovalenko, R.; Kalynovskyi, A.; Nazarenko, S.; Kryvoshei, B.; Grinchenko, E.; Demydov, Z.; Mordvyntsev, M.; Kaidalov, R. Development of a method of completing emergency rescue units with emergency vehicles. East.-Eur. J. Enterp. Technol. 2019, 4, 54–62. [Google Scholar] [CrossRef]
- Yeboah, G.; Park, P.Y. Using survival analysis to improve pre-emptive fire engine allocation for emergency response. Fire Saf. J. 2018, 97, 76–84. [Google Scholar] [CrossRef]
- Bispo, R.; Vieira, F.G.; Bachir, N.; Espadinha-Cruz, P.; Lopes, J.P.; Penha, A.; Marques, F.J.; Grilo, A. Spatial modelling and mapping of urban fire occurrence in Portugal. Fire Saf. J. 2023, 138, 103802. [Google Scholar] [CrossRef]
- Gomes, M.I.; Jóia, A.C.; Pinela, J.; Chibeles-Martins, N. Are the Portuguese Fire Departments Well Located for Fighting Urban Fires? In Operational Research; Almeida, J.P., Alvelos, F.P.E., Cerdeira, J.O., Moniz, S., Requejo, C., Eds.; Springer Proceedings in Mathematics & Statistics; Springer Nature: Cham, Switzerland, 2023; Volume 437, pp. 99–111. ISBN 978-3-031-46438-6. [Google Scholar]
- Santos, C.; Ferreira, T.M.; Vicente, R.; Mendes da Silva, J.A.R. Building typologies identification to support risk mitigation at the urban scale—Case study of the old city centre of Seixal, Portugal. J. Cult. Herit. 2013, 14, 449–463. [Google Scholar] [CrossRef]
- Tozo Neto, J.; Ferreira, T.M. Assessing and mitigating vulnerability and fire risk in historic centres: A cost-benefit analysis. J. Cult. Herit. 2020, 45, 279–290. [Google Scholar] [CrossRef]
- Rezvani, S.; De Almeida, N.; Falcão, M. Climate Adaptation Measures for Enhancing Urban Resilience. Buildings 2023, 13, 2163. [Google Scholar] [CrossRef]
- Nunes, P.M.P. Incêndios em Edifícios na Cidade de Lisboa: Análise e Caracterização das Ocorrências no Período de 2010 a 2014. Master’s Thesis, Instituto Superior de Educação e Ciências-ISEC Lisboa, Lisbon, Portugal, 2015. [Google Scholar]
- Assembleia da República Portugal. Lei n.o 94/2015, de 13 de Agosto; Diário da República, 1.ª Série; Assembleia da República Portugal: Lisbon, Portugal, 2015; pp. 5815–5817. [Google Scholar]
- Breslin, D.; Dobson, S.; Smith, N. Improving the effectiveness of fire prevention using the “premonition” agent-based model of domestic fire risk behaviours. Int. J. Emerg. Serv. 2019, 8, 280–291. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Masterman, C.J. Income Elasticities and Global Values of a Statistical Life. J. Benefit-Cost Anal. 2017, 8, 226–250. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, Y.; Cheu, R.L. Optimal Allocation of Multiple Emergency Service Resources for Protection of Critical Transportation Infrastructure. Transp. Res. Rec. J. Transp. Res. Board 2007, 2022, 1–8. [Google Scholar] [CrossRef]
- Melolidakis, C. Designing the allocation of emergency units by using the Shapley-Shubik power index: A case study. Math. Comput. Model. 1993, 18, 97–109. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, C.-Q. Resource allocation based on the DEA model. J. Oper. Res. Soc. 2008, 59, 1136–1141. [Google Scholar] [CrossRef]
- Schilling, D.; Elzinga, D.J.; Cohon, J.; Church, R.; ReVelle, C. The Team/Fleet Models for Simultaneous Facility and Equipment Siting. Transp. Sci. 1979, 13, 163–175. [Google Scholar] [CrossRef]
- Marianov, V.; ReVelle, C. The capacitated standard response fire protection siting problem: Deterministic and probabilistic models. Ann. Oper. Res. 1992, 40, 303–322. [Google Scholar] [CrossRef]
- Jayaraman, V.; Srivastava, R. A service logistics model for simultaneous siting of facilities and multiple levels of equipment. Comput. Oper. Res. 1995, 22, 191–204. [Google Scholar] [CrossRef]
- Revelle, C.; Snyder, S. Integrated fire and ambulance siting: A deterministic model. Socioecon. Plann. Sci. 1995, 29, 261–271. [Google Scholar] [CrossRef]
- Athanassopoulos, A.D. Decision Support for Target-Based Resource Allocation of Public Services in Multiunit and Multilevel Systems. Manag. Sci. 1998, 44, 173–187. [Google Scholar] [CrossRef]
- Araz, C.; Selim, H.; Ozkarahan, I. A fuzzy multi-objective covering-based vehicle location model for emergency services. Comput. Oper. Res. 2007, 34, 705–726. [Google Scholar] [CrossRef]
- Cheu, R.L.; Huang, Y.; Huang, B. Allocating Emergency Service Vehicles to Serve Critical Transportation Infrastructures. J. Intell. Transp. Syst. 2008, 12, 38–49. [Google Scholar] [CrossRef]
- Lan, C.H.; Chuang, L.L.; Chen, Y.F. Performance efficiency and resource allocation strategy for fire department with the stochastic consideration. Int. J. Technol. Policy Manag. 2009, 9, 296–315. [Google Scholar] [CrossRef]
- Cheu, R.L.; Lei, H.; Aldouri, R. Optimal Assignment of Emergency Response Service Units With Time-Dependent Service Demand and Travel Time. J. Intell. Transp. Syst. 2010, 14, 220–231. [Google Scholar] [CrossRef]
- Chevalier, P.; Thomas, I.; Geraets, D.; Goetghebeur, E.; Janssens, O.; Peeters, D.; Plastria, F. Locating fire stations: An integrated approach for Belgium. Socioecon. Plann. Sci. 2012, 46, 173–182. [Google Scholar] [CrossRef]
- Chalfant, B.A.; Comfort, L.K. Dynamic decision support for managing regional resources: Mapping risk in Allegheny County, Pennsylvania. Saf. Sci. 2016, 90, 97–106. [Google Scholar] [CrossRef]
- Pérez, J.; Maldonado, S.; Marianov, V. A reconfiguration of fire station and fleet locations for the Santiago Fire Department. Int. J. Prod. Res. 2016, 54, 3170–3186. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; An, S.; Cui, N. A new partial coverage locating model for cooperative fire services. Inf. Sci. 2016, 373, 527–538. [Google Scholar] [CrossRef]
- Perez, J.; Maldonado, S.; Lopez-Ospina, H. A fleet management model for the Santiago Fire Department. Fire Saf. J. 2016, 82, 1–11. [Google Scholar] [CrossRef]
- Maqbool, A.; Usmani, Z.u.A.; Afzal, F.; Razia, A. Disaster Mitigation in Urban Pakistan Using Agent Based Modeling with GIS. ISPRS Int. J. Geo-Inf. 2020, 9, 203. [Google Scholar] [CrossRef]
- Kumar, V.; Ramamritham, K.; Jana, A. Effective Handling of Emergencies in Resource Constrained Urban Areas by Considering Dynamics: A Performance Analysis. Transp. Res. Procedia 2020, 48, 345–362. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Z.; Wang, Z.; Fan, C. Regional evaluation of fire apparatus requirements for petrol stations based on travel times. Process Saf. Environ. Prot. 2020, 135, 350–363. [Google Scholar] [CrossRef]
- Ghasemi, P.; Babaeinesami, A. Simulation of fire stations resources considering the downtime of machines: A case study. J. Ind. Eng. Manag. Stud. 2020, 7, 161–176. [Google Scholar] [CrossRef]
- Hajipour, V.; Fattahi, P.; Bagheri, H.; Babaei Morad, S. Dynamic maximal covering location problem for fire stations under uncertainty: Soft-computing approaches. Syst. Assur. Eng. Manag. 2021, 13, 90–112. [Google Scholar] [CrossRef]
- Rodriguez, S.A.; De la Fuente, R.A.; Aguayo, M.M. A simulation-optimization approach for the facility location and vehicle assignment problem for firefighters using a loosely coupled spatio-temporal arrival process. Comput. Ind. Eng. 2021, 157, 107242. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Z.; Yan, L.; Wang, F. Applying Real-Time Travel Times to Estimate Fire Service Coverage Rate for High-Rise Buildings. Appl. Sci. 2020, 10, 6632. [Google Scholar] [CrossRef]
- Instituto Nacional De Statistica. Gross Reported Income (GRI) per Capita in 2020; Instituto Nacional De Statistica: Lisbon, Portugal, 2020; p. 1. [Google Scholar]
- The World Bank. GNI per Capita, Atlas Method (Current US$)—Portugal; The World Bank: Washingtn, DC, USA, 2020. [Google Scholar]
- Zhuang, J.; Payyappalli, V.M.; Behrendt, A.; Lukasiewicz, K. Total Cost of Fire in the United States; Fire Protection Research Foundation of NFPA and Department of Industrial and Systems Engineering, University at Buffalo: Getzville, NY, USA, 2017; p. 55. [Google Scholar]
- Robinson, L.A.; Hammitt, J.K.; O’Keeffe, L. Valuing Mortality Risk Reductions in Global Benefit-Cost Analysis. J. Benefit-Cost Anal. 2019, 10, 15–50. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.Z. Innovation and Entrepreneurship in the 4th Industrial Revolution. In Proceedings of the Joint Workshop on Entrepreneurship, Lae, Papua New Guinea, 18 July 2018; pp. 1–34. [Google Scholar]
- Eslamzadeh, M.K.; Jassbi, J.J.; Cruz-Machado, V. In Light of Industry 4.0: The Trends of the 4th Industrial Revolution’s Key Technologies in Human Well-being Studies. In Proceedings of the ICDSST 2020, Zaragosa, Spain, 27–29 May 2020; Linden, I., Turón, A., Dargam, F.C.C., Jayawickrama, U., Eds.; University of Zaragoza: Zaragoza, Spain, 2020; pp. 159–166. [Google Scholar]
- AnyLogic Company. AnyLogic. Available online: https://www.anylogic.com (accessed on 21 September 2023).
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Bolós, V.J.; Benítez, R.; Coll-Serrano, V. Continuous models combining slacks-based measures of efficiency and super-efficiency. Cent. Eur. J. Oper. Res. 2022, 31, 363–391. [Google Scholar] [CrossRef]
- Guo, I.-L.; Lee, H.-S.; Lee, D. An integrated model for slack-based measure of super-efficiency in additive DEA. Omega 2017, 67, 160–167. [Google Scholar] [CrossRef]
- Benítez, R.; Coll-Serrano, V.; Bolós, V.J. deaR-Shiny: An Interactive Web App for Data Envelopment Analysis. Sustainability 2021, 13, 6774. [Google Scholar] [CrossRef]
Steps | Process Details |
---|---|
Cleansing | Recovering the correct values for the noisy (incomplete, incorrect, or missing) records from other ANEPC datasets or removing the irrecoverable noisy and outlier records (i.e., 20 incidents recorded as less than 10 or more than 1440 min in duration). |
Integration | Collecting the required data about incidents and FDs from all provided datasets by the ANEPC and integrating them into one dataset. |
Reduction | Removing:
|
Transformation | The processed dataset, which underwent cleaning, integration, and reduction, was converted into comma-separated formats to facilitate the subsequent analysis stages. |
Year | GNI Per Capita | VSL | VSI Ratios and Values | |||||
---|---|---|---|---|---|---|---|---|
Minor 0.003 | Moderate 0.047 | Serious 0.105 | Severe 0.266 | Critical 0.593 | Unsurvivable 1.0 | |||
2015 | 20,460 | 3,469,022 | 10,407 | 163,044 | 364,247 | 922,760 | 2,057,130 | 3,469,022 |
2016 | 19,940 | 3,454,778 | 10,364 | 162,375 | 362,752 | 918,971 | 2,048,683 | 3,454,778 |
2017 | 20,060 | 3,455,117 | 10,365 | 162,390 | 362,787 | 919,061 | 2,048,884 | 3,455,117 |
2018 | 22,060 | 3,650,016 | 10,950 | 171,551 | 383,252 | 970,904 | 2,164,459 | 3,650,016 |
2019 | 23,200 | 3,823,983 | 11,472 | 179,727 | 401,518 | 1,017,179 | 2,267,622 | 3,823,983 |
2020 | 21,850 | 3,920,495 | 11,761 | 184,263 | 411,652 | 1,042,852 | 2,324,854 | 3,920,495 |
2021 | 23,890 | 3,974,369 | 11,923 | 186,795 | 417,309 | 1,057,182 | 2,356,801 | 3,974,369 |
Districts and No. of FDs | Recent Study’s Results | Using RAFD with C5 | Using RAFD Relaxing C5 | |||
---|---|---|---|---|---|---|
Aveiro (24) | 23 | 95.83% | 19 | 79.17% | 18 | 75.00% |
Beja (12) | 5 | 41.67% | 3 | 25.00% | 4 | 33.33% |
Braga (18) | 16 | 88.89% | 16 | 88.89% | 13 | 72.22% |
Bragança (14) | 10 | 71.43% | 9 | 64.29% | 6 | 42.86% |
Castelo Branco (12) | 7 | 58.33% | 7 | 58.33% | 6 | 50.00% |
Coimbra (17) | 14 | 82.35% | 13 | 76.47% | 9 | 52.94% |
Évora (9) | 4 | 44.44% | 3 | 33.33% | 3 | 33.33% |
Faro (11) | 10 | 90.91% | 8 | 72.73% | 7 | 63.64% |
Guarda (16) | 11 | 68.75% | 9 | 56.25% | 4 | 25.00% |
Leiria (23) | 21 | 91.30% | 14 | 60.87% | 13 | 56.52% |
Lisboa (46) | 20 | 43.48% | 18 | 39.13% | 17 | 36.96% |
Portalegre (7) | 3 | 42.86% | 3 | 42.86% | 3 | 42.86% |
Porto (42) | 30 | 71.43% | 26 | 61.90% | 29 | 69.05% |
Santarém (17) | 12 | 70.59% | 8 | 47.06% | 4 | 23.53% |
Setúbal (23) | 16 | 69.57% | 10 | 43.48% | 12 | 52.17% |
Viana Castelo (10) | 5 | 50.00% | 4 | 40.00% | 2 | 20.00% |
Vila Real (23) | 10 | 43.48% | 10 | 43.48% | 5 | 21.74% |
Viseu (29) | 12 | 41.38% | 17 | 58.62% | 10 | 34.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
K. Eslamzadeh, M.; Grilo, A.; Espadinha-Cruz, P. All Lives Matter: A Model for Resource Allocation to Fire Departments in Portugal. Fire 2024, 7, 206. https://doi.org/10.3390/fire7060206
K. Eslamzadeh M, Grilo A, Espadinha-Cruz P. All Lives Matter: A Model for Resource Allocation to Fire Departments in Portugal. Fire. 2024; 7(6):206. https://doi.org/10.3390/fire7060206
Chicago/Turabian StyleK. Eslamzadeh, Milad, António Grilo, and Pedro Espadinha-Cruz. 2024. "All Lives Matter: A Model for Resource Allocation to Fire Departments in Portugal" Fire 7, no. 6: 206. https://doi.org/10.3390/fire7060206
APA StyleK. Eslamzadeh, M., Grilo, A., & Espadinha-Cruz, P. (2024). All Lives Matter: A Model for Resource Allocation to Fire Departments in Portugal. Fire, 7(6), 206. https://doi.org/10.3390/fire7060206