The Influence of the Fire Point on the Thermal Dynamic Disaster in the Goaf
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Experimental System
2.2. Experimental Methods
2.2.1. Experimental Samples
2.2.2. Goaf Model
2.2.3. High-Temperature Heat Source Arrangement
2.2.4. Experimental Steps
3. Results
3.1. Influence of Ignition Position on the Temperature Field of Goaf
3.2. Influence of Ignition Position on Gas Concentration Field in the Goaf
3.2.1. Concentration Field of O2
3.2.2. Concentration Field of CH4
3.3. Influence of Temperature and CO Concentration at the Corner of the Return Air
4. Analysis and Discussion
4.1. Evolution Process Deduction of Thermal Dynamic Disaster
4.2. Analysis of Thermal Dynamic Disaster Evolution Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Gong, X. Analyzing the difference evolution of provincial energy consumption in China using the functional data analysis method. Energy Econ. 2021, 105, 105753. [Google Scholar] [CrossRef]
- Du, X.; Xue, J.; Yu, L.; Lei, W.; Ma, H.; Cao, C.-R.; Shu, C.-M.; Li, Y. Coal damage and energy characteristics during shallow mining to deep mining. Energy 2024, 291, 130375. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.K. Identification and prediction of thermodynamic disasters during deep coal mining. Int. J. Heat Technol. 2022, 40, 1447–1453. [Google Scholar] [CrossRef]
- Zhuo, H.; Qin, B.; Qin, Q.; Su, Z. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams. Process Saf. Environ. Prot. 2019, 131, 246–254. [Google Scholar] [CrossRef]
- Miao, D.; Lv, Y.; Yu, K.; Liu, L.; Jiang, J. Research on coal mine hidden danger analysis and risk early warning technology based on data mining in China. Process Saf. Environ. Prot. 2023, 171, 1–17. [Google Scholar] [CrossRef]
- Laghaei, M.; Baghbanan, A.; Hashemolhosseini, H.; Dehghanipoodeh, M. Numerical determination of deformability and strength of 3D fractured rock mass. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 2018, 110, 246–256. [Google Scholar] [CrossRef]
- Ma, L.; Guo, R.; Wu, M.; Wang, W. Determination on the hazard zone of spontaneous coal combustion in the adjacent gob of different mining stages. Process Saf. Environ. Prot. 2020, 142, 370–379. [Google Scholar] [CrossRef]
- Xia, T.; Zhou, F.; Wang, X.; Zhang, Y.; Li, Y.; Kang, J.; Liu, S. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 2016, 182, 886–896. [Google Scholar] [CrossRef]
- Cheng, J.; Qi, C.; Li, S. Modelling mine gas explosive pattern in underground mine gob and overlying strata. Int. J. Oil Gas Coal Technol. 2019, 22, 554–577. [Google Scholar] [CrossRef]
- Xia, T.; Zhou, F.; Wang, X.; Kang, J.; Pan, Z. Safety evaluation of combustion-prone longwall mining gobs induced by gas extraction: A simulation study. Process Saf. Environ. Prot. 2017, 109, 677–687. [Google Scholar] [CrossRef]
- Lei, C.; Jiang, L.; Bao, R.; Deng, C.; Wang, C. Study on multifield migration and evolution law of the oxidation heating process of coal spontaneous combustion in dynamic goaf. ACS Omega 2023, 8, 14197–14207. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qin, B.; Liu, J.; Leong, Y.-K. Integrated experimentation and modeling of the formation processes underlying coal combustion-triggered methane explosions in a mined-out area. Energy 2020, 203, 117855. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, S.; Xu, G.; Sharifzadeh, M. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars. Process Saf. Environ. Prot. 2019, 132, 182–188. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, R.; Zhou, F.; Zhang, X. Hazardous area reconstruction and law analysis of coal spontaneous combustion and gas coupling disasters in goaf based on DEM-CFD. ACS Omega 2023, 8, 2685–2697. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, S.; Xue, S.; Jiang, B.; Ren, B.; Zhao, Y. Study on the evolution characteristics of coal spontaneous combustion and gas coupling disaster region in goaf. Fuel 2023, 349, 128505. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Q.; Zhu, P.; Li, X.; Zhang, G.; Ma, X.; Zhao, Y. Study on multi-field evolution and influencing factors of coal spontaneous combustion in goaf. Combust. Sci. Technol. 2021, 195, 247–264. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Wei, N.; Wang, J.; Hu, J.; He, S.; Zhang, J. Secondary explosion characteristics and chemical kinetics of CH4/Air induced by a high-temperature surface. ACS Chem. Health Saf. 2023, 30, 319–332. [Google Scholar] [CrossRef]
- Ma, D.; Qin, B.; Gao, Y.; Jiang, J.; Feng, B. An Experimental study on the methane migration induced by spontaneous combustion of coal in longwall gobs. Process Saf. Environ. Prot. 2021, 147, 292–299. [Google Scholar] [CrossRef]
- Shi, G.; Wang, G.; Ding, P.; Wang, Y. Model and simulation analysis of fire development and gas flowing influenced by fire zone sealing in coal mine. Process Saf. Environ. Prot. 2021, 149, 631–642. [Google Scholar] [CrossRef]
- Wang, C.; Hou, Y.; Xiao, Y.; Deng, J.; Shu, C.; Xie, X. Intrinsic characteristics combined with gaseous products and active groups of coal under low-temperature oxidation. Combust. Sci. Technol. 2021, 193, 2623–2642. [Google Scholar] [CrossRef]
- Wang, K.; Li, K.; Du, F.; Zhang, X.; Wang, Y.; Sun, J. Research on prediction model of coal spontaneous combustion temperature based on SSA-CNN. Energy 2024, 290, 130158. [Google Scholar] [CrossRef]
- Song, Y.; Yang, S.; Hu, X.; Song, W.; Sang, N.; Cai, J.; Xu, Q. Prediction of gas and coal spontaneous combustion coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas extraction. Process Saf. Environ. Prot. 2019, 129, 8–16. [Google Scholar] [CrossRef]
- Li, L.; Qin, B.; Ma, D.; Zhuo, H.; Liang, H.; Gao, A. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: An experimental study. Process Saf. Environ. Prot. 2018, 116, 199–207. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Q.; Zhang, G.; Zhao, Y.; Zhu, P.; Ma, X.; Li, X. Study on the coupling evolution of air and temperature field in coal mine goafs based on the similarity simulation experiments. Fuel 2021, 283, 118905. [Google Scholar] [CrossRef]
- Su, H.; Zhou, F.; Song, X.; Shi, B.; Sun, S. Risk analysis of coal self-ignition in longwall gob: A modeling study on three-dimensional hazard zones. Fire Saf. J. 2016, 83, 54–65. [Google Scholar]
- Su, H.; Zhou, F.; Song, X.; Qiang, Z. Risk analysis of spontaneous coal combustion in steeply inclined longwall gobs using a scaled-down experimental set-up. Process Saf. Environ. Prot. 2017, 111, 1–12. [Google Scholar] [CrossRef]
- Yan, H.; Nie, B.; Liu, P.; Chen, Z.; Yin, F.; Gong, J.; Lin, S.; Wang, X.; Kong, F.; Hou, Y. Experimental investigation and evaluation of influence of oxygen concentration on characteristic parameters of coal spontaneous combustion. Thermochim. Acta 2022, 717, 179345. [Google Scholar] [CrossRef]
Coal Samples | Mad (%) | Aad (%) | Vdaf (%) | C (%) |
---|---|---|---|---|
40204 working face of Dafosi Coal Mine | 4.37 | 16.78 | 23.55 | 55.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Song, C.; Zhang, Z. The Influence of the Fire Point on the Thermal Dynamic Disaster in the Goaf. Fire 2024, 7, 270. https://doi.org/10.3390/fire7080270
Chen X, Song C, Zhang Z. The Influence of the Fire Point on the Thermal Dynamic Disaster in the Goaf. Fire. 2024; 7(8):270. https://doi.org/10.3390/fire7080270
Chicago/Turabian StyleChen, Xiaokun, Chao Song, and Zhipeng Zhang. 2024. "The Influence of the Fire Point on the Thermal Dynamic Disaster in the Goaf" Fire 7, no. 8: 270. https://doi.org/10.3390/fire7080270
APA StyleChen, X., Song, C., & Zhang, Z. (2024). The Influence of the Fire Point on the Thermal Dynamic Disaster in the Goaf. Fire, 7(8), 270. https://doi.org/10.3390/fire7080270