A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment
Abstract
:1. Introduction
2. Occurrence and Causes of Wildfires and Megafires
3. Wildfire Effects on Soil Properties
3.1. Fire Impact on Organic Matter and Clay
3.2. Effect on Carbon Content, Soil Nutrient Availability, and Leachability
3.3. Wildfire-Induced Hydrophobicity
3.4. Effect on Soil Desiccation Cracking and Plant–Soil Interaction
3.5. Hydrogeological Effects of Wildfires
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keeley, J.E.; Syphard, A.D. Climate change and future fire regimes: Examples from California. Geosciences 2016, 6, 37. [Google Scholar] [CrossRef]
- Godfree, R.C.; Knerr, N.; Encinas-Viso, F.; Albrecht, D.; Bush, D.; Christine Cargill, D.; Clements, M.; Gueidan, C.; Guja, L.K.; Harwood, T.; et al. Implications of the 2019–2020 Megafires for the Biogeography and Conservation of Australian Vegetation. Nat. Commun. 2021, 12, 1023. [Google Scholar] [CrossRef] [PubMed]
- Jones, B. Fires in the Amazon out of Control. Again. Available online: https://www.vox.com/down-to-earth/2021/8/27/22639885/amazon-rainforest-fires-climate-change-2021 (accessed on 25 April 2024).
- Natural Resources Canada. Canada’s Record-Breaking Wildfires 2023: A Fiery Wake-up Call. Available online: https://natural-resources.canada.ca/simply-science/canadas-record-breaking-wildfires-2023-fiery-wake-call/25303 (accessed on 14 August 2024).
- Wikipedia. 2023 Canadian Wildfires. Available online: https://en.wikipedia.org/wiki/2023_Canadian_wildfires (accessed on 14 August 2024).
- ArcGIS. Wildfires of 2023: A Global Perspective. Available online: https://storymaps.arcgis.com/stories/5f3bf49a773f47e3b51894cbc5792a7b (accessed on 14 August 2024).
- Wikipedia. 2023 Greece Wildfires. Available online: https://en.wikipedia.org/wiki/2023_Greece_wildfires (accessed on 14 August 2024).
- Marlon, J.R.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef]
- chAs-AMil, M.L.; PresTeMon, J.P.; MccleAn, C.J.; TouzA, J. Human-Ignited Wildfire Patterns and Responses to Policy Shifts. Appl. Geogr. 2015, 56, 164–176. [Google Scholar] [CrossRef]
- Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and Social Factors Influencing Wildfires in the Upper Midwest, United States. Ecol. Appl. 2001, 11, 111–127. [Google Scholar] [CrossRef]
- Butler, R. Amazon Deforestation Rises to 11 Year High in Brazil. Mongabay Environmental News, 18 November 2019. Available online: https://news.mongabay.com/2019/11/amazon-deforestation-rises-to-11-year-high-in-brazil/ (accessed on 26 January 2024).
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Mahmoud, H. The causes of wildfires are clear. How they burn through communities is not. Nature 2023, 620, 923. [Google Scholar] [CrossRef]
- Ramajo, R.J. Qué es un Incendio de Sexta Generación y por qué los Expertos Creen que el de Sierra Bermeja lo es. [Online] elDiario.es, 2021. Available online: https://www.eldiario.es/andalucia/incendio-sexta-generacion-expertos-creen-sierra-bermeja_1_8297333.html (accessed on 26 January 2024).
- Pyne, S.J. The Pyrocene: How We Created an Age of Fire, and What Happens Next; University of California Press: Oakland, CA, USA, 2021. [Google Scholar]
- Westerling, A.L. Increasing Western US Forest Wildfire Activity: Sensitivity to Changes in the Timing of Spring. Philos. Trans. R. Soc. B 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large Wildfire Trends in the Western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Monitoring Service (CAMS). CAMS Monitors Smoke Release from Devastating US Wildfires. Available online: https://atmosphere.copernicus.eu/cams-monitors-smoke-release-devastating-us-wildfires (accessed on 25 April 2024).
- NASA FIRMS (Fires Information for Resource Management System). Available online: https://firms.modaps.eosdis.nasa.gov/map/#t:adv;d:2020-09-01..2020-09-30;@-100.8,39.5,5z (accessed on 11 October 2023).
- Gabbert, B. Smoke and Air Quality Maps for September 17, 2020. Wildfire Today, 2020. Available online: https://wildfiretoday.com/2020/09/17/smoke-and-air-quality-maps-for-september-17-2020/ (accessed on 3 January 2024).
- NIFC. National Interagency Coordination Center 2023 Annual Report. Available online: https://www.nifc.gov/sites/default/files/NICC/2-Predictive%20Services/Intelligence/Annual%20Reports/2023/annual_report_2023_508_0.pdf (accessed on 14 August 2024).
- NIFC. National Interagency Coordination Center. Available online: https://www.nifc.gov/nicc (accessed on 14 August 2024).
- National Interagency Coordination Center. Wildland Fire: Summary and Statistics. Annual Report 2021. Available online: https://www.nifc.gov/sites/default/files/NICC/2-Predictive%20Services/Intelligence/Annual%20Reports/2021/annual_report_0.pdf (accessed on 20 March 2024).
- Abatzoglou, J.T.; Williams, A.P. Climate change has added to western US forest fire. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- U.S. Drought Monitor. Map Released April 21, 2022. Available online: https://droughtmonitor.unl.edu/ (accessed on 25 April 2024).
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Fann, N.; Alman, B.; Broome, R.A.; Morgan, G.G.; Johnston, F.H.; Pouliot, G.; Rappold, A.G. The Health Impacts and Economic Value of Wildland Fire Episodes in the US: 2008–2012. Sci. Total Environ. 2018, 610, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil. Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Goldammer, J.G. Vegetation Fires and Global Change: Challenges for Concerted International Action. A White Paper Directed to the United Nations and International Organizations; Kessel: Freiburg, Germany, 2013. [Google Scholar]
- International Association of Wildland Fire (IAWF). Sixth-Generation Fires: Public-Policy Change toward Prevention Required to Address Large-Scale Events. Available online: https://www.iawfonline.org/article/sixth-generation-fires-public/ (accessed on 20 January 2024).
- NASA FIRMS (Fires Information for Resource Management System). Available online: https://firms.modaps.eosdis.nasa.gov/map/#t:adv;d:2021-08-24;@21.2,43.8,5z (accessed on 3 February 2023).
- EUR 28707 EN; Forest Fires in Europe, Middle East and North Africa 2016. Publications Office of the European Union: Luxembourg, 2017.
- WWF. The Mediterranean Burns. WWF’s Mediterranean Proposal for the Prevention of Rural Fires; WWF 2019 Report. Available online: http://awsassets.panda.org/downloads/wwf__the_mediterranean_burns_2019_eng_final.pdf (accessed on 20 June 2024).
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Seijo, F. European Fire Governance in the Era of Wildfires. [Online] Green European Journal, 2017. Available online: https://www.greeneuropeanjournal.eu/european-fire-governance-in-the-era-of-megafires/ (accessed on 30 January 2024).
- World Tourism Organization (UNWTO) (Ed.) UNWTO Tourism Highlights: 2018 Edition; UNWTO: Madrid, Spain, 2018. [Google Scholar] [CrossRef]
- Vélez, R. Causes of Forest Fires in the Mediterranean Basin. In Risk Management and Sustainable Forestry; EFI Proceedings: Bordeaux, France, 2002; Volume 42, pp. 35–42. Available online: https://efi.int/sites/default/files/files/publication-bank/2018/proc45_net.pdf#page=35 (accessed on 20 June 2024).
- Marsh, J. Northern California Wildfires Damage BNSF’s Rail Infrastructure. [Online] FreightWaves, 2022. Available online: https://www.freightwaves.com/news/northern-california-wildfires-damage-bnsfs-rail-infrastructure (accessed on 11 October 2023).
- International Forest Fire News (IFFN). The Use of Prescribed Fire on Embankments along Railway Tracks for Reducing Wildfire Ignition in Germany. Available online: https://gfmc.online/iffn/iffn_30/13-IFFN-30-Germany-Railways.pdf (accessed on 11 October 2023).
- O’Kelly, B.C.; Sivakumar, V. Water content determinations for peat and other organic soils using the oven-drying method. Dry. Technol. 2014, 32, 631–643. [Google Scholar] [CrossRef]
- Chandler, C.; Cheney, P.; Thomas, P.; Trabaud, L.; Williams, D. Fire in Forestry; John Wiley & Sons, Inc.: New York, USA, 1983. [Google Scholar]
- Úbeda, X.; Outeiro, L.R. Physical and chemical effects of fire on soil. In Fire Effects on Soils and Restoration Strategies; CRC Press: Boca Raton, FL, USA, 2009; pp. 121–148. [Google Scholar]
- DeBano, L.F. Water Repellent Soils: A State-of-the-Art; US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1981; Volume 46.
- DeBano, L.F.; Neary, D.G. Part A—The Soil Resource: Its Importance, Characteristics, and General Responses to Fire. In Wildland Fire in Ecosystems: Effects of Fire on Soil and Water; Gen. Tech. Rep. RMRS-GTR-42; Neary, D.G., Ryan, K.C., DeBano, L.F., Eds.; Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 4, pp. 21–28. [Google Scholar]
- Mohamed, A.M.O.; Paleologos, E.K.; Howari, F. (Eds.) Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering; Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
- Jiménez-Pinilla, P.; Mataix-Solera, J.; Arcenegui, V.; Delgado, R.; Martín-García, J.M.; Lozano, E.; Martínez-Zavala, L.; Jordán, A. Advances in the knowledge of how heating can affect aggregate stability in Mediterranean soils: An XDR and SEM-EDX approach. Catena 2016, 147, 315–324. [Google Scholar] [CrossRef]
- Jhariya, M.K.; Singh, L. Effect of fire severity on soil properties in a seasonally dry forest ecosystem of Central India. Int. J. Environ. Sci. Technol. 2021, 18, 3967–3978. [Google Scholar] [CrossRef]
- Abu-Zreig, M.M.; Al-Akhras, N.M.; Attom, M.F. Influence of heat treatment on the behavior of clayey soils. Appl. Clay Sci. 2001, 20, 129–135. [Google Scholar] [CrossRef]
- Noraini, A.A. Effect of Wildfire on Geotechnical Properties of Clayey Soil. Int. Res. J. Eng. Technol. 2018, 5, 2137–2139. [Google Scholar]
- Awn, S.H.A.; Hussain, W.A.S.; Abbas, H.O. Effect of Burning Cycles on the Physical Properties of Clay. J. Eng. Sustain. Dev. 2019, 23, 79–92. [Google Scholar]
- González, Y.V.; Patiño-Restrepo, J.; Álvarez-Guerra, M.C.; Ortega-Ramírez, D.; Echeverri-Ramírez, Ó. Cambio en las Propiedades Geotécnicas de un Suelo Sometido a Ignición en Laboratorio. Rev. Ing. Univ. Medellín 2018, 17, 85–107. [Google Scholar] [CrossRef]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil. Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon. Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Doetterl, S.; Berhe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, Deposition, and Soil Carbon: A Review of Process-Level Controls, Experimental Tools, and Models to Address C Cycling in Dynamic Landscapes. Earth-Sci. Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Paul, E.A. (Ed.) Soil Microbiology, Ecology, and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Yin, Y.; Impellitteri, C.A.; You, S.J.; Allen, H.E. The Importance of Organic Matter Distribution and Extract Soil: Solution Ratio on the Desorption of Heavy Metals from Soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.P.; Yu, M.; Cao, N.; Yan, J. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chem. Geol. 2018, 501, 86–94. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.; Augusto, L.; Cécillon, L.; Ferreira, G.W.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Li, J.; Awasthi, M.K.; Zhu, Q.; Chen, X.; Wu, F.; Wu, F.; Tong, X. Modified Soil Physicochemical Properties Promoted Sequestration of Organic and Inorganic Carbon Synergistically During Revegetation in Desertified Land. J. Environ. Chem. Eng. 2021, 9, 106331. [Google Scholar] [CrossRef]
- Monger, H.C.; Kraimer, R.A.; Khresat, S.E.; Cole, D.R.; Wang, X.; Wang, J. Sequestration of inorganic carbon in soil and groundwater. Geology 2015, 43, 375–378. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-Generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Bennett, L.T.; Kasel, S.; Tibbits, J. Are a Typology of Fire Effects and Determinants Needed for the Global Change Research Community? Glob. Chang. Biol. 2014, 20, 4258–4261. [Google Scholar]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 2011, 21, 1189–1201. [Google Scholar] [CrossRef]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta-analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Zhao, H.; Tong, D.Q.; Lin, Q.; Lu, X.; Wang, G. Effect of Fires on Soil Organic Carbon Pool and Mineralization in a Northeastern China Wetland. Geoderma 2012, 189, 532–539. [Google Scholar] [CrossRef]
- Pellegrini, A.F.; Ahlström, A.; Hobbie, S.E.; Reich, P.B.; Nieradzik, L.P.; Staver, A.C.; Scharenbroch, B.C.; Jumpponen, A.; Anderegg, W.R.; Randerson, J.T.; et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 2018, 553, 194–198. [Google Scholar] [CrossRef]
- Czimczik, C.I.; Schmidt, M.W.I.; Schulze, E.-D. Effects of Increasing Fire Frequency on Black Carbon and Organic Matter in Podzols of Siberian Scots Pine Forests. Eur. J. Soil Sci. 2005, 56, 417–428. [Google Scholar] [CrossRef]
- Walstad, J.D.; Radosevich, S.R.; Sandberg, D.V. (Eds.) Natural and Prescribed Fire in Pacific Northwest Forests; Oregon State University Press: Corvallis, OR, USA, 1990. [Google Scholar]
- Chungu, D.; Ng’andwe, P.; Mubanga, H.; Chileshe, F. Fire Alters the Availability of Soil Nutrients and Accelerates Growth of Eucalyptus grandis in Zambia. J. For. Res. 2020, 31, 1637–1645. [Google Scholar] [CrossRef]
- Murphy, J.D.; Johnson, D.W.; Miller, W.W.; Walker, R.F.; Carroll, E.F.; Blank, R.R. Wildfire effects on soil nutrients and leaching in a Tahoe Basin watershed. J. Environ. Qual. 2006, 35, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; McGuire, K.J.; Stewart, R.D. Effect of Soil Water-Repellent Layer Depth on Post-Wildfire Hydrological Processes. Hydrol. Process. 2020, 34, 270–283. [Google Scholar] [CrossRef]
- Cerdà, A. Changes in Overland Flow and Infiltration after a Rangeland Fire in a Mediterranean Scrubland. Hydrol. Process. 1998, 12, 1031–1042. [Google Scholar] [CrossRef]
- Granged, A.J.; Jordán, A.; Zavala, L.M.; Bárcenas, G. Fire-Induced Changes in Soil Water Repellency Increased Fingered Flow and Runoff Rates Following the 2004 Huelva Wildfire. Hydrol. Process. 2011, 25, 1614–1629. [Google Scholar] [CrossRef]
- Nyman, P.; Sheridan, G.J.; Smith, H.G.; Lane, P.N. Modeling the effects of surface storage, macropore flow and water repellency on infiltration after wildfire. J. Hydrol. 2014, 513, 301–313. [Google Scholar] [CrossRef]
- DeBano, L.F. The Role of Fire and Soil Heating on Water Repellency in Wildland Environments: A Review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Malkinson, D.; Wittenberg, L. Post-fire-induced soil water repellency—Modeling short and long-term processes. Geomorphology 2011, 125, 186–192. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Doerr, S.H. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma 2004, 118, 77–88. [Google Scholar] [CrossRef]
- Veneris, M.; Farid, A. Finer Measurement Scales for Induced Hydrophobicity Using the Water Droplet Penetration Test. Geotech. J. 2024, 4, 581–603. [Google Scholar] [CrossRef]
- Hallett, P.D. A brief overview of the causes, impacts and amelioration of soil water repellency–a review. Soil. Water Res. 2008, 3, 521–528. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A.; Martin, D.A. Hydrologic Conditions Controlling Runoff Generation Immediately After Wildfire. Water Resour. Res. 2012, 48, W03529. [Google Scholar] [CrossRef]
- Moody, J.A.; Ebel, B.A. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire. Catena 2012, 93, 58–63. [Google Scholar] [CrossRef]
- Wieting, C.; Ebel, B.A.; Singha, K. Quantifying the Effects of Wildfire on Changes in Soil Properties by Surface Burning of Soils from the Boulder Creek Critical Zone Observatory. J. Hydrol. Reg. Stud. 2017, 13, 43–57. [Google Scholar] [CrossRef]
- Akin, I.D.; Akinleye, T.O. Water Vapor Sorption Behavior of Wildfire-Burnt Soil. J. Geotech. Geoenviron. Eng. 2021, 147, 04021115. [Google Scholar] [CrossRef]
- USGS. Assessment of Landslide and Debris Flow Hazards for Post-Wildfire Conditions. Available online: https://www.usgs.gov/supplemental-appropriations-for-disaster-recovery-activities/assessment-landslide-and-debris-flow-0 (accessed on 14 August 2024).
- Gabet, E.J.; Sternberg, P. The Effects of Vegetative Ash on Infiltration Capacity, Sediment Transport, and the Generation of Progressively Bulked Debris Flows. Geomorphology 2008, 101, 666–673. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Parameter Estimation for Multiple Post-Wildfire Hydrologic Models. Hydrol. Process. 2020, 34, 4049–4066. [Google Scholar] [CrossRef]
- Hubbert, K.R.; Oriol, V. Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California. Int. J. Wildland Fire 2005, 14, 439–447. [Google Scholar] [CrossRef]
- Chen, J.; Shang, C.; Eick, M.J.; Stewart, R.D. Water Repellency Decreases Vapor Sorption of Clay Minerals. Water Resour. Res. 2018, 54, 6114–6125. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. The Effect of Ash and Needle Cover on Surface Runoff and Erosion in the Immediate Post-Fire Period. Catena 2008, 74, 256–263. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Coelho, C.O.A.; Boulet, A.K.; Leighton-Boyce, G.; Keizer, J.J.; Ritsema, C.J. Influence of Burning Intensity on Water Repellency and Hydrological Processes at Forest and Shrub Sites in Portugal. Soil. Res. 2005, 43, 327–336. [Google Scholar] [CrossRef]
- Johansen, M.P.; Hakonson, T.E.; Breshears, D.D. Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands. Hydrol. Process. 2001, 15, 2953–2965. [Google Scholar] [CrossRef]
- Terry, J.P.; Shakesby, R.A. Soil hydrophobicity effects on rainsplash: Simulated rainfall and photographic evidence. Earth Surf. Process. Landf. 1993, 18, 519–525. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Wagenbrenner, J.W.; Pierson, F.B.; Spaeth, K.E.; Ashmun, L.E.; Moffet, C.A. Infiltration and interrill erosion rates after a wildfire in western Montana, USA. Catena 2016, 142, 77–88. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellency in Soils: A Historical Overview. J. Hydrol. 2000, 231, 4–32. [Google Scholar] [CrossRef]
- Bauters, T.W.; Steenhuis, T.S.; Parlange, J.Y.; DiCarlo, D.A. Preferential Flow in Water-Repellent Sands. Soil. Sci. Soc. Am. J. 1998, 62, 1185–1190. [Google Scholar] [CrossRef]
- Ritsema, C.J.; Dekker, L.W. Preferential flow in water repellent sandy soils: Principles and modeling implications. J. Hydrol. 2000, 231, 308–319. [Google Scholar] [CrossRef]
- de Dios Benavides-Solorio, J.; MacDonald, L.H. Measurement and Prediction of Post-Fire Erosion at the Hillslope Scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil erosion risk. J. Agric. Eng. Res. 1984, 30, 245–253. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Prats, S.A.; Nunes, J.P.; Shakesby, R.A.; Coelho, C.O.A.; Keizer, J.J. Modelling Runoff and Erosion, and Their Mitigation, in Burned Portuguese Forest Using the Revised Morgan–Morgan–Finney Model. For. Ecol. Manag. 2014, 314, 150–165. [Google Scholar] [CrossRef]
- Hosseini, M.; Nunes, J.P.; Pelayo, O.G.; Keizer, J.J.; Ritsema, C.; Geissen, V. Developing generalized parameters for post-fire erosion risk assessment using the revised Morgan-Morgan-Finney model: A test for north-central Portuguese pine stands. Catena 2018, 165, 358–368. [Google Scholar] [CrossRef]
- Zema, D.A.; Nunes, J.P.; Lucas-Borja, M.E. Improvement of Seasonal Runoff and Soil Loss Predictions by the MMF (Morgan-Morgan-Finney) Model after Wildfire and Soil Treatment in Mediterranean Forest Ecosystems. Catena 2020, 188, 104415. [Google Scholar] [CrossRef]
- De Roo, A.P.J.; Wesseling, C.G.; Ritsema, C.J. LISEM: A Single-Event Physically Based Hydrological and Soil Erosion Model for Drainage Basins. I: Theory, Input and Output. Hydrol. Processes 1996, 10, 1107–1117. [Google Scholar] [CrossRef]
- Van Eck, C.M.; Nunes, J.P.; Vieira, D.C.; Keesstra, S.; Keizer, J.J. Physically Based Modelling of the Post-Fire Runoff Response of a Forest Catchment in Central Portugal: Using Field Versus Remote Sensing-Based Estimates of Vegetation Recovery. Land. Degrad. Dev. 2016, 27, 1535–1544. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Malvar, M.C.; Martins, M.A.S.; Serpa, D.; Keizer, J.J. Key Factors Controlling the Post-Fire Hydrological and Erosive Response at Micro-Plot Scale in a Recently Burned Mediterranean Forest. Geomorphology 2018, 319, 161–173. [Google Scholar] [CrossRef]
- Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics. Catena 2007, 71, 68–75. [Google Scholar] [CrossRef]
- Cui, Y.J.; Lu, Y.F.; Delage, P.; Riffard, M. Field Simulation of in situ Water Content and Temperature Changes Due to Ground-Atmospheric Interactions. Géotechnique 2005, 55, 557–567. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Gu, K. Experimental investigation on evaporation process of water during drying. J. Eng. Geol. 2011, 19, 875–881. [Google Scholar]
- Tang, C.S.; Cheng, Q.; Leng, T.; Shi, B.; Zeng, H.; Inyang, H.I. Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil. Catena 2020, 194, 104721. [Google Scholar] [CrossRef]
- Peron, H.; Hueckel, T.; Laloui, L.; Hu, L. Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Can. Geotech. J. 2009, 46, 1177–1201. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, C.S.; Chen, Z.G.; El-Maarry, M.R.; Zeng, H.; Shi, B. Tensile Behavior of Clayey Soils during Desiccation Cracking Process. Eng. Geol. 2020, 279, 105909. [Google Scholar] [CrossRef]
- Tang, C.S.; Zhu, C.; Cheng, Q.; Zeng, H.; Xu, J.J.; Tian, B.G.; Shi, B. Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors. Earth-Sci. Rev. 2021, 216, 103586. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Wang, Y.; Mao, Z.; Langendoen, E.J. How Does Root Biodegradation after Plant Felling Change Root Reinforcement to Soil? Plant Soil 2020, 446, 211–227. [Google Scholar] [CrossRef]
- Kamchoom, V.; Boldrin, D.; Leung, A.K.; Sookkrajang, C.; Likitlersuang, S. Biomechanical properties of the growing and decaying roots of Cynodon dactylon. Plant Soil 2022, 471, 193–210. [Google Scholar] [CrossRef]
- Genet, M.; Stokes, A.; Salin, F.; Mickovski, S.B.; Fourcaud, T.; Dumail, J.F.; Van Beek, R. The Influence of Cellulose Content on Tensile Strength in Tree Roots. Plant Soil 2005, 278, 1–9. [Google Scholar] [CrossRef]
- Ni, J.J.; Leung, A.K.; Ng, C.W.W. Modelling effects of root growth and decay on soil water retention and permeability. Can. Geotech. J. 2019, 56, 1049–1055. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Ni, J.J.; Leung, A.K. Effects of plant growth and spacing on soil hydrological changes: A field study. Géotechnique 2020, 70, 867–881. [Google Scholar] [CrossRef]
- Ni, J.J.; Leung, A.K.; Ng, C.W.W.; Shao, W. Modelling hydro-mechanical reinforcements of plants to slope stability. Comput. Geotech. 2018, 95, 99–109. [Google Scholar] [CrossRef]
- Cannon, S.H.; Bigio, E.R.; Mine, E. A Process for Fire-Related Debris Flow Initiation, Cerro Grande Fire, New Mexico. Hydrol. Process. 2001, 15, 3011–3023. [Google Scholar] [CrossRef]
- Gartner, J.E.; Cannon, S.H.; Bigio, E.R.; Davis, N.K.; Parrett, C.; Pierce, K.L.; Rupert, M.G.; Thurston, B.L.; Trebish, M.J.; Garcia, S.P.; et al. Compilation of Data Relating to the Erosive Response of 606 Recently Burned Basins in the Western US. In US Geological Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2005; p. 1218. [Google Scholar]
- Lei, M.; Cui, Y.; Ni, J.; Zhang, G.; Li, Y.; Wang, H.; Liu, D.; Yi, S.; Jin, W.; Zhou, L. Temporal evolution of the hydromechanical properties of soil-root systems in a forest fire in China. Sci. Total Environ. 2022, 809, 151165. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; Gen. Tech. Rep. RMRS-GTR-42; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 4, p. 250.
- Istanbulluoglu, E.; Tarboton, D.G.; Pack, R.T.; Luce, C.H. Modeling of the interactions between forest vegetation, disturbances, and sediment yields. J. Geophys. Res. Earth Surf. 2004, 109, F01009. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Keller, E.A.; Best, D.W. Fluvial Sediment Transport in Response to Moderate Storm Flows Following Chaparral Wildfire, Ventura County, Southern California. Geol. Soc. Am. Bull. 1991, 103, 504–511. [Google Scholar] [CrossRef]
- Meyer, G.A.; Pierce, J.L.; Wood, S.H.; Jull, A.J.T. Fire, storms, and erosional events in the Idaho batholith. Hydrol. Processes 2001, 15, 3025–3038. [Google Scholar] [CrossRef]
- Reneau, S.L.; Dietrich, W.E. Erosion rates in the southern Oregon Coast Range: Evidence for an equilibrium between hillslope erosion and sediment yield. Earth Surf. Process. Landf. 1991, 16, 307–322. [Google Scholar] [CrossRef]
- Kirchner, J.W.; Finkel, R.C.; Riebe, C.S.; Granger, D.E.; Clayton, J.L.; King, J.G.; Megahan, W.F. Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology 2001, 29, 591–594. [Google Scholar] [CrossRef]
- Hoffman, D.F.; Gabet, E.J. Effects of sediment pulses on channel morphology in a gravel-bed river. Geol. Soc. Am. Bull. 2007, 119, 116–125. [Google Scholar] [CrossRef]
- Miller, D.; Luce, C.; Benda, L. Time, Space, and Episodicity of Physical Disturbance in Streams. For. Ecol. Manag. 2003, 178, 121–140. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 2014, 204, 55–65. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farid, A.; Alam, M.K.; Goli, V.S.N.S.; Akin, I.D.; Akinleye, T.; Chen, X.; Cheng, Q.; Cleall, P.; Cuomo, S.; Foresta, V.; et al. A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment. Fire 2024, 7, 295. https://doi.org/10.3390/fire7080295
Farid A, Alam MK, Goli VSNS, Akin ID, Akinleye T, Chen X, Cheng Q, Cleall P, Cuomo S, Foresta V, et al. A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment. Fire. 2024; 7(8):295. https://doi.org/10.3390/fire7080295
Chicago/Turabian StyleFarid, Arvin, Md Khorshed Alam, Venkata Siva Naga Sai Goli, Idil Deniz Akin, Taiwo Akinleye, Xiaohui Chen, Qing Cheng, Peter Cleall, Sabatino Cuomo, Vito Foresta, and et al. 2024. "A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment" Fire 7, no. 8: 295. https://doi.org/10.3390/fire7080295
APA StyleFarid, A., Alam, M. K., Goli, V. S. N. S., Akin, I. D., Akinleye, T., Chen, X., Cheng, Q., Cleall, P., Cuomo, S., Foresta, V., Ge, S., Iervolino, L., Iradukunda, P., Luce, C. H., Koda, E., Mickovski, S. B., O’Kelly, B. C., Paleologos, E. K., Peduto, D., ... Winkler, J. (2024). A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment. Fire, 7(8), 295. https://doi.org/10.3390/fire7080295