Spatial Ecology and Movement of Ornate Box Turtles in the Escalating Drought Conditions of the Great Plains Ecoregion
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Radiotracking
2.3. Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knapp, C.R.; Owens, A.K. Home range and habitat associations of a Bahama iguana: Implications for conservation. Anim. Conserv. 2004, 8, 269–278. [Google Scholar] [CrossRef]
- Schofield, G.; Hobson, V.J.; Lilley, M.K.S.; Katselidis, K.A.; Bishop, C.M.; Brown, P.; Hays, G.C. Inter-annual variability in the home range of breeding turtles: Implications for current and future conservation management. Biol. Conserv. 2010, 143, 722–730. [Google Scholar] [CrossRef]
- Goldingay, R.L. A review of home-range studies on Australian terrestrial vertebrates: Adequacy of studies, testing of hypotheses, and relevance to conservation and international studies. Aust. J. Zool. 2015, 63, 136–146. [Google Scholar] [CrossRef]
- Pop, I.M.; Bereczky, L.; Chiriac, S.; Iosif, R.; Nita, A.; Popescu, V.D.; Rozylowicz, L. Movement ecology of brown bears (Ursus arctos) in the Romanian Eastern Carpathians. Nat. Conserv. 2018, 26, 15–31. [Google Scholar] [CrossRef]
- Avgar, T.; Mosser, A.; Brown, G.S.; Fryxell, J.M. Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J. Anim. Ecol. 2012, 82, 96–106. [Google Scholar] [CrossRef]
- Doherty, T.S.; Fist, C.N.; Driscoll, D.A. Animal movement varies with resource availability, landscape configuration, and body size: A conceptual model and empirical example. Landsc. Ecol. 2019, 34, 603–614. [Google Scholar] [CrossRef]
- He, P.; Maldonado-Chaparro, A.A.; Farine, D.R. The role of habitat configuration in shaping social structure: A gap in studies of animal social complexity. Behav. Ecol. Sociobiol. 2019, 73, 9. [Google Scholar] [CrossRef]
- He, P.; Montiglio, P.O.; Somvielle, M.; Cantor, M.; Farine, D.R. The role of habitat configuration in shaping animal population processes: A framework to generate quantitative predictions. Oecologia 2021, 196, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Isaac, N.J.B.; Cowlishaw, G. How species respond to multiple extinction threats. R. Soc. 2004, 271, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Bickford, D.; Howard, S.D.; Ng, D.J.J.; Sheridan, J.A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 2010, 19, 1043–1062. [Google Scholar] [CrossRef]
- Chown, S.L.; Hoffman, A.A.; Kristensen, T.N.; Angilletta, M.J., Jr.; Stenseth, N.C.; Pertoldi, C. Adapting to climate change: A perspective from evolutionary physiology. Clim. Res. 2010, 43, 3–15. [Google Scholar] [CrossRef]
- Somero, G.N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 2010, 213, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, J.W.; Scott, D.E.; Ryan, T.J.; Buhlmann, K.A.; Tuberville, T.D.; Metts, B.S.; Greene, J.L.; Mills, T.; Leiden, Y.; Poppy, S.; et al. The global decline of reptiles, déjà vu amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. Bioscience 2000, 50, 653–666. [Google Scholar]
- Aragon, P.; Rodriguez, M.A.; Olalla-Tarraga, M.A.; Lobo, J.M. Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectotherms. Anim. Conserv. 2010, 13, 363–373. [Google Scholar] [CrossRef]
- Buckley, L.B.; Tewksbury, J.J.; Deutsch, C.A. Can terrestrial ectotherms escape the heat of climate change by moving? Proc. R. Soc. B Biol. Sci. 2013, 280, 20131149. [Google Scholar] [CrossRef] [PubMed]
- Rosen-Rechels, D.; Dupoue, A.; Lourdais, O.; Chamille-Jammes, S.; Meylan, S.; Clobert, J.; Galliard, J.F.L. When water interacts with temperature: Ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms. Ecol. Evol. 2019, 9, 10029–10043. [Google Scholar] [CrossRef] [PubMed]
- Claussen, D.L.; Lim, R.; Kurz, M.; Wren, K. Effects of slope, substrate, and temperature on the locomotion of the ornate box turtle, Terrapene ornata. Copeia 2002, 2002, 411–418. [Google Scholar] [CrossRef]
- Zani, P.A.; Kram, R. Low metabolic cost of locomotion in ornate box turtles, Terrapene ornata. J. Exp. Biol. 2008, 211, 3671–3676. [Google Scholar] [CrossRef] [PubMed]
- Legler, J.M. Natural history of the Ornate Box Turtle, Terrapene ornata ornata Agassiz. Univ. Kans. Publ. Mus. Nat. Hist. 1960, 11, 527–669. [Google Scholar]
- Ernst, C.H.; Lovich, J.E. Turtles of the United States and Canada, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2009. [Google Scholar]
- Martin, B.T.; Bernstein, N.P.; Birkhead, R.D.; Koukl, J.F.; Mussmann, S.M.; Placyk, J.S., Jr. Sequence-based molecular phylogenetics and phylogeography of the American box turtles (Terrapene spp.) with support from DNA barcoding. Mol. Phylogenet. Evol. 2013, 68, 119–134. [Google Scholar] [CrossRef]
- Bonett, R.M.; Boundy, J.; Burbrink, F.T.; Crother, B.I.; de Queiroz, K.; Frost, D.R.; Highton, R.; Iverson, J.B.; Jockusch, E.L.; Kraus, F.; et al. Scientific and Standard English Names of Amphibians and Reptiles North of Mexico, with Comments Regarding Confidence in Our Understanding; Society for the Study of Amphibians and Reptiles: Topeka, KS, USA, 2017. [Google Scholar]
- Doroff, A.M.; Keith, L.B. Demography and ecology of an ornate box turtle (Terrapene ornata) population in south-central Wisconsin. Copeia 1990, 1990, 387–399. [Google Scholar] [CrossRef]
- Converse, S.J.; Iverson, J.B.; Savidge, J.A. Activity, reproduction, and overwintering behavior of ornate box turtles (Terrapene ornata ornata) in the Nebraska Sandhills. Am. Midl. Nat. 2002, 148, 416–422. [Google Scholar] [CrossRef]
- Redder, A.J.; Dodd, C.K., Jr.; Keinath, D.A. Ornate Box Turtle (Terrapene ornata ornata): A Technical Conservation Assessment. USDA Forest Service, Rocky Mountain Region, US Department of Agriculture. 2006. Available online: https://pubs.usgs.gov/publication/96227 (accessed on 13 January 2023).
- Degenhardt, W.G.; Painter, C.W.; Price, A.H. Amphibians and reptiles of New Mexico; University of New Mexico Press: Albuquerque, NM, USA, 1996. [Google Scholar]
- Boyle, S.A.; Lourenco, W.C.; da Silva, L.R.; Smith, A.T. Home range estimates vary with sample size and methods. Folia Primatol. 2009, 80, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Habeck, C.W.; Figueras, M.P.; Deo, J.E.; Burke, R.L. A surfeit of studies: What have we learned from all the box turtle (Terrapene carolina and T. ornata) home range studies? Diversity 2019, 11, 68. [Google Scholar] [CrossRef]
- Claussen, D.L.; Finkler, M.S.; Smith, M.M. Threat trailing of turtles: Methods for evaluating spatial movements and pathway structure. Can. J. Zool. 1997, 75, 2120–2128. [Google Scholar] [CrossRef]
- Holy, L.L. Home Range, Homing Ability, Orientation and Navigational Mechanisms of the Western Box Turtle (Terrapene ornata) from Western Nebraska. Ph.D. Dissertation, University of Nebraska-Lincoln, Lincoln, NE, USA, 1995. [Google Scholar]
- Struecker, B.P.; Muñoz, A.; Warcholek, S.; Harden, L.A.; Milanovich, J.R. Home ranges of ornate box turtles in remnant prairies in north-central Illinois. Reptiles Amphib. 2023, 30, e17963. [Google Scholar] [CrossRef]
- Nieuwolt, P.M. Movement, activity, and microhabitat selection in the western box turtle, Terrapene ornata luteola, in New Mexico. Herpetologica 1996, 52, 487–495. [Google Scholar]
- Germano, D.J. Activity, growth, reproduction, and population structure of desert box turtles (Terrapene ornata luteola) at the northern edge of the Chihuahuan Desert. Chelonian Conserv. Biol. 2014, 13, 56–64. [Google Scholar] [CrossRef]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; Van den Hurk, B.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Cherlet, M.; Forzieri, G.; McCormick, N.; Naumann, G.; Vogt, J.V.; Dosio, A. How will the progressive global increase of arid areas affect population and land-use in the 21st century? Glob. Planet. Chang. 2021, 205, 103597. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, B.I.; Smerdon, J.E. Rapid intensification of the emerging southwestern North American megadrought in 2020-2021. Nat. Clim. Chang. 2022, 12, 232–234. [Google Scholar] [CrossRef]
- Parlin, A.F.; Nardone, J.A.; Dougherty, J.K.; Rebein, M.; Safi, K.; Schaeffer, P.J. Activity and movement of free-living box turtles are largely independent of ambient and thermal conditions. Mov. Ecol. 2018, 6, 12. [Google Scholar] [CrossRef]
- Butler, C.J. A review of the effects of climate change on Chelonians. Diversity 2019, 11, 138. [Google Scholar] [CrossRef]
- Lovich, J.E.; Puffer, S.R.; Cummings, K.; Arundel, T.R.; Vamstad, M.S.; Brundige, K.D. High female desert tortoise mortality in the western Sonoran Desert during California’s epic 2012–2016 drought. Endanger. Species Res. 2022, 50, 1–16. [Google Scholar] [CrossRef]
- Berry, K.H.; Mack, J.; Anderson, K.A. Variations in climate drive behavior and survival of small desert tortoises. Front. Ecol. Evol. 2023, 11, 116450. [Google Scholar] [CrossRef]
- Rodriguez, F.M.; Pollock, G.W.; Pollock, D.A.; Mali, I. Mass die-off of juvenile ornate box turtles, Terrapene ornata (Agassiz, 1857), in Chaves County, New Mexico, USA. Herpetol. Notes 2022, 15, 391–393. [Google Scholar]
- Platt, S.G.; Liu, H.; Borg, C.K. Fire ecology of the Florida box turtle (Terrapene carolina bauri Taylor) in Pine Rockland Forests of the Lower Florida Keys. Nat. Areas J. 2010, 30, 254–260. [Google Scholar] [CrossRef]
- Buchanan, S.W.; Steeves, T.K.; Karraker, N.E. Mortality of eastern box turtles (Terrapene c. carolina) after a growing season prescribed fire. Herpetol. Conserv. Biol. 2021, 16, 715–725. [Google Scholar]
- Cross, M.D.; Mayer, J.W.; Cross, D.T. Tissue changes observed in eastern box turtles (Terrapene carolina carolina) following a prescribed fire. J. Zoo Wildl. Med. 2021, 51, 1047–1051. [Google Scholar] [CrossRef]
- Roe, J.H.; Bayles, Z. Overwintering behavior reduces mortality for a terrestrial turtle in forests managed with prescribed fire. For. Ecol. Manag. 2021, 486, 118990. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, D.; Adamovicz, L.; Allender, M.; Colton, A.; Nÿboer, R.; Dreslik, M. Avoiding mortality: Timing prescribed burns in ornate box turtle habitat. Wildl. Biol. 2023, 88, e22510. [Google Scholar] [CrossRef]
- National Drought Mitigation Center. United States Drought Monitor. Available online: https://droughtmonitor.unl.edu (accessed on 13 July 2023).
- NOAA. Climate Data Online, Station ID: USC00297008. Available online: https://www.ncei.noaa.gov/data/daily-summaries/access/USC00297008.csv (accessed on 13 July 2023).
- Suriyamongkol, T.; Mahan, L.B.; Kreikemeier, A.A.; Ortega-Berno, V.; Mali, I. Understanding habitat use and activity patterns of ornate box turtle (Terrapene ornata) in eastern New Mexico. Am. Midl. Nat. 2021, 186, 215–230. [Google Scholar] [CrossRef]
- Farnsworth, S.D.; Seigel, R.A. Responses, movements, and survival of relocated box turtles during construction of the Intercounty Connector Highway in Maryland. Transp. Res. Rec. J. Transp. Res. Board 2013, 2362, 1–8. [Google Scholar] [CrossRef]
- Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 2006, 197, 516–519. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 13 July 2023).
- Bernstein, N.P.; Fendrich, R.H.; McCollum, S.A. Do home range, movement patterns, and habitat use of ornate box turtles (Terrapene ornata ornata) differ among age classes? J. Herpetol. 2023, 57, 1–10. [Google Scholar] [CrossRef]
- Demetrio, C.M.; Willey, L.L.; Jones, M.T.; Danaher, M.; Franklin, J. Home range and habitat use of Florida box turtles (Terrapene bauri) in the Ten Thousand Islands, Florida. J. Herpetol. 2022, 56, 376–385. [Google Scholar] [CrossRef]
- Roe, J.H.; Kish, A.L.; Nacy, J.P. Variation and repeatability of home range in a forest-dwelling terrestrial turtle: Implications for prescribed fire in forest management. J. Zool. 2020, 310, 71–82. [Google Scholar] [CrossRef]
- Brockway, D.G.; Gatewood, R.G.; Paris, R.B. Restoring fire as an ecological process in shortgrass prairie ecosystems: Initial effects of prescribed burning during the dormant and growing seasons. J. Environ. Manag. 2002, 65, 135–152. [Google Scholar] [CrossRef]
- Milanovich, J.R.; Struecker, B.P.; Warcholek, S.A.; Harden, L.A. Thermal environment and microhabitat of ornate box turtle hibernacula. Wildl. Biol. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Edmonds, D.; Adamovicz, L.; Allender, M.; Colton, A.; Nÿboer, R.; Dreslik, M. Evaluating population persistence of ornate box turtles (Terrapene ornata) at the northeast edge of their distribution. Wildl. Biol. 2023, 2023, e01183. [Google Scholar] [CrossRef]
- Refsnider, J.M.; Strickland, J.; Janzen, F.J. Home range and site fidelity of imperiled ornate box turtles (Terrapene ornata) in northwestern Illinois. Chelonian Conserv. Biol. 2012, 11, 78–83. [Google Scholar] [CrossRef]
- Tucker, C.R.; Strickland, J.T.; Edmond, B.S.; Delaney, D.K.; Ligon, D.B. Activity patterns of ornate box turtles (Terrapene ornata) in northwestern Illinois. Copeia 2015, 103, 502–511. [Google Scholar] [CrossRef]
- Plummer, V.M. Activity and thermal ecology of the box turtle, Terrapene ornata, at its southwestern range limit in Arizona. Chelonian Conserv. Biol. 2003, 4, 569–577. [Google Scholar]
- Converse, S.J.; Savidge, J.A. Ambient temperature, activity, and microhabitat use by ornate box turtles (Terrapene ornata ornata). J. Herpetol. 2003, 37, 665–670. [Google Scholar] [CrossRef]
- Olson, R.E. Notes on evaporative water loss in terrestrial chelonians. Bull. Md. Herpetol. Soc. 1989, 25, 49–57. [Google Scholar]
- Riedesel, M.L.; Cloudsley-Thompson, J.L.; Cloudsley-Thompson, J.A. Evaporative thermoregulation in turtles. Physiol. Zool. 1971, 44, 28–32. [Google Scholar] [CrossRef]
- Plummer, V.M.; Williams, B.K.; Skiver, M.M.; Carlyle, J.C. Effects of dehydration on the critical thermal maximum of the desert box turtle (Terrapene ornata luteola). J. Herpetol. 2003, 27, 747–750. [Google Scholar] [CrossRef]
- Blair, W.F. Some aspects of the biology of the ornate box turtle, Terrapene ornata. Southwest. Nat. 1976, 21, 89–104. [Google Scholar] [CrossRef]
- Bernstein, N.P.; McCollum, S.A.; VanDeWalle, T.J.; Black, R.W.; Rhodes, R.R., II; Hughes, D.F. Longevity estimates of ornate box turtles (Terrapene ornata) in Iowa. Chelonian Conserv. Biol. 2024, 22, 220–224. [Google Scholar] [CrossRef]
ID | Sex | Start | End | Total Days | Mortality | 100% MCPs (ha) |
---|---|---|---|---|---|---|
1 | Male | 5 Sept 2019 | 7 Sept 2022 | 1036 | No | 11.37 |
2 | Female | 4 Oct 2019 | 7 Sept 2022 | 1007 | No | 1.78 |
3 | Male | 7 July 2020 | 24 April 2022 | 656 | Yes | 2.77 |
4 | Female | 1 July 2021 | 21 April 2022 | 294 | Yes | 6.41 |
5 | Female | 6 July 2021 | 11 July 2022 | 370 | No | 30.89 |
6 | Female | 7 July 2021 | 7 July 2022 | 365 | No | 3.64 |
7 | Male | 15 July 2021 | 7 July 2022 | 357 | No | 8.19 |
8 | Male | 18 Aug 2021 | 13 July 2022 | 328 | No | 4.53 |
ID | Sex | Minimum (ha) | Maximum (ha) | Median (ha) | Mean (ha) |
---|---|---|---|---|---|
1 | Male | 1.20 | 6.59 | 4.0 | 3.95 |
3 | Male | 0.96 | 2.77 | 1.87 | 1.87 |
7 | Male | 4.00 | 6.36 | 5.18 | 5.18 |
8 | Male | 0.90 | 4.38 | 2.64 | 2.64 |
2 | Female | 0.32 | 1.18 | 0.94 | 0.85 |
4 | Female | 6.41 | 6.41 | 6.41 | 6.41 |
5 | Female | 1.25 | 30.88 | 16.07 | 16.07 |
6 | Female | 0.93 | 3.39 | 2.17 | 2.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weaver, R.E.; Suriyamongkol, T.; Shoemaker, S.N.; Gonzalez, J.T.; Mali, I. Spatial Ecology and Movement of Ornate Box Turtles in the Escalating Drought Conditions of the Great Plains Ecoregion. Fire 2025, 8, 24. https://doi.org/10.3390/fire8010024
Weaver RE, Suriyamongkol T, Shoemaker SN, Gonzalez JT, Mali I. Spatial Ecology and Movement of Ornate Box Turtles in the Escalating Drought Conditions of the Great Plains Ecoregion. Fire. 2025; 8(1):24. https://doi.org/10.3390/fire8010024
Chicago/Turabian StyleWeaver, Rachel E., Thanchira Suriyamongkol, Sierra N. Shoemaker, Joshua T. Gonzalez, and Ivana Mali. 2025. "Spatial Ecology and Movement of Ornate Box Turtles in the Escalating Drought Conditions of the Great Plains Ecoregion" Fire 8, no. 1: 24. https://doi.org/10.3390/fire8010024
APA StyleWeaver, R. E., Suriyamongkol, T., Shoemaker, S. N., Gonzalez, J. T., & Mali, I. (2025). Spatial Ecology and Movement of Ornate Box Turtles in the Escalating Drought Conditions of the Great Plains Ecoregion. Fire, 8(1), 24. https://doi.org/10.3390/fire8010024