A Novel Semi-Active Control Approach for Flexible Structures: Vibration Control through Boundary Conditioning Using Magnetorheological Elastomers
Abstract
:1. Introduction
2. Materials and Methods
2.1. MRE Characterization and Modelling
2.2. Design of Electromagnet to Activate MRE
2.3. Mathematical Modelling of the Beam with MRE Support
2.4. Modelling the Continuous Beam Using Rayleigh–Ritz
2.5. Equivalent Single-Degree-of-Freedom (SDOF) System
2.6. Modelling the PID Control
2.7. Modelling the On–Off Control
3. Results and Discussion
3.1. Shock (Free Vibration) Response
3.2. Harmonic Response
3.3. Random Vibration Response
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Beam Geometry Optimization
Parameter | Cost Weight | ||
---|---|---|---|
0.2 | 0.5 | 0.8 | |
Beam Length, l (mm) | 437 | 531 | 777 |
Beam Width, b (mm) | 10 | 10 | 10 |
Beam Thickness, h (mm) | 2 | 2 | 2 |
Support Location, p (%L) | 3.7 | 4.5 | 6.5 |
Cantilever Fund. Freq. (Hz) | 9.29 | 6.40 | 3.06 |
Fund. Freq. at 0 T (Hz) | 4.99 | 4.56 | 2.85 |
Fund. Freq. at 1 T (Hz) | 7.19 | 5.67 | 3.00 |
Frequency Ratio at 0 T | 0.537 | 0.773 | 0.913 |
Frequency Ratio at 1 T | 0.774 | 0.886 | 0.959 |
% Increase in Frequency | 44.11 | 24.24 | 5.06 |
Appendix B. PID Tuning Optimization
References
- Kang, S.S.; Choi, K.; Nam, J.-D.; Choi, H.J. Magnetorheological Elastomers: Fabrication, Characteristics, and Applications. Materials 2020, 13, 4597. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, R.; Ramamoorthy, M. Dynamic analysis of laminated composite sandwich beam containing carbon nanotubes reinforced magnetorheological elastomer. J. Sandw. Struct. Mater. 2021, 23, 1784–1807. [Google Scholar] [CrossRef]
- Ramesh, B.V.; Vasudevan, R.; Kumar, N.B. Vibration Analysis of a Laminated Composite Magnetorheological Elastomer Sandwich Beam. Appl. Mech. Mater. 2014, 592–594, 2097–2101. [Google Scholar] [CrossRef]
- Wei, K.-X.; Meng, G.; Zhang, W.-M.; Zhu, S.-S. Experimental investigation on vibration characteristics of sandwich beams with magnetorheological elastomers cores. J. Cent. South Univ. Technol. 2008, 15, 239–242. [Google Scholar] [CrossRef]
- Hu, G.; Guo, M.; Li, W.; Du, H.; Alici, G. Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields. Smart Mater. Struct. 2011, 20, 127001. [Google Scholar] [CrossRef]
- Long, M.; Hu, G.L.; Wang, S.L. Vibration Response Analysis of MRE Cantilever Sandwich Beam under Non-Homogeneous Magnetic Fields. Appl. Mech. Mater. 2013, 303–306, 49–52. [Google Scholar] [CrossRef]
- Poojary, U.R.; Hegde, S.; Kiran, K.; Gangadharan, K.V. Dynamic response of a MRE sandwich structure under a non-homogenous magnetic field. J. Korean Phys. Soc. 2021, 79, 864–873. [Google Scholar] [CrossRef]
- Khanouki, M.A.; Sedaghati, R.; Hemmatian, M. Multidisciplinary Design Optimization of a Novel Sandwich Beam-Based Adaptive Tuned Vibration Absorber Featuring Magnetorheological Elastomer. Materials 2020, 13, 2261. [Google Scholar] [CrossRef] [PubMed]
- Szmidt, T.; Pisarski, D.; Konowrocki, R.; Awietjan, S.; Boczkowska, A. Adaptive Damping of a Double-Beam Structure Based on Magnetorheological Elastomer. Shock. Vib. 2019, 2019, 8526179. [Google Scholar] [CrossRef]
- Ni, Y.; Ying, Z.; Chen, Z. Magneto-rheological elastomer (MRE) based composite structures for micro-vibration control. Earthq. Eng. Eng. Vib. 2010, 9, 345–356. [Google Scholar] [CrossRef]
- Rasooli, A. Fabrication, Characterization and Control of a Novel Magnetorheological Elastomer-Based Adaptive Tuned Vibration Absorber. Master’s Thesis, Concordia University, Montréal, QC, Canada, 2021. Available online: https://spectrum.library.concordia.ca/id/eprint/w987877/ (accessed on 23 August 2023).
- Soleymani, T.; Arani, A.G. On aeroelastic stability of a piezo-MRE sandwich plate in supersonic airflow. Compos. Struct. 2019, 230, 111532. [Google Scholar] [CrossRef]
- Bornassi, S.; Navazi, H.; Haddadpour, H. Coupled bending-torsion flutter investigation of MRE tapered sandwich blades in a turbomachinery cascade. Thin-Walled Struct. 2020, 152, 106765. [Google Scholar] [CrossRef]
- Magliacano, D.; Viscardi, M.; Dimino, I.; Concilio, A. Active Vibration Control by Piezoceramic Actuators of a Car Floor Panel. In Proceedings of the 23rd International Congress on Sound and Vibration (ICSV23), Athenes, Greece, 10–14 July 2016. [Google Scholar]
- Rajamohan, V.; Sedaghati, R.; Rakheja, S. Optimal vibration control of beams with total and partial MR-fluid treatments. Smart Mater. Struct. 2011, 20, 115016. [Google Scholar] [CrossRef]
- Liu, C.; Hemmatian, M.; Sedaghati, R.; Wen, G. Development and Control of Magnetorheological Elastomer-Based Semi-active Seat Suspension Isolator Using Adaptive Neural Network. Front. Mater. 2020, 7, 171. [Google Scholar] [CrossRef]
- Nguyen, P.B.; Choi, S. A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake. Smart Mater. Struct. 2011, 20, 125003. [Google Scholar] [CrossRef]
- Remington Industries. Remington Copper and Magnet Wire Data Chart. Available online: https://www.remingtonindustries.com/content/Remington%20Copper%20and%20Magnet%20Wire%20Data%20Chart.pdf (accessed on 3 July 2023).
- The Engineering Toolbox. The Engineering Toolbox. Copper Wire—Electrical Resistance vs. Gauge. Available online: https://www.engineeringtoolbox.com/copper-wire-d_1429.html (accessed on 2 August 2023).
- LORD Corporation. Lord Technical Data: MRF-132DG Magneto-Rheological Fluid. 2019. Available online: https://lordfulfillment.com/pdf/44/DS7015_MRF-132DGMRFluid.pdf (accessed on 17 June 2023).
- K&J Magnetics. K&J Magnetics—Specifications. Neodymium Magnet Physical Properties. Available online: https://www.kjmagnetics.com/specs.asp (accessed on 2 August 2023).
- Finite Element Method Magnetics. NdFeB Properties. Available online: https://www.femm.info/wiki/NeoProperties (accessed on 17 June 2023).
- Rao, S. Vibration of Continuous Systems, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Szego, G. Orthogonal Polynomials; Colloquium Publications (American Mathematical Society); American Mathematical Society: Providence, RI, USA, 1939; Volume 23. Available online: https://nla.gov.au/nla.cat-vn2358422 (accessed on 2 August 2023).
- Zill, D.; Cullen, M. Advanced Engineering Mathematics, 3rd ed.; Jones and Bartlett Publishers, LLC: Sudbury, MA, USA, 2020. [Google Scholar]
- Amabili, M.; Garziera, R. A Technique for the Systematic Choice of Admissible Functions in the Rayleigh–Ritz Method. J. Sound Vib. 1999, 224, 519–539. [Google Scholar] [CrossRef]
- Arora, J. Introduction to Optimum Design, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Chopra, A. Dynamics of Structures: Theory and Application to Earthquake Engineering, 3rd ed.; Prentice Hall: Upple Saddle River, NJ, USA, 1981. [Google Scholar]
- Lee, H.-S.; Choi, S.-B. Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles. J. Intell. Mater. Syst. Struct. 2000, 11, 80–87. [Google Scholar] [CrossRef]
- Gu, X.; Yu, Y.; Li, Y.; Li, J.; Askari, M.; Samali, B. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control. Mech. Syst. Signal Process. 2019, 119, 380–398. [Google Scholar] [CrossRef]
- Manita, L.A. Optimal operating modes with chattering switching in manipulator control problems. J. Appl. Math. Mech. 2000, 64, 17–24. [Google Scholar] [CrossRef]
- The Engineering Toolbox. Permeability. Available online: https://www.engineeringtoolbox.com/permeability-d_1923.html (accessed on 11 August 2023).
Coefficient | B ≤ 1.5 T | B > 1.5 T |
---|---|---|
0.00 | −1419.52 | |
1.82 | 13,551.37 | |
−3.63 | −50744.31 | |
1.782 | 93,520.50 | |
0.387 | −5032.46 | |
0 | 30,566.42 |
Dimension | Value |
---|---|
Thickness, t | 10 mm |
1008 Steel Uncoiled Length, c | 20 mm |
1008 Steel Coiled Length, b | 50 mm |
Electromagnet Width, w | 50 mm |
N52 Magnet Thickness, k | 3 mm |
MRE Thickness, r | 8 mm |
1008 Steel between MRE, g | 5 mm |
Wire Diameter, D | 1.15 mm |
Number of Turns, Nw | 870 turns |
Wire Length, Lw | 144.4 m |
Component | Density (kg/m3) | Volume (m3) | Mass (kg) |
---|---|---|---|
1008 Steel | 7861 | 1.26 × 10−4 | 0.990 |
N52 | 7500 | 3.00 × 10−6 | 0.022 |
MRE | 3500 | 8.00 × 10−6 | 0.028 |
17 AWG Wire | 8886 | 5.83 × 10−4 | 5.180 |
Input Current (A) | Magnetic Flux Density (T) |
---|---|
−3 | 0.012 |
−2 | 0.300 |
−1 | 0.501 |
0 | 0.665 |
1 | 0.806 |
2 | 0.913 |
3 | 0.983 |
Controller | KP | KI | KD |
---|---|---|---|
PIDP | 26,472 | 16,178 | −93,056 |
PIDX | 1169 | −92,175 | −150 |
PIDTs | 35,751 | −89,030 | −1186 |
Method | Settling Time (s) | Peak (mm) |
---|---|---|
Passive | 1.38 | 21.3 |
PIDTs | 1.34 (−3.3%) | 23.1 (+8.4%) |
On–Off | 0.65 (−52.7%) | 20.7 (−3.1%) |
Controller | Steady-State Amplitude (mm) | |
---|---|---|
5.14 Hz | 7.06 Hz | |
Passive | 1.9 | 4.8 |
1.6 (−17.0%) | 6.5 (+35.3%) | |
On–Off | 2.4 (+25.0%) | 2.2 (−54.4%) |
Controller | Mean Displacement (mm) | RMS Displacement (mm) |
---|---|---|
Passive | 0.0 | 33.2 |
PIDP | −0.7 | 45.3 (36.4%) |
PIDX | 0.0 | 34.0 (2.4%) |
PIDTs | 0.2 | 33.2 (0%) |
On–Off | 0.1 | 25.4 (−23.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, J.; Sedaghati, R. A Novel Semi-Active Control Approach for Flexible Structures: Vibration Control through Boundary Conditioning Using Magnetorheological Elastomers. Vibration 2024, 7, 605-626. https://doi.org/10.3390/vibration7020032
Morales J, Sedaghati R. A Novel Semi-Active Control Approach for Flexible Structures: Vibration Control through Boundary Conditioning Using Magnetorheological Elastomers. Vibration. 2024; 7(2):605-626. https://doi.org/10.3390/vibration7020032
Chicago/Turabian StyleMorales, Jomar, and Ramin Sedaghati. 2024. "A Novel Semi-Active Control Approach for Flexible Structures: Vibration Control through Boundary Conditioning Using Magnetorheological Elastomers" Vibration 7, no. 2: 605-626. https://doi.org/10.3390/vibration7020032
APA StyleMorales, J., & Sedaghati, R. (2024). A Novel Semi-Active Control Approach for Flexible Structures: Vibration Control through Boundary Conditioning Using Magnetorheological Elastomers. Vibration, 7(2), 605-626. https://doi.org/10.3390/vibration7020032