Incorporating Boundary Nonlinearity into Structural Vibration Problems
Abstract
:1. Introduction
2. Analytical Methods
2.1. Linear, Non-Classical Boundary Conditions
2.2. Nonlinear Boundary Conditions
- Express the nonlinear BCs as polynomials, applying a Taylor expansion where necessary.
- Solve the homogeneous BCs, reducing the order of the system to two equations in two unknowns.
- Express the general mode shape in terms of the remaining unknown variables.
- Apply the updated mode shapes in the polynomial BCs.
- Introduce updated polynomial coefficients to simplify the homogeneous equations.
- Assume a general solution for the polynomial equations and introduce a dummy variable to allow them to be expressed in terms of a single variable.
- If necessary, introduce dummy coefficients so that the order of the two polynomials is the same.
- Calculate the tensor resultant of the system, applying Plücker relations, where possible.
- Step 1: Express the nonlinear BCs as polynomials, applying a Taylor expansion where necessary.
- Step 2: Solve the homogeneous BCs, reducing the order of the system to two equations in two unknowns.
- Step 3: Express the general mode shape in terms of the remaining unknown variables.
- Step 4: Apply the updated mode shapes in the polynomial BCs.
- Step 5: Introduce updated polynomial coefficients to simplify the homogeneous equations.
- Step 6: Assume a general solution for the polynomial equations and introduce a universal variable to allow them to be expressed in terms of a single term.
- Step 7: If necessary, introduce dummy coefficients, so that the order of the two polynomials is the same.
- Step 8: Calculate the tensor resultant of the system, applying Plücker relations, where possible.
3. Example: Symmetric, Nonlinear Spring-Supported Beam
4. Example: Cantilever Beam with Magnetic Tip Interaction
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; Wiley-VCH: Hoboken, NJ, USA, 1995. [Google Scholar] [CrossRef]
- Vakakis, A.F.; Gendelman, O.V.; Bergman, L.A.; McFarland, D.M.; Kerschen, G.; Lee, Y.S. Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems; Solid Mechanics and Its Applications; Springer International Publishing: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Wagg, D.; Neild, S. Nonlinear Vibration with Control; Solid Mechanics and Its Applications; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Cammarano, A.; Hill, T.L.; Neild, S.A.; Wagg, D.J. Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator. Nonlinear Dyn. 2014, 77, 311–320. [Google Scholar] [CrossRef]
- Hill, T.L.; Cammarano, A.; Neild, S.A.; Barton, D.A. Identifying the significance of nonlinear normal modes. Proc. R. Soc. Math. Phys. Eng. Sci. 2017, 473, 20160789. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.L.; Cammarano, A.; Neild, S.A.; Wagg, D.J. Out-of-unison resonance in weakly nonlinear coupled oscillators. Proc. R. Soc. Math. Phys. Eng. Sci. 2015, 471, 20140659. [Google Scholar] [CrossRef] [PubMed]
- Pellicano, F.; Mastroddi, F. Nonlinear Dynamics of a Beam on Elastic Foundation. Nonlinear Dyn. 1997, 14, 335–355. [Google Scholar] [CrossRef]
- Sigalov, G.; Gendelman, O.V.; AL-Shudeifat, M.A.; Manevitch, L.I.; Vakakis, A.F.; Bergman, L.A. Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 2012, 69, 1693–1704. [Google Scholar] [CrossRef]
- Gendelman, O.V. Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators. Nonlinear Dyn. 2001, 25, 237253. [Google Scholar] [CrossRef]
- Pellicano, F. On the dynamic properties of axially moving systems. J. Sound Vib. 2005, 281, 593–609. [Google Scholar] [CrossRef]
- Hughes, T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Comapny: New York, NY, USA, 2012. [Google Scholar]
- Blevins, R.D. Formulas for Natural Frequency and Mode Shape; Van Nostrand Reinhold Company: New York, NY, USA, 1979. [Google Scholar]
- Weaver, W.; Timoshenko, S.; Young, D.H.D.H. Vibration Problems in Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1990; p. 610. [Google Scholar]
- Bokaian, A. Natural frequencies of beams under compressive axial loads. J. Sound Vib. 1988, 126, 49–65. [Google Scholar] [CrossRef]
- Rutenberg, A. Vibration frequencies for a uniform cantilever with a rotational constraint at a point. J. Appl. Mech. Trans. ASME 1978, 45, 422–423. [Google Scholar] [CrossRef]
- Lau, J.H. Vibration Frequencies and Mode Shapes for a Constrained Cantilever. J. Appl. Mech. 1984, 51, 182–187. [Google Scholar] [CrossRef]
- Rao, C.K.; Mirza, S. A note on vibrations of generally restrained beams. J. Sound Vib. 1989, 130, 453–465. [Google Scholar] [CrossRef]
- Szemplinska-Stupnicka, W. “Non-linear normal modes” and the generalized Ritz method in the problems of vibrations of non-linear elastic continuous systems. Int. J. Non-Linear Mech. 1983, 18, 149–165. [Google Scholar] [CrossRef]
- Mao, X.Y.; Ding, H.; Chen, L.Q. Vibration of Flexible Structures under Nonlinear Boundary Conditions. J. Appl. Mech. Trans. ASME 2017, 84, 111006. [Google Scholar] [CrossRef]
- Ding, H.; Lu, Z.Q.; Chen, L.Q. Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 2019, 442, 738–751. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, H.; Zhang, Y.W.; Chen, L.Q. Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech. Sin. 2021, 37, 387–401. [Google Scholar] [CrossRef]
- Ding, H.; Wang, S.; Zhang, Y.W. Free and forced nonlinear vibration of a transporting belt with pulley support ends. Nonlinear Dyn. 2018, 92, 2037–2048. [Google Scholar] [CrossRef]
- Ma, T.F.; Da Silva, J. Iterative solutions for a beam equation with nonlinear boundary conditions of third order. Appl. Math. Comput. 2004, 159, 11–18. [Google Scholar] [CrossRef]
- Dang, Q.A.; Thanh Huong, N. Iterative Method for Solving a Beam Equation with Nonlinear Boundary Conditions. Adv. Numer. Anal. 2013, 2013, 470258. [Google Scholar] [CrossRef]
- Gao, Q. The solvability and numerical simulation for the elastic beam problems with nonlinear boundary conditions. Abstr. Appl. Anal. 2014, 2014, 454658. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Ferrara, M.; Salari, A.; Azimbagirad, M. A variational approach to perturbed elastic beam problems with nonlinear boundary conditions. Math. Rep. 2016, 18, 573–589. [Google Scholar]
- Porter, B.; Billett, R.A. Harmonic and sub-harmonic vibration of a continuous system having non-linear constraint. Int. J. Mech. Sci. 1965, 7, 431–439. [Google Scholar] [CrossRef]
- Lee, W.K.; Yeo, M.H. Two-Mode Interaction of a Beam with a Nonlinear Boundary Condition. J. Vib. Acoust. 1999, 121, 84–88. [Google Scholar] [CrossRef]
- Zhang, G.C.; Chen, L.Q.; Ding, H. Forced vibration of tip-massed cantilever with nonlinear magnetic interactions. Int. J. Appl. Mech. 2014, 6, 1450015. [Google Scholar] [CrossRef]
- Qiao, G.; Rahmatalla, S. Dynamics of Euler-Bernoulli beams with unknown viscoelastic boundary conditions under a moving load. J. Sound Vib. 2021, 491, 115771. [Google Scholar] [CrossRef]
- Liu, C.S. A boundary shape function method for analyzing nonlinear composite beams, subjecting to nonlinear boundary moment conditions. Compos. Struct. 2021, 264, 113636. [Google Scholar] [CrossRef]
- Farokhi, H.; Xia, Y.; Erturk, A. Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers. Nonlinear Dyn. 2021, 107, 457–475. [Google Scholar] [CrossRef]
- Stark, R.W.; Schitter, G.; Stark, M.; Guckenberger, R.; Stemmer, A. State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy. Phys. Rev. B 2004, 69, 085412. [Google Scholar] [CrossRef]
- Rosenberg, R.M. The Normal Modes of Nonlinear n-Degree-of-Freedom Systems. J. Appl. Mech. 1962, 29, 7–14. [Google Scholar] [CrossRef]
- Kerschen, G.; Peeters, M.; Golinval, J.C.; Vakakis, A.F. Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 2009, 23, 170–194. [Google Scholar] [CrossRef]
- Shaw, S.W.; Pierre, C. Normal Modes for Non-Linear Vibratory Systems. J. Sound Vib. 1993, 164, 85–124. [Google Scholar] [CrossRef]
- Haller, G.; Ponsioen, S. Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction. Nonlinear Dyn. 2016, 86, 1493–1534. [Google Scholar] [CrossRef]
- Dolotin, V.; Morozov, A. Introduction to Non-Linear Algebra; World Scientific: Singapore, 2007; pp. 1–269. [Google Scholar]
- Lang, S. Algebra; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
Approximation | |||
---|---|---|---|
Ansys | 6.71 | 21.46 | 57.57 |
Free | 3.26 | 20.44 | 57.23 |
Linear | 3.59 | 20.49 | 57.25 |
Cubic | 6.88 | 21.24 | 57.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elliott, A.J.; Cammarano, A. Incorporating Boundary Nonlinearity into Structural Vibration Problems. Vibration 2024, 7, 949-969. https://doi.org/10.3390/vibration7040050
Elliott AJ, Cammarano A. Incorporating Boundary Nonlinearity into Structural Vibration Problems. Vibration. 2024; 7(4):949-969. https://doi.org/10.3390/vibration7040050
Chicago/Turabian StyleElliott, Alex J., and Andrea Cammarano. 2024. "Incorporating Boundary Nonlinearity into Structural Vibration Problems" Vibration 7, no. 4: 949-969. https://doi.org/10.3390/vibration7040050
APA StyleElliott, A. J., & Cammarano, A. (2024). Incorporating Boundary Nonlinearity into Structural Vibration Problems. Vibration, 7(4), 949-969. https://doi.org/10.3390/vibration7040050