Vibration-Based Diagnostics of Non-Ceramic Insulators: Characterization of Signals
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Methodology
3. Results
3.1. Examination of the Front of the Excited Mechanical Waves
3.1.1. Examination of Insulator Type 1
3.1.2. Examination of Insulator Type 2
3.2. Examination of the Complete Waveform
3.2.1. Examination of Insulator Type 1
3.2.2. Examination of Insulator Type 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Papailiou, K.O.; Schumuck, F. Silicone Composite Insulators: Materials, Design, Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 75. [Google Scholar]
- Application of Composite Insulators at Substations: Policy, Driving Forces & Service Experience. Available online: https://www.inmr.com/application-of-composite-insulators-at-substations-policy-driving-forces-service-experience/?utm_source=INMR+WEEKLY+TECHNICAL+REVIEW&utm_campaign=cf7ca4b08c-EMAIL_CAMPAIGN_3_5_2021_10_41_COPY_01&utm_medium=email&utm_term=0_3d4b8a59df-cf7ca4b08c-28019146&ct=t(EMAIL_CAMPAIGN_3_5_2021_10_41_COPY_01) (accessed on 13 October 2024).
- Pollution Performance of Composite Hollow Core Insulators. Available online: https://www.inmr.com/pollution-performance-of-composite-hollow-core-insulators/ (accessed on 11 October 2024).
- Bessède, J.-L. 5—Development of advanced materials for transmission and distribution (T&D) networks equipment. In Woodhead Publishing Series in Energy; Ziad, M., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 133–142. [Google Scholar]
- He, Q.; He, W.; Zhang, F.; Zhao, Y.; Li, L.; Yang, X.; Zhang, F. Research Progress of Self-Cleaning, Anti-Icing, and Aging Test Technology of Composite Insulators. Coatings 2022, 12, 1224. [Google Scholar] [CrossRef]
- INMR. Factors in the Design of Compact HV Lines in Israel. Available online: https://www.inmr.com/factors-in-the-design-of-compact-hv-lines-in-israel/ (accessed on 13 October 2024).
- Pang, G.; Zhang, Z.; Jiang, X.; Lu, M.; Gao, C. Effect of electrical erosion on composite insulator core rod under acidic environment. J. Mater. Res. Technol. 2023, 22, 3525–3535. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Wang, Q.; Deng, Y.; Yap, M.; Chern, W.K.; Oh, J.T.; Chen, Z. Degradation and Lifetime Prediction of Epoxy Composite Insulation Materials under High Relative Humidity. Polymers 2023, 15, 2666. [Google Scholar] [CrossRef] [PubMed]
- INMR; Niedospial, E. Designing & Manufacturing Polymer Insulators: Not All Types Are the Same. Available online: https://www.inmr.com/designing-manufacturing-polymer-insulators-not-all-types-are-the-same/ (accessed on 13 October 2024).
- STRI Guide 3. 2005 Composite Insulator Status Program: Field Inspection of Composite Line Insulators. STRI Guide 3 2005, 1–35.
- Liu, Y.; Ma, Z.; Pei, S. Research on Intelligent Detection Method of Composite Insulator Hydrophobicity Based on Water Spraying of Drone. In Proceedings of the 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD), Phuket, Thailand, 25–28 October 2020; pp. 145–148. [Google Scholar] [CrossRef]
- Rahim, N.N.A.; Muhamad, N.A.; Naim, N.S.M.; Jamil, M.K.M.; Ang, S.P. Ultraviolet pulse pattern for different types of insulator material during surface discharge activities. Energy Rep. 2023, 9, 870–878. [Google Scholar] [CrossRef]
- Yuan, Z.; Tu, Y.; Li, R.; Zhang, F.; Gong, B.; Wang, C. Review on the Characteristics, Heating Sources and Evolutionary Processes of the Operating Composite Insulators with Abnormal Temperature Rise. CSEE J. Power Energy Syst. 2022, 8, 910–921. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, L.; Liu, Y.; Liao, R.; Wang, T.; Huang, H. Study on the detection method of holes in composite insulator rods. High Volt. 2021, 6, 873–880. [Google Scholar] [CrossRef]
- Ogbonna, V.E.; Popoola, P.I.; Popoola, O.M.; Adeosun, S.O. A comparative study on the failure analysis of field failed high voltage composite insulator core rods and recommendation of composite insulators: A review. Eng. Fail. Anal. 2022, 138, 106369. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Hu, Q.; Liu, L.; Zhou, L.; Deng, Y. Temperature distribution characteristics and heat defect judgment method based on temperature gradient of suspended composite insulator in operation. IET Gener. Transm. Distrib. 2021, 15, 2554–2566. [Google Scholar] [CrossRef]
- Carreira, A.J.; Cherney, E.A.; Christman, R.A.; Cleckley, E.; Kuffel, J.; Phillips, A.J.; Varner, J. Guidelines for establishing diagnostic procedures for live-line working of nonceramic insulators. IEEE Trans. Power Deliv. 2014, 29, 126–130. [Google Scholar] [CrossRef]
- Fenster, A.; Parraga, G.; Bax, J. Three-dimensional ultrasound scanning. Interface Focus 2011, 1, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Li, F.; Zhao, L.; Zhang, C.; Garrido, J.; Han, Z. Vibration sensing-based human and infrastructure safety/health monitoring: A survey. Digit. Signal Process. 2021, 114, 103037. [Google Scholar] [CrossRef]
- Carminati, M.; Ricci, S. Structural Damage Detection Using Nonlinear Vibrations. Int. J. Aerosp. Eng. 2018, 2018, 1901362. [Google Scholar] [CrossRef]
- Hermans, L.; Van Der Auweraer, H. Modal Testing and Analysis of Structures under Operational Conditions: Industrial Applications. Mech. Syst. Signal Process. 1999, 13, 193–216. [Google Scholar] [CrossRef]
- Cruz, P.J.S.; Salgado, R. Performance of Vibration-Based Damage Detection Methods in Bridges. Comput. Civ. Infrastruct. Eng. 2009, 24, 62–79. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Wiciak, P.; Polak, M.A.; Cascante, G. Wave propagation in glass fibre-reinforced polymer (GFRP) bars subjected to progressive damage—Experimental and numerical results. Mater. Today Commun. 2020, 27, 102199. [Google Scholar] [CrossRef]
- Material Sound Velocities|Olympus IMS. Available online: https://www.olympus-ims.com/en/ndt-tutorials/thickness-gauge/appendices-velocities/ (accessed on 14 August 2024).
- Glass-Epoxy Composite. Available online: https://www.final-materials.com/gb/399-epoxy-board-350c (accessed on 26 October 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogh, D.; Cselkó, R.; Csányi, G.M. Vibration-Based Diagnostics of Non-Ceramic Insulators: Characterization of Signals. Vibration 2024, 7, 1111-1125. https://doi.org/10.3390/vibration7040057
Balogh D, Cselkó R, Csányi GM. Vibration-Based Diagnostics of Non-Ceramic Insulators: Characterization of Signals. Vibration. 2024; 7(4):1111-1125. https://doi.org/10.3390/vibration7040057
Chicago/Turabian StyleBalogh, Dániel, Richárd Cselkó, and Gergely Márk Csányi. 2024. "Vibration-Based Diagnostics of Non-Ceramic Insulators: Characterization of Signals" Vibration 7, no. 4: 1111-1125. https://doi.org/10.3390/vibration7040057
APA StyleBalogh, D., Cselkó, R., & Csányi, G. M. (2024). Vibration-Based Diagnostics of Non-Ceramic Insulators: Characterization of Signals. Vibration, 7(4), 1111-1125. https://doi.org/10.3390/vibration7040057