Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions
Abstract
:1. Introduction
2. Experimental Details
3. Estimation of Target Nucleus and the Collision Geometry
4. Projectile Nucleus Fragmentation and Multiplicity Fluctuations
5. Fluctuations of the Average Pseudo-Rapidity of Secondary Particles
6. Pseudo-Rapidity Correlations
6.1. Method
6.2. Analysis Procedure
- is the number of particles in the i-th bin of the event under consideration;
- is the number of particles in this event;
- = ∑ is total number of particles in the i-th bin for all events;
- = ∑ is the total number of particles in all events.
6.3. Results
7. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, S.; Qin, G.-Y. Medium Response and Jet–Hadron Correlations in Relativistic Heavy-Ion Collisions. Annu. Rev. Nucl. Part. Sci. 2023, 73, 205–229. [Google Scholar] [CrossRef]
- Gelis, F. Some aspects of the theory of heavy ion collisions. Rep. Prog. Phys. 2021, 84, 056301. [Google Scholar] [CrossRef]
- Zhou, K. Exploration of extreme QCD matter with deep learning. J. Phys. Conf. Ser. 2023, 2586, 012159. [Google Scholar] [CrossRef]
- Mishra, A.N.; Paić, G.; Pajares, C.; Scharenberg, R.P.; Srivastava, B.K. Exploring the QGP phase above the deconfinement temperature in pp and A—A collisions at LHC energies. Nucl. Phys. A 2024, 1046, 122865. [Google Scholar] [CrossRef]
- Shuryak, E. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys. 2017, 89, 035001. [Google Scholar] [CrossRef]
- Cunqueiro, L.; Sickles, A.M. Studying the QGP with Jets at the LHC and RHIC. Prog. Part. Nucl. Phys. 2022, 124, 103940. [Google Scholar] [CrossRef]
- Hauksson, S.; Jeon, S.; Gale, C. Probes of the quark-gluon plasma and plasma instabilities. Phys. Rev. C 2021, 103, 064904. [Google Scholar] [CrossRef]
- Olimov, K.K.; Liu, F.-H.; Musaev, K.A.; Shodmonov, M.Z.; Fedosimova, A.I.; Lebedev, I.A.; Kanokova, S.Z.; Tukhtaev, B.J.; Yuldashev, B.S. Study of midrapidity pt distributions of identified charged particles in Xe + Xe collisions at (snn) 1/2= 5.44 TeV using non-extensive Tsallis statistics with transverse flow. Mod. Phys. Lett. A 2022, 37, 2250095. [Google Scholar] [CrossRef]
- Ke, W.; Yin, Y. Non-hydrodynamic response in QCD-like plasma. J. High Energy Phys. 2024, 2024, 171. [Google Scholar] [CrossRef]
- Arsene, I.; Bearden, I.; Beavis, D.; Besliu, C.; Budick, B.; Bøggild, H.; Chasman, C.; Christensen, C.; Christiansen, P.; Cibor, J.; et al. Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.; Ahammed, Z.; Amonett, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Badyal, S.; Bai, Y.; Balewski, J.; et al. Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. [Google Scholar] [CrossRef]
- PHOBOS Collaboration; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Becker, B.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28–101. [Google Scholar] [CrossRef]
- Adcox, K.; Adler, S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Al-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 2005, 757, 184–283. [Google Scholar] [CrossRef]
- Collaboration, T.B.; Afanasiev, S.; Agakishiev, G.; Aleksandrov, E.; Aleksandrov, I.; Alekseev, P.; Alishina, K.; Atkin, E.; Aushev, T.; Babkin, V.; et al. Production of π + and K+ mesons in argon-nucleus interactions at 3.2 A GeV. J. High Energy Phys. 2023, 2023, 174. [Google Scholar] [CrossRef]
- Zinchenko, A.; Kapishin, M.; Kireyeu, V.; Kolesnikov, V.; Mudrokh, A.; Suvarieva, D.; Vasendina, V.; Zinchenko, D. A Monte Carlo Study of Hyperon Production with the MPD and BM@N Experiments at NICA. Particles 2023, 6, 485–496. [Google Scholar] [CrossRef]
- Abgaryan, V.; Kado, R.A.; Afanasyev, S.V.; Agakishiev, G.N.; Alpatov, E.; Altsybeev, G.; Hernández, M.A.; Andreeva, S.V.; Andreeva, T.V.; Andronov, E.V.; et al. Status and initial physics performance studies of the MPD experiment at NICA. Eur. Phys. J. A 2022, 58, 140. [Google Scholar] [CrossRef]
- Afanasiev, S.; Agakishiev, G.; Aleksandrov, E.; Aleksandrov, I.; Alekseev, P.; Alishina, K.; Astakhov, V.; Atkin, E.; Aushev, T.; Azorskiy, V.; et al. The BM@N spectrometer at the NICA accelerator complex. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1065, 169532. [Google Scholar] [CrossRef]
- Gaździcki, M.; Gorenstein, M.; Mrowczynski, S. Fluctuations and deconfinement phase transition in nucleus–nucleus collisions. Phys. Lett. B 2004, 585, 115–121. [Google Scholar] [CrossRef]
- Qin, G.-Y. Collective properties and hard probes of quark-gluon plasma. Kexue Tongbao Chin. Sci. Bull. 2024, 69, 330–345. [Google Scholar]
- Garren, L.; Knowles, I.G.; Navas, S.; Richardson, P.; Sjostrand, T.; Trippe, T. Monte Carlo particle numbering scheme. Eur. Phys. J. C 2000, 15, 205–206. [Google Scholar] [CrossRef]
- Fedosimova, A.I.; Gaitinov, A.S.; Lebedev, I.A.; Temiraliev, A. Study on initial geometry fluctuations via correlation of finite distributions of secondary particles in nucleus-nucleus interactions. J. Phys. Conf. Ser. 2016, 668, 012067. [Google Scholar] [CrossRef]
- Gardim, F.G.; Giacalone, G.; Luzum, M.; Ollitrault, J.-Y. Effects of initial state fluctuations on the mean transverse momentum. Nucl. Phys. A 2020, 1005, 121999. [Google Scholar] [CrossRef]
- Bhalerao, R.S.; Luzum, M.; Ollitrault, J.-Y. Determining initial-state fluctuations from flow measurements in heavy-ion collisions. Phys. Rev. C 2011, 84, 034910. [Google Scholar] [CrossRef]
- Jeon, S. Initial state and flow physics—A theoretical overview. Nucl. Phys. A 2014, 932, 349–356. [Google Scholar] [CrossRef]
- Sarkar, S.; Mali, P.; Mukhopadhyay, A. Simulation study of elliptic flow of charged hadrons produced in Au + Au collisions at energies available at the Facility for Antiproton and Ion Research. Phys. Rev. C 2017, 95, 014908. [Google Scholar] [CrossRef]
- Giacalone, G.; Noronha-Hostler, J.; Ollitrault, J.-Y. Relative flow fluctuations as a probe of initial state fluctuations. Phys. Rev. C 2017, 95, 054910. [Google Scholar] [CrossRef]
- Heiselberg, H. Event-by-event physics in relativistic heavy-ion collisions. Phys. Rep. 2001, 351, 161–194. [Google Scholar] [CrossRef]
- Bhattacharyya, S. Event-by-event fluctuations of maximum particle density with respect to the width of the pseudo-rapidity interval at a few A GeV/c. Europhys. Lett. 2020, 131, 42001. [Google Scholar] [CrossRef]
- Manna, S.K.; Mukhopadhyay, A.; Mali, P. Forward–backward multiplicity correlation and event-by-event multiplicity fluctuation in nucleus–nucleus collisions at 200A GeV. Int. J. Mod. Phys. E 2021, 30, 2150021. [Google Scholar] [CrossRef]
- Fedosimova, A.I.; Gaitinov, A.S.; Grushevskaya, E.B.; Lebedev, I.A. Study of the peculiarities of multiparticle production via event-by-event analysis in asymmetric nucleus-nucleus interactions. EPJ Web Conf. 2017, 145, 19009. [Google Scholar] [CrossRef]
- Burtebayev, N.; Fedosimova, A.I.; Lebedev, I.A.; Ibraimova, S.A.; Bondar, E.A. Fluctuations of Initial State and Event-by-Event Pseudo-Rapidity Correlations in High Energy Nuclear Collisions. Universe 2022, 8, 67. [Google Scholar] [CrossRef]
- Alver, B.; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; et al. Participant and spectator scaling of spectator fragments in Au + Au and Cu + Cu collisions at √sNN = 19.6 and 22.4 GeV. Phys. Rev. C 2016, 94, 024903. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Haiduc, M.; Neagu, A.T.; Firu, E. Centrality dependence of total disintegration of target nuclei in high energy nucleus–nucleus interactions. Can. J. Phys. 2016, 94, 884–893. [Google Scholar] [CrossRef]
- Trzupek, A. Collective Dynamics of Heavy Ion Collisions in ATLAS. Phys. Part. Nucl. 2023, 54, 703–707. [Google Scholar] [CrossRef]
- Kurepin, A.; Topilskaya, N. Heavy-ion collisions in a fixed target mode at the LHC beams. EPJ Web Conf. 2017, 138, 03009. [Google Scholar] [CrossRef]
- Dmitrieva, E.; Fedosimova, A.; Lebedev, I.; Temiraliev, A.; Abishev, M.; Kozhamkulov, T.; Mayorov, A.; Spitaleri, C. Determination of the primary energy using an ultrathin calorimeter. J. Phys. G Nucl. Part. Phys. 2020, 47, 035202. [Google Scholar] [CrossRef]
- Lebedev, I.; Fedosimova, A.; Mayorov, A.; Krassovitskiy, P.; Dmitriyeva, E.; Ibraimova, S.; Bondar, E. Direct Measurements of Cosmic Rays (TeV and beyond) Using an Ultrathin Calorimeter: Lessening Fluctuation Method. Appl. Sci. 2021, 11, 11189. [Google Scholar] [CrossRef]
- Lloyd, E.H.; Hurst, H.E.; Black, R.P.; Simaika, Y.M. Long-Term Storage: An Experimental Study. J. R. Stat. Soc. Ser. A (Gen.) 1966, 129, 591. [Google Scholar] [CrossRef]
- Lebedev, A.I.; Shaikhatdenov, B.G. The use of the Hurst method for rapidity correlation analysis. J. Phys. G Nucl. Part. Phys. 1997, 23, 637–641. [Google Scholar] [CrossRef]
- Kvochkina, T.N.; Lebedev, I.A.; Lebedeva, A. An analysis of high-energy interactions with large transverse momentum of secondary particles. J. Phys. G Nucl. Part. Phys. 2000, 26, 35–41. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Aggarwal, M.M.; Andreeva, N.P.; Anson, Z.V.; Ameeva, Z.V.; Arora, R.; Alexandrov, Y.A.; Azimov, S.A.; Basova, E.; Bhalla, K.B.; et al. Rapidity densities and their fluctuations in central 200 A GeV 32S interactions with Au and Ag, Br nuclei EMU01 collaboration. Phys. Lett. B 1989, 227, 285–290. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Andreeva, N.P.; Avetyan, F.A. Azimuthal correlation of secondary particles in 32S induced interactions with Ag(Br) nuclei at 4.5 GeV/c/nucleon. Part. Nucl. Lett. 2000, 4, 75–82. [Google Scholar]
- Adamovich, M.; Aggarwal, M.; Alexandrov, Y.; Amirikas, R.; Andreeva, N.; Badyal, S.; Bakich, A.; Basova, E.; Bhalla, K.; Bhasin, A.; et al. Fragmentation and multifragmentation of 10.6A GeV gold nuclei. Eur. Phys. J. A 1999, 5, 429–440. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Andreeva, N.P.; Basova, E.S.; Bradnová, V.; Bubnov, V.I.; Chernyavsky, M.M.; Gaitinov, A.S.; Gulamov, K.G.; Haiduc, M.; Hasegan, D.; et al. Flow effects in high-energy nucleus collisions with Ag(Br) in emulsion. Phys. At. Nucl. 2004, 67, 273–280. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Aggarwal, M.M.; Et, A.; Andreeva, N.; Badyal, S.; Bakich, A.; Basova, E.; Bhalla, K.; Bhasin, A.; Bhatia, V.; et al. Factorial Moments of 28 Si Induced Interactions with Ag(Br) Nuclei. Acta Physiol. Hung. 2001, 13, 213–221. [Google Scholar] [CrossRef]
- Andreeva, N.P.; Gaitinov, A.S.; Lebedev, I.A.; Skorobogatova, V.I.; Filippova, L.N.; Shaikhieva, D.B. Full destruction characteristics of light and heavy nuclei with 3.7-158 A GeV energies. Phys. Part. Nucl. Lett. 2007, 4, 67–72. [Google Scholar] [CrossRef]
- Feder, J. Fractals; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedosimova, A.I.; Olimov, K.K.; Lebedev, I.A.; Ibraimova, S.A.; Bondar, E.A.; Dmitriyeva, E.A.; Mukanov, E.B. Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions. Particles 2024, 7, 918-926. https://doi.org/10.3390/particles7040055
Fedosimova AI, Olimov KK, Lebedev IA, Ibraimova SA, Bondar EA, Dmitriyeva EA, Mukanov EB. Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions. Particles. 2024; 7(4):918-926. https://doi.org/10.3390/particles7040055
Chicago/Turabian StyleFedosimova, Anastasiya I., Khusniddin K. Olimov, Igor A. Lebedev, Sayora A. Ibraimova, Ekaterina A. Bondar, Elena A. Dmitriyeva, and Ernazar B. Mukanov. 2024. "Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions" Particles 7, no. 4: 918-926. https://doi.org/10.3390/particles7040055
APA StyleFedosimova, A. I., Olimov, K. K., Lebedev, I. A., Ibraimova, S. A., Bondar, E. A., Dmitriyeva, E. A., & Mukanov, E. B. (2024). Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions. Particles, 7(4), 918-926. https://doi.org/10.3390/particles7040055