Some Singular Spacetimes and Their Possible Alternatives †
Abstract
:1. Introduction
2. A History of Some Singular Solutions in Gravity
- Prescribe , which is “minus the energy density in the comoving frame” here, and solve Equation (8) for .
- Now that is known, prescribe , which is the “radial pressure in the comoving frame” here, and solve the equation made up of the linear combination of Equation (6) minus Equation (8) in order to find
- The stress–energy tensor component (in this case, the transverse pressure in the comoving frame) will be defined by the conservation law in Equation (9).
Astrophysical Formation of Singular Spacetimes
3. Possible Resolutions to Singular Spacetimes
3.1. Quantum Gravity Effects
- , : For this choice, the sub-manifolds are spheres.
- , : In this case, the sub-manifolds are toroidal (and the sub-manifolds for this case are intrinsically flat).
3.2. Non-Commutative Geometry
3.3. Gravastars
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. A Simple Singularity Theorem
References
- Newton, I. Mathematical Principles of Natural Philosophy; Phoenix Classics Ebooks: East Rutherford, NJ, USA, 1687. [Google Scholar]
- Synge, J.L. Relativity: The General Theory; North-Holland Publishing: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Das, A.; DeBenedictis, A. The General Theory of Relativity: A Mathematical Exposition; Springer: New York, NY, USA, 2012. [Google Scholar]
- Gourgoulhon, G. 3 + 1 formalism and bases of numerical relativity. arXiv 2007, arXiv:gr-qc/0703035. [Google Scholar] [CrossRef]
- Amaku, M.; Coutinho, F.A.B.; Éboli, O.; Massad, E. Some problems with the use of the Dirac delta function I: What is the value of δ(x) dx? Rev. Brasil. Ens. Fís. 2021, 43, e20210132. [Google Scholar] [CrossRef]
- Bracewell, R.N. The Fourier Transform and Its Application; McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Schwarzschild, K. Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitz. Preuss. Akad. Wiss. 1916, 1, 189–196. [Google Scholar]
- Friedmann, A. Über die Krümmung des Raumes. Z. Phys. 1922, 10, 377. [Google Scholar] [CrossRef]
- Lemaître, G. Un Univers homogène de Masse Constante et de Rayon Croissant Rendant Compte de la Vitesse Radiale des Nébuleuses Extra-Galactiques. Ann. Soc. Sci. Brux. 1927, 47, 49–59. [Google Scholar]
- Robertson, H.P. Relativistic Cosmology. Rev. Mod. Phys. 1933, 5, 62. [Google Scholar] [CrossRef]
- Walker, A.G. Completely Symmetric Spaces. J. Lond. Math. Soc. 1944, 19, 219–226. [Google Scholar] [CrossRef]
- Oppenheimer, J.R.; Snyder, H. On Continued Gravitational Contraction. Phys. Rev. 1939, 56, 455. [Google Scholar] [CrossRef]
- Jebsen, J.T. On the General Spherically Symmetric Solutions of Einstein’s Gravitational Equations in Vacuo. Ark. Mat. Ast. Fys. 1921, 15, 18. [Google Scholar] [CrossRef]
- Birkhoff, G.D. Relativity and Modern Physics; Harvard University Press: Cambridge, MA, USA, 1923. [Google Scholar]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Carter, B. Complete Analytic Extension of the Symmetry Axis of Kerr’s Solution of Einstein’s Equations. Phys. Rev. 1966, 141, 1242. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 1964, 14, 57. [Google Scholar] [CrossRef]
- Boyer, R.H.; Lindquist, R.W. Maximal Analytic Extension of the Kerr Metric. J. Math. Phys. 1967, 8, 265–281. [Google Scholar] [CrossRef]
- Michell, J. On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose. Philos. Trans. R. Soc. Lond. 1784, 74, 35–57. [Google Scholar]
- LaPlace, P.S. Exposition du Systèm du Monde; L’imprimerie du Cercle-Social: Paris, France, 1796. [Google Scholar]
- Ewing, A. “Black Holes” in Space. Sci. News Lett. 1964, 85, 39. [Google Scholar] [CrossRef]
- Siegfried, T. 50 Years Later, It’s Hard to Say Who Named Black Holes. Available online: https://www.sciencenews.org/blog/context/50-years-later-its-hard-say-who-named-black-holes (accessed on 1 October 2024).
- Herdeiro, C.A.R.; Lemos, J.P.S. O Buraco Negro Cinquenta Anos Depois: A Génese do Nome. Gazeta de Fisica 2018, 41, 2. [Google Scholar]
- Chandrasekhar, S. The Maximum Mass of Ideal White Dwarfs. Astrophys. J. 1931, 74, 81. [Google Scholar] [CrossRef]
- Oppenheimer, R.J.; Volkoff, G.M. On Massive Neutron Cores. Phys. Rev. 1939, 55, 374. [Google Scholar] [CrossRef]
- Shapiro, I.I. Solar system tests of general relativity: Recent results and present plans. In General Relativity and Gravitation, 1989: Proceedings of the 12th International Conference on General Relativity and Gravitation; Ashby, N., Bartlett, D.F., Wyss, W., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 313–330. [Google Scholar]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar]
- Frisoni, P. Introduction to Loop Quantum Gravity: Rovelli’s lectures on LQG. arXiv 2023, arXiv:2305.12215. [Google Scholar] [CrossRef]
- Smith, W.L.; Mann, R.B. Formation of Topological Black Holes from Gravitational Collapse. Phys. Rev. D 1997, 56, 4942. [Google Scholar] [CrossRef]
- Nakahara, M. Geometry, Topology, and Physics, 2nd ed.; I.O.P. Publishing: Bristol, UK; Philadelphia, PA, USA, 2003. [Google Scholar]
- Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K. Quantum Geometry and Black Hole Entropy. Phys. Rev. Lett. 1998, 80, 904. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M. Quantum Geometry and the Schwarzschild Singularity. Class. Quant. Grav. 2006, 23, 391. [Google Scholar] [CrossRef]
- Modesto, L. Loop Quantum Black Hole. Class. Quant. Grav. 2006, 23, 5587. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Vandersloot, K. Loop Quantum Dynamics of the Schwarzschild Interior. Phys. Rev. D 2007, 76, 104030. [Google Scholar] [CrossRef]
- Modesto, L. Semiclassical Loop Quantum Black Hole. Int. J. Theor. Phys. 2010, 49, 1649–1683. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: Improved Dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef]
- Chiou, D.W. Phenomenological Loop Quantum Geometry of the Schwarzschild Black Hole. Phys. Rev. D 2008, 78, 064040. [Google Scholar] [CrossRef]
- Gan, W.-C.; Wang, A. A New Quantization Scheme of Black Holes in Effective Loop Quantum Gravity. arXiv 2024, arXiv:2408.04494. [Google Scholar] [CrossRef]
- Brannlund, J.; Kloster, S.; DeBenedictis, A. The Evolution of Λ Black Holes in the Mini-Superspace Approximation of Loop Quantum Gravity. Phys. Rev. D 2009, 79, 084023. [Google Scholar] [CrossRef]
- Morales-Técotl, H.A.; Rastgoo, S.; Ruelas, J.C. Effective Dynamics of the Schwarzschild Black Hole Interior With Inverse Triad Corrections. Ann. Phy. 2021, 426, 168401. [Google Scholar] [CrossRef]
- Zhang, H.; Gan, W.-C.; Gong, Y.; Wang, A. On the Improved Dynamics Approach in Loop Quantum Black Holes. Commun. Theor. Phys. 2024, 76, 035401. [Google Scholar] [CrossRef]
- Connes, A. Noncommutative Geometry; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Madore, J. An Introduction to Noncommutative Geometry. In Geometry and Quantum Physics; Gausterer, H., Pittner, L., Grosse, H., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 543, pp. 231–273. [Google Scholar]
- Schneider, M.; DeBenedictis, A. Noncommutative Black Holes of Various Genera in the Connection Formalism. Phys. Rev. D 2020, 102, 024030. [Google Scholar] [CrossRef]
- Djemaï, A.E.F. Noncommutative Classical Mechanics. Int. J. Theor. Phys. 2004, 43, 299–314. [Google Scholar] [CrossRef]
- Gouba, L. A Comparative Review of Four Formulations of Noncommutative Quantum Mechanics. Int. J. Mod. Phys. 2016, A31, 1630025. [Google Scholar] [CrossRef]
- Chamseddine, A.H. Deforming Einstein’s Gravity. Phys. Lett. B 2001, 504, 33–37. [Google Scholar] [CrossRef]
- Mukherjee, P.; Saha, A. Note on the Noncommutative Correction to Gravity. Phys. Rev. D 2006, 74, 027702. [Google Scholar] [CrossRef]
- Calmet, X.; Kobakhidze, A. Noncommutative general relativity. Phys. Rev. D 2005, 72, 045010. [Google Scholar] [CrossRef]
- Calmet, X.; Kobakhidze, A. Second Order Noncommutative Corrections to Gravity. Phys. Rev. D 2006, 74, 047702. [Google Scholar] [CrossRef]
- Fucci, G.; Avramidi, I.G. Noncommutative Einstein Equations. Class. Quant. Grav. 2008, 25, 025005. [Google Scholar] [CrossRef]
- Ashieria, P.; Di Grezia, E.; Esposito, G. Non-commutative Einstein Equations and Seiberg–Witten Map. Int. J. Mod. Phys. Conf. Ser. 2011, 03, 143–149. [Google Scholar] [CrossRef]
- Espinoza-García, A.; Torres-Lomas, E.; Pérez-Payán, S.; Díaz-Barrón, L.R. Noncommutativity in Effective Loop Quantum Cosmology. Adv. High Energy Phys. 2019, 2019, 9080218. [Google Scholar] [CrossRef]
- Dąbrowski, L.; Parashar, P. A Free Particle in Noncommutative Space-time. Czech. J. Phys. 1996, 46, 1211–1215. [Google Scholar] [CrossRef]
- Mazur, P.O.; Mottola, E. Gravitational Condensate Stars: An Alternative to Black Holes. Universe 2003, 9, 88, Original paper arXiv:gr-qc/0109035 (2001). [Google Scholar] [CrossRef]
- Gliner, É.B. Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States o+ Matter. Sov. J. Exp. Theor. Phys. 1966, 22, 378. [Google Scholar]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Markov, M.A. Problems of a Perpetually Oscillating Universe. Ann. Phys. 1984, 155, 333–357. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, S. Junction Conditions on Null Hypersurface. Phys. Lett. A 1988, 126, 229–232. [Google Scholar]
- Poisson, E.; Israel, W. Structure of the Black Hole Nucleus. Class. Quant. Grav. 1988, 5, L201. [Google Scholar] [CrossRef]
- Mazur, P.O.; Mottola, E. Gravitational Vacuum Condensate Stars. Proc. Natl. Acad. Sci. USA 2004, 101, 9545–9550. [Google Scholar] [CrossRef]
- Ray, S.; Sengupta, R.; Nimesh, H. Gravastar: An Alternative to Black Hole. Int. J. Mod. Phys. D 2020, 29, 2030004. [Google Scholar] [CrossRef]
- Chirenti, C.B.M.H.; Rezzolla, L. How to Tell a Gravastar from a Black Hole. Class. Quant. Grav. 2007, 24, 4191. [Google Scholar] [CrossRef]
- Cattoen, C.; Faber, T.; Visser, M. Gravastars Must Have Anisotropic Pressures. Class. Quant. Grav. 2005, 22, 4189. [Google Scholar] [CrossRef]
- DeBenedictis, A.; Horvat, D.; Ilijic, S.; Kloster, S.; Viswanathan, K.S. Gravastar Solutions with Continuous Pressures and Equation of State. Class. Quant. Grav. 2006, 23, 2303. [Google Scholar] [CrossRef]
- Cardoso, V.; Pani, P.; Cadoni, M.; Cavaglia, M. Ergoregion Instability of Ultracompact Astrophysical Objects. Phys. Rev. D 2008, 77, 124044. [Google Scholar] [CrossRef]
- Uchikata, N.; Yoshida, S.; Pani, P. Tidal Deformability and I-Love-Q Relations for Gravastars with Polytropic Thin Shells. Phys. Rev. D 2016, 94, 064015. [Google Scholar] [CrossRef]
- Uchikata, N.; Yoshida, S. Slowly Rotating Thin Shell Gravastars. Class. Quant. Grav. 2016, 33, 025005. [Google Scholar] [CrossRef]
- Posada, C. Tidal Deformability of Ultracompact Schwarzschild Stars and Their Approach to the Black Hole Limit. Mon. Not. R. Astr. Soc. 2017, 468, 2139. [Google Scholar]
- Beltracchi, P.; Gondolo, P.; Mottola, E. Slowly Rotating Gravastars. Phys. Rev. D 2022, 105, 024002. [Google Scholar] [CrossRef]
- Rutkowski, M.; Rostworowski, A. Ultracompact Rotating Gravastars and the Problem of Matching with Kerr Spacetime. Phys. Rev. D 2021, 104, 084041. [Google Scholar] [CrossRef]
- Chirenti, C.; Rezzolla, L. Did GW150914 Produce a Rotating Gravastar? Phys. Rev. D 2016, 94, 084016. [Google Scholar] [CrossRef]
- Ilijic, S.; DeBenedictis, A. On a Class of Exact Arbitrarily Differentiable de Sitter Cores with Kerr Exteriors: Possible Gravastar or Regular Black Hole Mimickers. arXiv 2023, arXiv:2309.00551. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Kerr, R.P. Do Black Holes have Singularities? arXiv 2023, arXiv:2312.00841. [Google Scholar] [CrossRef]
- Blau, M. Lecture Notes on General Relativity. Available online: http://www.blau.itp.unibe.ch/GRLecturenotes.html (accessed on 1 October 2024).
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeBenedictis, A. Some Singular Spacetimes and Their Possible Alternatives. Particles 2024, 7, 899-917. https://doi.org/10.3390/particles7040054
DeBenedictis A. Some Singular Spacetimes and Their Possible Alternatives. Particles. 2024; 7(4):899-917. https://doi.org/10.3390/particles7040054
Chicago/Turabian StyleDeBenedictis, Andrew. 2024. "Some Singular Spacetimes and Their Possible Alternatives" Particles 7, no. 4: 899-917. https://doi.org/10.3390/particles7040054
APA StyleDeBenedictis, A. (2024). Some Singular Spacetimes and Their Possible Alternatives. Particles, 7(4), 899-917. https://doi.org/10.3390/particles7040054