A Probe into the Evolution of Primordial Perturbations in the f(T) Gravity Framework with Chaplygin Gas
Abstract
:1. Introduction
2. Gravity
3. Theory Cosmology: Exponential and Logarithmic
3.1. Exponential Theory
VMCG in Exponential Theory
3.2. Logarithmic Theory
VMCG in Logarithmic Theory
4. Primordial Perturbations in the Cosmological Settings of VMCG in Exponential and Logarithmic Theory
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spergel, D.N. (WMAP Collaboration) Astrophys. J. Suppl. 2003, 148, 175. [Google Scholar] [CrossRef]
- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.E.A.; et al. Five-year wilkinson microwave anisotropy probe* observations: Cosmological interpretation. Astrophys. J. Suppl. Ser. 2009, 180, 330. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophys. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.J.; Tegmark, M.; Zheng, Z.; et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 2005, 633, 560. [Google Scholar] [CrossRef]
- Tegmark, M.; Strauss, M.A.; Blanton, M.R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D.H.; Zehavi, I.; Bahcall, N.A.; et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501. [Google Scholar] [CrossRef]
- Jain, B.; Taylor, A. Cross-correlation tomography: Measuring dark energy evolution with weak lensing. Phys. Rev. D 2003, 91, 141302. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef]
- Nojiri, S.I.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 1–161. [Google Scholar]
- Hehl, F.W.; Von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524. [Google Scholar] [CrossRef]
- Flanagan, É.É.; Rosenthal, E. Can Gravity Probe B usefully constrain torsion gravity theories? Phys. Rev. D 2007, 75, 124016. [Google Scholar] [CrossRef]
- Garecki, J. Teleparallel equivalent of general relativity: A critical review. arXiv 2010, arXiv:1010.2654. [Google Scholar]
- Einstein, A. A theory of gravitation. Math. Ann. 1930, 102, 685. [Google Scholar] [CrossRef]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. Observational constraints on f(T) theory. Phys. Lett. B 2010, 693, 415–420. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. The dynamical behavior of f(T) theory. Phys. Lett. B 2010, 692, 176–179. [Google Scholar] [CrossRef]
- Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Cosmological perturbations in f(T) gravity. Phys. Rev. D 2011, 83, 023508. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. f(T) models with phantom divide line crossing. Eur. Phys. J. C 2011, 71, 1–6. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Lee, C.C. Comment on “Einstein’s Other Gravity and the Acceleration of the Universe”. arXiv 2010, arXiv:1008.4036. [Google Scholar]
- Li, B.; Sotiriou, T.P.; Barrow, J.D. f(T) gravity and local Lorentz invariance. Phys. Rev. D 2011, 83, 064035. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Li, B.; Barrow, J.D. Generalizations of teleparallel gravity and local Lorentz symmetry. Phys. Rev. D 2011, 83, 104030. [Google Scholar] [CrossRef]
- Dent, J.B.; Dutta, S.; Saridakis, E.N. f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis. J. Cosmol. Astropart. Phys. 2011, 2011, 009. [Google Scholar] [CrossRef]
- Hu, W.; Sawicki, I. Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 2007, 76, 064004. [Google Scholar] [CrossRef]
- Alam, U.; Sahni, V.; Starobinsky, A.A. The case for dynamical dark energy revisited. J. Cosmol. Astropart. Phys. 2004, 2004, 008. [Google Scholar] [CrossRef]
- Jassal, H.K.; Bagla, J.S.; Padmanabhan, T. Understanding the origin of CMB constraints on dark energy. Mon. Not. R. Astron. Soc. 2010, 405, 2639–2650. [Google Scholar]
- Zhang, P. Testing f(R) gravity against the large scale structure of the universe. Phys. Rev. D 2006, 73. [Google Scholar] [CrossRef]
- Rinaldi, M.; Cognola, G.; Vanzo, L.; Zerbini, S. Reconstructing the inflationary f(R) from observations. J. Cosmol. Astropart. Phys. 2014, 2014, 015. [Google Scholar]
- Bamba, K.; Geng, C.Q.; Lee, C.C. Cosmological evolution in exponential gravity. J. Cosmol. Astropart. Phys. 2010, 2010, 021. [Google Scholar] [CrossRef]
- Yang, L.; Lee, C.C.; Luo, L.W.; Geng, C.Q. Observational constraints on exponential gravity. Phys. Rev. D 2010, 82, 103515. [Google Scholar] [CrossRef]
- Bahcall, N.A.; Ostriker, J.P.; Perlmutter, S.; Steinhardt, P.J. The cosmic triangle: Revealing the state of the universe. Science 1999, 284, 1481–1488. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. The Chaplygin gas as a model for dark energy. In The Tenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes); World Scientific: Singapore, 2005; pp. 840–859. [Google Scholar]
- Kamenshchik, A.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265–268. [Google Scholar] [CrossRef]
- Frolov, A.; Kofman, L.; Starobinsky, A. Prospects and problems of tachyon matter cosmology. Phys. Lett. B 2002, 545, 8–16. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.; Moschella, U. Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D 2003, 67, 063509. [Google Scholar] [CrossRef]
- Alam, U.; Sahni, V.; Deep Saini, T.; Starobinsky, A.A. Exploring the expanding universe and dark energy using the Statefinder diagnostic. Mon. Not. R. Astron. Soc. 2003, 344, 1057–1074. [Google Scholar]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Science 2002, 66, 043507. [Google Scholar] [CrossRef]
- Benaoum, H. Accelerated universe from modified Chaplygin gas and tachyonic fluid. Universe 2022, 8, 340. [Google Scholar] [CrossRef]
- Debnath, U.; Banerjee, A.; Chakraborty, S. Role of modified Chaplygin gas in accelerated universe. Class. Quantum Grav. 2004, 21, 5609. [Google Scholar] [CrossRef]
- Guo, Z.K.; Zhang, Y.Z. Cosmology with a variable Chaplygin gas. Phys. Lett. B 2007, 645, 326–329. [Google Scholar] [CrossRef]
- Bento, M.D.C.; Bertolami, O.; Sen, A.A. WMAP constraints on the generalized Chaplygin gas model. Phys. Lett. B 2003, 575, 172–180. [Google Scholar] [CrossRef]
- Sethi, G.; Singh, S.K.; Kumar, P.; Jain, D.; Dev, A. Variable Chaplygin gas: Constraints from CMBR and SNe Ia. Int. J. Mod. Phys. D 2006, 15, 1089–1098. [Google Scholar] [CrossRef]
- Debnath, U. Variable modified Chaplygin gas and accelerating universe. Astrophys. Space Sci. 2007, 312, 295–299. [Google Scholar] [CrossRef]
- Jamil, M.; Rashid, M.A. Interacting modified variable Chaplygin gas in a non-flat universe. Eur. Phys. J. C 2008, 58, 111–114. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Debnath, U. Density evolution in the new modified Chaplygin gas model. Gravit. Cosmol. 2008, 14, 341–346. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Debnath, U. Holographic dark energy scenario and variable modified Chaplygin gas. Astrophys. Space Sci. 2009, 319, 183–185. [Google Scholar] [CrossRef]
- Xing, L.; Gui, Y.; Xu, L.; Lu, J. Evolution of variable modified Chaplygin gas model. Mod. Phys. Lett. A 2009, 24, 683–691. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Lee, C.C.; Luo, L.W. Equation of state for dark energy in f(T) gravity. J. Cosmol. Astropart. Phys. 2011, 2011, 021. [Google Scholar] [CrossRef]
- Barreiro, T.; Sen, A.A. Generalized Chaplygin gas in a modified gravity approach. Phys. Rev. D 2004, 70, 124013. [Google Scholar] [CrossRef]
- Amani, A.R.; Dehneshin, S.L. Interacting F(R,T) gravity with modified Chaplygin gas. Can. J. Phys. 2015, 93, 1453–1459. [Google Scholar] [CrossRef]
- Sharif, M.; Siddiqa, A. Interaction of viscous modified Chaplygin gas with f(R,T) gravity. Mod. Phys. Lett. A 2017, 32, 1750151. [Google Scholar] [CrossRef]
- Gadbail, G.N.; Arora, S.; Sahoo, P.K. Generalized Chaplygin gas and accelerating universe in f(Q,T) gravity. Phys. Dark Universe 2022, 37, 101074. [Google Scholar] [CrossRef]
- Matsumoto, J.; Odintsov, S.D.; Sushkov, S.V. Cosmological perturbations in a mimetic matter model. Phys. Rev. D 2015, 91, 064062. [Google Scholar] [CrossRef]
- Nojiri, S.I.; Odintsov, S.D. Effective equation of state and energy conditions in phantom/tachyon inflationary cosmology perturbed by quantum effects. Phys. Lett. B 2003, 571, 1–10. [Google Scholar] [CrossRef]
- Nojiri, S.I.; Odintsov, S.D.; Oikonomou, V.K.; Paul, T. Nonsingular bounce cosmology from Lagrange multiplier F(R) gravity. Phys. Rev. D 2019, 100, 084056. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflation in a viscous fluid model. Eur. Phys. J. C 2016, 76, 1–12. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Fronimos, F.P.; Fasoulakos, K.V. Unification of a bounce with a viable dark energy era in Gauss-Bonnet gravity. Phys. Rev. D 2020, 102, 104042. [Google Scholar] [CrossRef]
- e Costa, S.S.; Ujevic, M.; Dos Santos, A.F. A mathematical analysis of the evolution of perturbations in a modified Chaplygin gas model. Gen. Relativ. Gravit. 2008, 40, 1683–1703. [Google Scholar] [CrossRef]
- Pourhassan, B. Unified universe history through phantom extended Chaplygin gas. Can. J. Phys. 2016, 94, 659–670. [Google Scholar] [CrossRef]
- Fabris, J.C.; Gonçalves, S.V.; de Souza, P.E. Density perturbations in a universe dominated by the Chaplygin gas. Gen. Relativ. Gravit. 2002, 34, 53–63. [Google Scholar] [CrossRef]
- Chattopadhyay, S. A reconstruction scheme for f(T) gravity and its consequences in the perturbation level. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850025. [Google Scholar] [CrossRef]
- Chattopadhyay, S. Interacting modified Chaplygin gas in f(T) gravity framework and analysis of its stability against gravitational perturbation. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750035. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Pasqua, A.; Radinschi, I.; Beesham, A. Dynamics of single-field inflation in the framework of holographic f(T) gravity. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850167. [Google Scholar] [CrossRef]
- Cai, Y.F.; Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Matter bounce cosmology with the f(T) gravity. Class. Quantum Gravity 2011, 28, 215011. [Google Scholar] [CrossRef]
- Chaudhary, H.; Debnath, U.; Roy, T.; Maity, S.; Mustafa, G. Constraints on the parameters of modified Chaplygin–Jacobi and modified Chaplygin-Abel gases in f(T) gravity model. arXiv 2023, arXiv:2307.14691. [Google Scholar]
- Sahlu, S.; Ntahompagaze, J.; Elmardi, M.; Abebe, A. The Chaplygin gas as a model for modified teleparallel gravity? Eur. Phys. J. C 2019, 79, 1–31. [Google Scholar] [CrossRef]
- Karami, K.; Abdolmaleki, A. Reconstructing f(T)-gravity from the polytropic and different Chaplygin gas dark energy models. arXiv 2010, arXiv:1009.3587. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, S.; Chattopadhyay, S.; Pasqua, A. A Probe into the Evolution of Primordial Perturbations in the f(T) Gravity Framework with Chaplygin Gas. Particles 2024, 7, 939-954. https://doi.org/10.3390/particles7040057
Sultana S, Chattopadhyay S, Pasqua A. A Probe into the Evolution of Primordial Perturbations in the f(T) Gravity Framework with Chaplygin Gas. Particles. 2024; 7(4):939-954. https://doi.org/10.3390/particles7040057
Chicago/Turabian StyleSultana, Sanjeeda, Surajit Chattopadhyay, and Antonio Pasqua. 2024. "A Probe into the Evolution of Primordial Perturbations in the f(T) Gravity Framework with Chaplygin Gas" Particles 7, no. 4: 939-954. https://doi.org/10.3390/particles7040057
APA StyleSultana, S., Chattopadhyay, S., & Pasqua, A. (2024). A Probe into the Evolution of Primordial Perturbations in the f(T) Gravity Framework with Chaplygin Gas. Particles, 7(4), 939-954. https://doi.org/10.3390/particles7040057