Examination of Possible Proton Magic Number Z = 126 with the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum
Abstract
:1. Introduction
2. Theoretical Framework
3. Numerical Details
4. Results and Discussions
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thoennessen, M. Current status and future potential of nuclide discoveries. Rep. Prog. Phys. 2013, 76, 056301. [Google Scholar] [CrossRef]
- Erler, J.; Birge, N.; Kortelainen, M.; Nazarewicz, W.; Olsen, E.; Perhac, A.M.; Stoitsov, M. The limits of the nuclear landscape. Nature 2012, 486, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Moller, P. The limits of the nuclear chart set by fission andalpha decay. In Proceedings of the Nobel Symposium NS160—Chemistry and Physics of Heavy and Superheavy Elements, Kristianstad, Sweden, 29 May–3 June 2016; Volume 131, p. 03002. [Google Scholar] [CrossRef]
- Meng, J. (Ed.) Relativistic Density Functional for Nuclear Structure; World Scientific: Singapore, 2016. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Gan, Z.G.; Yang, H.B.; Ma, L.; Huang, M.H.; Yang, C.L.; Zhang, M.M.; Tian, Y.L.; Wang, Y.S.; Sun, M.D.; et al. New Isotope 220Np: Probing the Robustness of the N = 126 Shell Closure in Neptunium. Phys. Rev. Lett. 2019, 122, 192503. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.S.; Fukuda, N.; Geissel, H.; Inabe, N.; Iwasa, N.; Kubo, T.; Kusaka, K.; Morrissey, D.J.; Murai, D.; Nakamura, T.; et al. Location of the Neutron Dripline at Fluorine and Neon. Phys. Rev. Lett. 2019, 123, 212501. [Google Scholar] [CrossRef]
- Tanihata, I.; Hamagaki, H.; Hashimoto, O.; Shida, Y.; Yoshikawa, N.; Sugimoto, K.; Yamakawa, O.; Kobayashi, T.; Takahashi, N. Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region. Phys. Rev. Lett. 1985, 55, 2676–2679. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, A.; Kobayashi, T.; Suzuki, T.; Yoshida, K.; Tanihata, I. New Magic Number, N = 16, near the Neutron Drip Line. Phys. Rev. Lett. 2000, 84, 5493–5495. [Google Scholar] [CrossRef]
- Adrich, P.; Klimkiewicz, A.; Fallot, M.; Boretzky, K.; Aumann, T.; Cortina-Gil, D.; Pramanik, U.D.; Elze, T.W.; Emling, H.; Geissel, H.; et al. Evidence for Pygmy and Giant Dipole Resonances in 130Sn and 132Sn. Phys. Rev. Lett. 2005, 95, 132501. [Google Scholar] [CrossRef] [PubMed]
- Oganessian, Y.T.; Abdullin, F.S.; Alexander, C.; Binder, J.; Boll, R.A.; Dmitriev, S.N.; Ezold, J.; Felker, K.; Gostic, J.M.; Grzywacz, R.K.; et al. Production and Decay of the Heaviest Nuclei 293,294117 and 294118. Phys. Rev. Lett. 2012, 109, 162501. [Google Scholar] [CrossRef] [PubMed]
- Sobiczewski, A.; Gareev, F.A.; Kalinkin, B.N. Closed shells for Z > 82 and N > 126 in a diffuse potential well. Phys. Lett. 1966, 22, 500–502. [Google Scholar] [CrossRef]
- Meldner, H. Predictions of new magic regions and masses for super heavy nuclei from calculations with realistic shell model single particle Hamiltonians. In Proceedings of the Lysekil Symposium: Nuclides far off the Stability Line, Lysekil, Sweden, 21–27 August 1967; Volume 36, p. 593. [Google Scholar]
- Nilsson, S.G.; Tsang, C.F.; Sobiczewski, A.; Szymański, Z.; Wycech, S.; Gustafson, C.; Lamm, I.L.; Möller, P.; Nilsson, B. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 1969, 131, 1–66. [Google Scholar] [CrossRef]
- Mosel, U.; Greiner, W. On the stability of superheavy nuclei against fission. Zeit. Phys. A 1969, 222, 261. [Google Scholar] [CrossRef]
- National Nuclear Data Center (NNDC). Available online: https://www.nndc.bnl.gov/ (accessed on 25 December 2024).
- Mayer, M.G. On Closed Shells in Nuclei. II. Phys. Rev. 1949, 75, 1969–1970. [Google Scholar] [CrossRef]
- Haxel, O.; Jensen, J.H.D.; Suess, H.E. On the “Magic Numbers” in Nuclear Structure. Phys. Rev. 1949, 75, 1766. [Google Scholar] [CrossRef]
- Yang, J.; Dudek, J.; Dedes, I.; Baran, A.; Curien, D.; Gaamouci, A.; Góźdź, A.; Pȩdrak, A.; Rouvel, D.; Wang, H.L.; et al. Exotic shape symmetries around the fourfold octupole magic number N = 136: Formulation of experimental identification criteria. Phys. Rev. C 2022, 105, 034348. [Google Scholar] [CrossRef]
- Yang, J.; Dudek, J.; Dedes, I.; Baran, A.; Curien, D.; Gaamouci, A.; Góźdź, A.; Pędrak, A.; Rouvel, D.; Wang, H.L. Exotic symmetries as stabilizing factors for superheavy nuclei: Symmetry-oriented generalized concept of nuclear magic numbers. Phys. Rev. C 2022, 106, 054314. [Google Scholar] [CrossRef]
- Yang, J.; Dudek, J.; Dedes, I.; Baran, A.; Curien, D.; Gaamouci, A.; Góźdź, A.; Pędrak, A.; Rouvel, D.; Wang, H.L. Islands of oblate hyperdeformed and superdeformed superheavy nuclei with D3h point group symmetry in competition with normal-deformed D3h states: “Archipelago” of D3h-symmetry islands. Phys. Rev. C 2023, 107, 054304. [Google Scholar] [CrossRef]
- Wheeler, J.A. Nuclear fission and nuclear stability. In Niels Bohr and the Development of Physics: Essays Dedicated to Niels Bohr on the Occasion of His Seventieth Birthday; Pauli, W., Rosenfeld, L., Weisskopf, V., Eds.; McGraw-Hill: New York, NY, USA, 1955; p. 163. [Google Scholar]
- Werner, F.G.; Wheeler, J.A. Superheavy Nuclei. Phys. Rev. 1958, 109, 126–144. [Google Scholar] [CrossRef]
- Myers, W.D.; Swiatecki, W.J. Nuclear masses and deformations. Nucl. Phys. 1966, 81, 1–60. [Google Scholar] [CrossRef]
- Siemens, P.J.; Bethe, H.A. Shape of Heavy Nuclei. Phys. Rev. Lett. 1967, 18, 704–706. [Google Scholar] [CrossRef]
- Ćwiok, S.; Dobaczewski, J.; Heenen, P.H.; Magierski, P.; Nazarewicz, W. Shell structure of the superheavy elements. Nucl. Phys. A 1996, 611, 211–246. [Google Scholar] [CrossRef]
- Moller, P.; Nix, J.R. Stability of heavy and superheavy elements. J. Phys. G 1994, 20, 1681. [Google Scholar] [CrossRef]
- Dedes, I.; Dudek, J. Propagation of the nuclear mean-field uncertainties with increasing distance from the parameter adjustment zone: Applications to superheavy nuclei. Phys. Rev. C 2019, 99, 054310. [Google Scholar] [CrossRef]
- Gaamouci, A.; Dedes, I.; Dudek, J.; Baran, A.; Benhamouda, N.; Curien, D.; Wang, H.L.; Yang, J. Exotic toroidal and superdeformed configurations in light atomic nuclei: Predictions using a mean-field Hamiltonian without parametric correlations. Phys. Rev. C 2021, 103, 054311. [Google Scholar] [CrossRef]
- Agbemava, S.E.; Afanasjev, A.V.; Ray, D.; Ring, P. Assessing theoretical uncertainties in fission barriers of superheavy nuclei. Phys. Rev. C 2017, 95, 054324. [Google Scholar] [CrossRef]
- Agbemava, S.E.; Afanasjev, A.V.; Taninah, A. Propagation of statistical uncertainties in covariant density functional theory: Ground state observables and single-particle properties. Phys. Rev. C 2019, 99, 014318. [Google Scholar] [CrossRef]
- Cao, L.G.; Ma, Z.Y. Exploration of resonant continuum and giant resonance in the relativistic approach. Phys. Rev. C 2002, 66, 024311. [Google Scholar] [CrossRef]
- Meng, J.; Toki, H.; Zhou, S.G.; Zhang, S.Q.; Long, W.H.; Geng, L.S. Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 2006, 57, 470–563. [Google Scholar] [CrossRef]
- Dobaczewski, J.; Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Rotureau, J. Shell structure of exotic nuclei. Prog. Part. Nucl. Phys. 2007, 59, 432–445. [Google Scholar] [CrossRef]
- Pei, J.C.; Kruppa, A.T.; Nazarewicz, W. Quasiparticle continuum and resonances in the Hartree-Fock-Bogoliubov theory. Phys. Rev. C 2011, 84, 024311. [Google Scholar] [CrossRef]
- Dobaczewski, J.; Flocard, H.; Treiner, J. Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 1984, 422, 103–139. [Google Scholar] [CrossRef]
- Terasaki, J.; Heenen, P.H.; Flocard, H.; Bonche, P. 3D solution of Hartree-Fock-Bogoliubov equations for drip-line nuclei. Nucl. Phys. A 1996, 600, 371–386. [Google Scholar] [CrossRef]
- Pöschl, W.; Vretenar, D.; Lalazissis, G.A.; Ring, P. Relativistic Hartree-Bogoliubov Theory with Finite Range Pairing Forces in Coordinate Space: Neutron Halo in Light Nuclei. Phys. Rev. Lett. 1997, 79, 3841–3844. [Google Scholar] [CrossRef]
- Meng, J. Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application. Nucl. Phys. A 1998, 635, 3–42. [Google Scholar] [CrossRef]
- Meng, J.; Ring, P. Relativistic Hartree-Bogoliubov Description of the Neutron Halo in 11Li. Phys. Rev. Lett. 1996, 77, 3963–3966. [Google Scholar] [CrossRef]
- Meng, J.; Ring, P. Giant Halo at the Neutron Drip Line. Phys. Rev. Lett. 1998, 80, 460–463. [Google Scholar] [CrossRef]
- Meng, J.; Sugawara-Tanabe, K.; Yamaji, S.; Ring, P.; Arima, A. Pseudospin symmetry in relativistic mean field theory. Phys. Rev. C 1998, 58, R628–R631. [Google Scholar] [CrossRef]
- Meng, J.; Tanihata, I.; Yamaji, S. The proton and neutron distributions in Na isotopes: The development of halo and shell structure. Phys. Lett. B 1998, 419, 1–6. [Google Scholar] [CrossRef]
- Meng, J.; Zhou, S.G.; Tanihata, I. The relativistic continuum Hartree-Bogoliubov description of charge-changing cross section for C, N, O and F isotopes. Phys. Lett. B 2002, 532, 209–214. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, J.; Zhang, S.Q.; Geng, L.S.; Toki, H. Magic numbers for superheavy nuclei in relativistic continuum Hartree-Bogoliubov theory. Nucl. Phys. A 2005, 753, 106–135. [Google Scholar] [CrossRef]
- Xia, X.W.; Lim, Y.; Zhao, P.W.; Liang, H.Z.; Qu, X.Y.; Chen, Y.; Liu, H.; Zhang, L.F.; Zhang, S.Q.; Kim, Y.; et al. The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory. At. Data Nucl. Data Tables 2018, 121-122, 1–215. [Google Scholar] [CrossRef]
- Zhou, S.G.; Meng, J.; Ring, P.; Zhao, E.G. Neutron halo in deformed nuclei. Phys. Rev. C 2010, 82, 011301. [Google Scholar] [CrossRef]
- Li, L.; Meng, J.; Ring, P.; Zhao, E.G.; Zhou, S.G. Deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2012, 85, 024312. [Google Scholar] [CrossRef]
- Sun, X.X.; Zhao, J.; Zhou, S.G. Shrunk halo and quenched shell gap at N = 16 in 22C: Inversion of sd states and deformation effects. Phys. Lett. B 2018, 785, 530–535. [Google Scholar] [CrossRef]
- Sun, X.X.; Zhao, J.; Zhou, S.G. Study of ground state properties of carbon isotopes with deformed relativistic Hartree-Bogoliubov theory in continuum. Nucl. Phys. A 2020, 1003, 122011. [Google Scholar] [CrossRef]
- Yang, Z.H.; Kubota, Y.; Corsi, A.; Yoshida, K.; Sun, X.X.; Li, J.G.; Kimura, M.; Michel, N.; Ogata, K.; Yuan, C.X.; et al. Quasifree Neutron Knockout Reaction Reveals a Small s-Orbital Component in the Borromean Nucleus 17B. Phys. Rev. Lett. 2021, 126, 082501. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.X. Deformed two-neutron halo in 19B. Phys. Rev. C 2021, 103, 054315. [Google Scholar] [CrossRef]
- Zhong, S.Y.; Zhang, S.S.; Sun, X.X.; Smith, M.S. Study of the deformed halo nucleus 31Ne with Glauber model based on microscopic self-consistent structures. Sci. China Phys. Mech. Astron. 2022, 65, 262011. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Papakonstantinou, P.; Mun, M.H.; Kim, Y.; Yan, H.; Sun, X.X. Collapse of the N = 28 shell closure in the newly discovered 39Na nucleus and the development of deformed halos towards the neutron dripline. Phys. Rev. C 2023, 107, L041303. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Yang, S.Q.; An, J.L.; Zhang, S.S.; Papakonstantinou, P.; Mun, M.H.; Kim, Y.; Yan, H. Missed prediction of the neutron halo in 37Mg. Phys. Lett. B 2023, 844, 138112. [Google Scholar] [CrossRef]
- An, J.L.; Zhang, K.Y.; Lu, Q.; Zhong, S.Y.; Zhang, S.S. A unified description of the halo nucleus 37Mg from microscopic structure to reaction observables. Phys. Lett. B 2024, 849, 138422. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, K.; Zhang, S. Nuclear magnetism in the deformed halo nucleus 31Ne. Phys. Lett. B 2024, 855, 138792. [Google Scholar] [CrossRef]
- Zhang, K.; He, X.; Meng, J.; Pan, C.; Shen, C.; Wang, C.; Zhang, S. Predictive power for superheavy nuclear mass and possible stability beyond the neutron drip line in deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2021, 104, L021301. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, K.Y.; Chong, P.S.; Heo, C.; Ho, M.C.; Lee, J.; Li, Z.P.; Sun, W.; Tam, C.K.; Wong, S.H.; et al. Possible bound nuclei beyond the two-neutron drip line in the 50 ≤ Z ≤ 70 region. Phys. Rev. C 2021, 104, 024331. [Google Scholar] [CrossRef]
- He, X.T.; Wu, J.W.; Zhang, K.Y.; Shen, C.W. Odd-even differences in the stability “peninsula” in the 106 ≤ Z ≤ 112 region with the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2024, 110, 014301. [Google Scholar] [CrossRef]
- Choi, Y.B.; Lee, C.H.; Mun, M.H.; Kim, Y. Bubble nuclei with shape coexistence in even-even isotopes of Hf to Hg. Phys. Rev. C 2022, 105, 024306. [Google Scholar] [CrossRef]
- Kim, S.; Mun, M.H.; Cheoun, M.K.; Ha, E. Shape coexistence and neutron skin thickness of Pb isotopes by the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2022, 105, 034340. [Google Scholar] [CrossRef]
- Mun, M.H.; Kim, S.; Cheoun, M.K.; So, W.Y.; Choi, S.; Ha, E. Odd-even shape staggering and kink structure of charge radii of Hg isotopes by the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Lett. B 2023, 847, 138298. [Google Scholar] [CrossRef]
- Guo, P.; Pan, C.; Zhao, Y.C.; Du, X.K.; Zhang, S.Q. Prolate-shape dominance in atomic nuclei within the deformed relativistic Hartree-Bogoliubov theory in continuum. Phys. Rev. C 2023, 108, 014319. [Google Scholar] [CrossRef]
- Zhang, K.; Cheoun, M.K.; Choi, Y.B.; Chong, P.S.; Dong, J.; Geng, L.; Ha, E.; He, X.; Heo, C.; Ho, M.C.; et al. Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional: Examples of even-even Nd isotopes. Phys. Rev. C 2020, 102, 024314. [Google Scholar] [CrossRef]
- Pan, C.; Cheoun, M.K.; Choi, Y.B.; Dong, J.; Du, X.; Fan, X.H.; Gao, W.; Geng, L.; Ha, E.; He, X.T.; et al. Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional. II. Examples of odd Nd isotopes. Phys. Rev. C 2022, 106, 014316. [Google Scholar] [CrossRef]
- Zhang, K.; Cheoun, M.K.; Choi, Y.B.; Chong, P.S.; Dong, J.; Dong, Z.; Du, X.; Geng, L.; Ha, E.; He, X.T.; et al. Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, I: Even-even nuclei. At. Data Nucl. Data Tables 2022, 144, 101488. [Google Scholar] [CrossRef]
- Guo, P.; Cao, X.; Chen, K.; Chen, Z.; Cheoun, M.K.; Choi, Y.B.; Lam, P.C.; Deng, W.; Dong, J.; Du, P.; et al. Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, II: Even-Z nuclei. At. Data Nucl. Data Tables 2024, 158, 101661. [Google Scholar] [CrossRef]
- Wang, M.; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Chatt, J. Recommendations for the Naming of Elements of Atomic Numbers Greater than 100. Pure Appl. Chem. 1979, 51, 381–384. [Google Scholar] [CrossRef]
- Bürvenich, T.; Madland, D.G.; Maruhn, J.A.; Reinhard, P.G. Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model. Phys. Rev. C 2002, 65, 044308. [Google Scholar] [CrossRef]
- Zhao, P.W.; Li, Z.P.; Yao, J.M.; Meng, J. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 2010, 82, 054319. [Google Scholar] [CrossRef]
- Kucharek, H.; Ring, P. Relativistic field theory of superfluidity in nuclei. Z. Phys. A 1991, 339, 23–35. [Google Scholar] [CrossRef]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Zhou, S.G.; Meng, J.; Ring, P. Spherical relativistic Hartree theory in a Woods-Saxon basis. Phys. Rev. C 2003, 68, 034323. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Niu, Z.M.; Li, Z.P.; Yao, J.M.; Meng, J. Global dynamical correlation energies in covariant density functional theory: Cranking approximation. Front. Phys. 2014, 9, 529–536. [Google Scholar] [CrossRef]
- Lu, K.Q.; Li, Z.X.; Li, Z.P.; Yao, J.M.; Meng, J. Global study of beyond-mean-field correlation energies in covariant energy density functional theory using a collective Hamiltonian method. Phys. Rev. C 2015, 91, 027304. [Google Scholar] [CrossRef]
- Zhao, P.W.; Song, L.S.; Sun, B.; Geissel, H.; Meng, J. Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa. Phys. Rev. C 2012, 86, 064324. [Google Scholar] [CrossRef]
- Dudek, J. Reexamination of the Nuclear Stability of Z = 114 to Z = 126 Superheavy Nuclei with the Use of the Deformed Woods-Saxon Potential. Acta Phys. Pol. B 1978, 9, 919. [Google Scholar]
- Stoitsov, M.V.; Dobaczewski, J.; Nazarewicz, W.; Pittel, S.; Dean, D.J. Systematic study of deformed nuclei at the drip lines and beyond. Phys. Rev. C 2003, 68, 054312. [Google Scholar] [CrossRef]
- Liu, W.J.; Lv, C.J.; Guo, P.; Pan, C.; Wang, S.; Wu, X.H. Magic Number N = 350 Predicted by the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum: Z = 136 Isotopes as an Example. Particles 2024, 7, 1078–1085. [Google Scholar] [CrossRef]
- Jachimowicz, P.; Kowal, M.; Skalski, J. Adiabatic fission barriers in superheavy nuclei. Phys. Rev. C 2017, 95, 014303. [Google Scholar] [CrossRef]
- Rahmatinejad, A.; Bezbakh, A.N.; Shneidman, T.M.; Adamian, G.; Antonenko, N.V.; Jachimowicz, P.; Kowal, M. Level-density parameters in superheavy nuclei. Phys. Rev. C 2021, 103, 034309. [Google Scholar] [CrossRef]
- Li, J.J.; Long, W.H.; Margueron, J.; Van Giai, N. Superheavy magic structures in the relativistic Hartree-Fock-Bogoliubov approach. Phys. Lett. B 2014, 732, 169–173. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Wu, X.-H. Examination of Possible Proton Magic Number Z = 126 with the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum. Particles 2025, 8, 2. https://doi.org/10.3390/particles8010002
Pan C, Wu X-H. Examination of Possible Proton Magic Number Z = 126 with the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum. Particles. 2025; 8(1):2. https://doi.org/10.3390/particles8010002
Chicago/Turabian StylePan, Cong, and Xin-Hui Wu. 2025. "Examination of Possible Proton Magic Number Z = 126 with the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum" Particles 8, no. 1: 2. https://doi.org/10.3390/particles8010002
APA StylePan, C., & Wu, X.-H. (2025). Examination of Possible Proton Magic Number Z = 126 with the Deformed Relativistic Hartree-Bogoliubov Theory in Continuum. Particles, 8(1), 2. https://doi.org/10.3390/particles8010002