The Composition and Stability of Clay-Associated Organic Matter along a Soil Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sampling
2.2. Clay Fraction Separation
2.3. Soil Properties
2.4. Carbon K-Edge X-ray Absorption Near Edge Structure Spectroscopy
2.5. Pyrolysis-Field Ionization Mass Spectrometry
2.6. Data Analysis
3. Results
3.1. General Soil Properties
3.2. C K-Edge X-ray Absorption Near Edge Structure (XANES) Spectroscopy
3.3. Pyrolysis-Field Ionization Mass Spectrometry
3.3.1. Soil Organic Matter Compound Classes
3.3.2. SOM Thermal Stability
4. Discussion
4.1. Variation in Organic Matter Chemistry with Depth
4.2. Variation in SOM Thermal Stability with Depth and LANDSCAPE position
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.V.; Kleber, M.; Kögel-knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P.M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.; et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 2008, 171, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Change Biol. 2011, 17, 1097–1107. [Google Scholar] [CrossRef]
- Torn, M.S.; Trumbore, S.E.; Chadwick, O.A.; Vitousek, P.M.; Hendricks, D.M. Mineral control of soil organic carbon storage and turnover. Nature 1997, 389, 170–173. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 2017, 63, 242–247. [Google Scholar]
- Błońska, E.; Lasota, J. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils. Forests 2017, 8, 448. [Google Scholar] [CrossRef]
- Chabbi, A.; Kögel-Knabner, I.; Rumpel, C. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol. Biochem. 2009, 41, 256–261. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Trumbore, S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol. Appl. 2000, 10, 399–411. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Poulton, P.R.; Bryant, C. The turnover of organic carbon in subsoils. Part 1. Natural and bomb radiocarbon in soil profiles from the rothamsted long-term field experiments. Eur. J. Soil Sci. 2008, 59, 391–399. [Google Scholar] [CrossRef]
- Lomander, A.; Kätterer, T.; Andrén, O. Carbon dioxide evolution from top- and subsoil as affected by moisture and constant and fluctuating temperature. Soil Biol. Biochem. 1998, 30, 2017–2022. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klir, J.; Körschens, P.R.; Richter, D.D. Stimulating trends in soil organic carbon in long-term experiments using Roth C-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Stevenson, F.J. Biochemistry of the formation of humic substances. In Humus Chemistry, Genesis, Composition, Reactions; Stevenson, F.J., Ed.; John Wiley & Sons Inc.: New York, NY, USA; pp. 188–211.
- Krull, E.S.; Skjemstad, J.O. 13C and 15N profiles in 14C-dated oxisols and vertisols as a function of soil chemistry and mineralogy. Geoderma 2003, 112, 1–29. [Google Scholar] [CrossRef]
- Liang, C.; Balser, T.C. Preferential sequestration of microbial carbon in subsoils of glacial landscape toposequence, Dave County, WI, USA. Geoderma 2008, 148, 113–119. [Google Scholar] [CrossRef]
- Salomé, C.; Nunan, N.; Pouteau, V.; Lerch, T.Z.; Chenu, C. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Change Biol. 2010, 16, 416–426. [Google Scholar] [CrossRef]
- Rumpel, C.; Esterhues, K.; Kögel-Knabner, I. Non-cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons oft wo acid forest soils. Soil Biol. Biochem. 2010, 42, 379–382. [Google Scholar] [CrossRef]
- Rumpel, C.; Rodríguez-Rodríguez, A.; González-Pérez, J.A.; Arbelo, C.; Chabbi, A.; Nunan, N.; González-Vila, F.J. Contrasting composition of free and mineral-bound organic matter in top- and subsoil horizons of Andosols. Biol. Fertil. Soils 2012, 48, 401–411. [Google Scholar] [CrossRef]
- Gill, R.A.; Burke, I.C. Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant Soil 2002, 241, 233–242. [Google Scholar] [CrossRef]
- Taylor, J.P.; Wilson, B.; Mills, M.S.; Burns, R.G. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 2002, 34, 387–401. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, S.B.; van Groenigen, K.J.; Allison, S.D.; Hungate, B.A.; Schwartz, E.; Koch, G.W.; Kolka, R.K.; Dijkstra, P. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Chang. 2014, 4, 903–906. [Google Scholar] [CrossRef]
- Mobley, M.L.; Lajtha, K.; Kramer, M.G.; Bacon, A.R.; Heine, P.R.; Richter, D.D. Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob. Change Biol. 2015, 21, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 2003, 54, 219–236. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kögel-Knabner, I. Organo-mineral associations in sandy acid forest soils: Importance of specific surface area, iron oxides and micropores. Eur. J. Soil Sci. 2005, 56, 753–763. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kögel-Knabner, I. Stabilization of soil organic matter isolated by oxidative degradation. Org. Geochem. 2005, 36, 1567–1575. [Google Scholar] [CrossRef]
- Viaud, V.; Angers, D.; Walter, C. Toward landscape-scale modeling of soil organic matter dynamics in agroecosystems. Soil Sci. Soc. Am. J. 2010, 74, 1847–1860. [Google Scholar] [CrossRef]
- Anderson, J.M. The effects of climate change on decomposition processes in grasslands and coniferous forests. Ecol. Appl. 1991, 1, 326–347. [Google Scholar] [CrossRef] [PubMed]
- White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Feng, X.; Simpson, M.J. The distribution and degradation of biomarkers in Albeta grassland soil profiles. Org. Geochem. 2007, 38, 1558–1570. [Google Scholar] [CrossRef]
- Purton, K.; Walley, F.; Pennock, D.; Leinweber, P. Will climate change and associated land use shifts affect soil organic matter composition? Evidence from an ecotonic climosequence. Geoderma 2015, 253–254, 48–60. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I.; Bruhn, F. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org. Geochem. 2002, 33, 1131–1142. [Google Scholar] [CrossRef]
- Mason, S.L.; Filley, T.R.; Abbott, G.D. The effect of afforestation on the soil organic carbon (SOC) of a peaty gley soil using on-line thermally assisted hydrolysis and methylation (THM) in the presence of 13C-labelled tetramethylammonium hydroxide (TMAH). J. Anal. Appl. Pyrolysis 2009, 85, 417–425. [Google Scholar] [CrossRef]
- Williams, C.J.; Yavitt, J.B. Botanical composition of peat and degree of peat decomposition in three temperate peatlands. Ecoscience 2003, 10, 85–95. [Google Scholar] [CrossRef]
- Thevenot, M.; Dignac, M.F.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- Schulten, H.R.; Leinweber, P. New insights into organic-mineral particles: Composition, properties and models of molecular structure. Biol. Fertil. Soils 2000, 30, 399–402. [Google Scholar] [CrossRef]
- Chen, C.; Dynes, J.; Wang, J.; Karunakaran, C.; Sparks, D.L. Soft x-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions. Environ. Sci. Technol. 2014, 48, 6678–6686. [Google Scholar] [CrossRef] [PubMed]
- Newbold, J.D.; Bott, R.L.; Kaplan, L.A.; Sweeney, B.W.; Vannote, R.L. Organic matter dynamics in White Clay Creek, Pennsylvania, USA. J. N. Am. Benthol. Soc. 1997, 6, 46–50. [Google Scholar] [CrossRef]
- Sloto, R.A. Geology, Hydrology, and Ground Water Quality of Chester County, Pennsylvania; Chester County Water Resources Authority Water-Resource Report 2; Chester County Water Resources Authority: Chester, PA, USA, 1994. [Google Scholar]
- Amelung, W.; Zech, W.; Zhang, X.; Follett, R.F.; Tiessen, H.; Knox, E.; Flach, K.W. Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate. Soil Sci. Soc. Am. J. 1998, 62, 171–181. [Google Scholar] [CrossRef]
- Mehra, O.P.; Jackson, M.L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42 Version 4.0; Natural Resources Conservation Service, U.S. Department of Agriculture: Lincoln, NE, USA, 2004.
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 160, 309–319. [Google Scholar] [CrossRef]
- Regier, T.; Krochak, J.; Sham, T.K.; Hu, Y.F.; Thompson, J.; Blyth, R.I.R. Performance and capabilities of the Canadian Dragon: The SGM beamline at the Canadian Light Source. Nucl. Instrum. Meth. A 2007, 582, 93–95. [Google Scholar] [CrossRef]
- Chen, C.; Sparks, D.L. Multi-elemental scanning transmission X-ray microscopy–near edge X-ray absorption fine structure spectroscopy assessment of organo-mineral associations in soils from reduced environments. Environ. Chem. 2015, 12, 64–73. [Google Scholar] [CrossRef]
- Wan, J.M.; Tyliszczak, T.; Tokunaga, T.K. Organic carbon distribution, speciation, and elemental correlations with soil micro aggregates: Applications of STXM and NEXAFS spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 5439–5449. [Google Scholar] [CrossRef]
- Lehmann, J.; Solomon, D.; Kinyang, J.; Dathe, L.; Wirick, S.; Jacobsen, S. Spatial complexity of soil organic matter forms at nanometer scales. Nat. Geosci. 2008, 1, 238–242. [Google Scholar] [CrossRef]
- Leinweber, P.; Jandl, G.; Eckhardt, K.U.; Schlichting, A.; Hofmann, D.; Schulten, H.R. Analytical pyrolysis and soft-ionization mass spectrometry. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley & Sons: New York, NY, USA, 2009; pp. 533–582. [Google Scholar]
- Leinweber, P.; Kruse, J.; Baum, C.; Arcand, M.; Knight, J.D.; Farrell, R.; Eckhardt, K.U.; Kiersch, K.; Jandi, G. Advances in understanding organic nitrogen chemistry in soils using state-of-the-art analytical techniques. Adv. Agron. 2013, 119, 83–151. [Google Scholar]
- Kalbitz, K.; Schmerwitz, J.; Schwesig, D.; Matzner, E. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 2003, 113, 273–291. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Johnson, C.E. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma 2003, 111, 123–149. [Google Scholar] [CrossRef]
- Rumpel, C.; Eusterhues, K.; Kögel-Knabner, I. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol. Biochem. 2004, 36, 177–190. [Google Scholar] [CrossRef]
- Djukic, I.; Zehetner, F.; Tatzber, M.; Gerzabek, M.H. Soil organic-matter stocks and characteristics along an Alpine elevation gradient. J. Plant Nutr. Soil Sci. 2010, 173, 30–38. [Google Scholar] [CrossRef]
- Leinweber, P.; Eckhardt, K.U.; Fischer, H.; Kuzyakov, K. A new rapid micro-method for the molecular-chemical characterization of rhizodeposits by field-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1230–1234. [Google Scholar] [CrossRef] [PubMed]
- Sleutel, S.; Leinweber, P.; Ara Begum, S.; Kader, M.A.; Van Oostveldt, P.; De Neve, S. Composition of organic matter in sandy relict and cultivated heathlands as examined by Pyrolysis-Field Ionization MS. Biogeochemistry 2008, 89, 253–271. [Google Scholar] [CrossRef]
- Gillespie, A.; Walley, F.; Farrell, R.; Leinweber, P.; Eckhardt, K.U.; Regier, T.; Blyth, R. XANES and Pyrolysis-FIMS evidence of organic matter composition in a hummocky landscape. Soil Sci. Soc. Am. J. 2011, 75, 1741–1755. [Google Scholar] [CrossRef]
- Sleutel, S.; Kader, M.A.; Leinweber, P.; D’Haene, K.; De Neve, S. Tillage management alters surface soil organic matter composition: A pyrolysis mass spectroscopy study. Soil Sci. Soc. Am. J. 2007, 71, 1620–1628. [Google Scholar] [CrossRef]
- Millard, P. Ecophysiology of the internal cycling of nitrogen for tree growth. Z. Pflanzenernahr. Bodenkd. 1996, 159, 1–10. [Google Scholar] [CrossRef]
- Sanger, L.M.; Anderson, J.M.; Little, D.; Bolger, T. Phenolic and carbohydrate signatures of organic matter in soils developed under grass and forest plantations following changes in land use. Eur. J. Soil. Sci. 1997, 48, 311–317. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Riedel, T.; Zak, D.; Biester, H.; Dittmar, T. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc. Natl. Acad. Sci. USA 2013, 110, 10101–10105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Wang, H.; He, J.S.; Feng, X.J. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. 2017, 8, 15972. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.G.; Sanderman, J.; Chadwick, O.A.; Chorover, J.; Vitousek, P.M. Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 2012, 18, 2594–2605. [Google Scholar] [CrossRef]
- Berhe, A.A.; Harden, J.W.; Torn, M.S.; Kleber, M.; Burton, S.D.; Harte, J. Persistence of soil organic matter in eroding versus depositional landform positions. J. Geophys. Res. Biogeosci. 2012, 117, G02019. [Google Scholar] [CrossRef]
- Wang, X.; Cammeraat, E.L.H.; Cerli, C.; Kalbitz, K. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biol. Biochem. 2014, 72, 55–65. [Google Scholar] [CrossRef]
- Opsahl, S.; Benner, R. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Acta 1995, 59, 4889–4904. [Google Scholar] [CrossRef]
- LaRowe, D.E.; Van Cappellen, P. Degradation of natural organic matter: A thermodynamic analysis. Geochim. Cosmochim. Acta 2011, 75, 2030–2042. [Google Scholar] [CrossRef]
- Haider, K.; Martin, J.P. Decomposition of specifically carbon-14 labeled benzoic and cinnamic acid derivatives in soil. Soil Sci. Soc. Am. J. 1975, 39, 657–662. [Google Scholar] [CrossRef]
- Hedges, J.I.; Cowie, G.L.; Erte, J.R.; Barbour, R.J.; Hatcher, P.G. Degradation of carbohydrates and lignins in buried woods. Geochim. Cosmochim. Acta 1985, 49, 701–711. [Google Scholar] [CrossRef]
- Schulten, H.R.; Leinweber, P. Dithionite-citrate-bicarbonate-extractable organic matter in particle-size fractions of a Haplaquoll. Soil Sci. Soc. Am. J. 1995, 59, 1019–1027. [Google Scholar] [CrossRef]
- Feng, W.; Plante, A.F.; Six, J. Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry 2013, 112, 81–93. [Google Scholar] [CrossRef]
- Mayer, L.M. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 1994, 114, 347–363. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. Sorptive stabilization of organic matter by microporous goethite: Sorption into small pores vs. surface complexation. Eur. J. Soil Sci. 2007, 58, 45–59. [Google Scholar] [CrossRef]
- Sollins, P.; Swanston, C.; Kleber, M.; Filley, T.; Kramer, M.G.; Crow, S.E.; Caldwell, B.; Lajtha, K.; Bowden, R. Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biol. Biochem. 2006, 38, 3313–3324. [Google Scholar] [CrossRef]
- Kleber, M.; Sollins, P.; Sutton, R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures of mineral surfaces. Biogeochemistry 2007, 85, 9–24. [Google Scholar] [CrossRef]
- Schulten, H.R.; Leinweber, P. Thermal stability and composition of mineral-bound organic matter in density fractions of soil. Eur. J. Soil Sci. 1999, 50, 237–248. [Google Scholar] [CrossRef]
Landscape Location | Soil Depth (cm) | C concentration (mg g−1) | N Concentration (mg g−1) | C/N Ratio | SSA (m2 g−1) | C Loadings (mg C m−2) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Whole Soil | Clay Fraction | Whole Soil | Clay Fraction | Whole Soil | Clay Fraction | Whole Soil | Clay Fraction | Whole Soil | Clay Fraction | ||
Summit | 0–15 | 30.6 a,* | 72.6 a | 3.3 a | 9.3 a | 10.8 b | 7.8 a | 14.5 b | 65.7 a | 2.1 a | 1.1 a |
15–25 | 17.5 c | 49.1 c | 2.0 c | 6.4 c | 10.2 c | 7.7 a | 15.4 a | 66.2 a | 1.1 b | 0.7 b | |
25–35 | 6.6 e | 18.1 e | 0.8 d | 2.5 d | 9.6 d | 7.2 c | 14.1 b | 65.4 a | 0.5 c | 0.3 c | |
Footslope | 0–15 | 27.9 b | 68.9 b | 2.9 b | 8.4 b | 11.5 a | 8.2 a | 12.2 c | 58.2 b | 2.2 a | 1.2 a |
15–25 | 15.9 d | 45.3 d | 1.8 c | 6.0 c | 10.3 c | 7.6 a,b | 11.6 c | 57.4 b,c | 1.4 b | 0.8 b | |
25–35 | 5.5 f | 15.8 f | 0.7 d | 2.1 d | 8.7 d,e | 7.5 b | 11.5 c | 55.8 c | 0.4 c | 0.3 c |
Landscape Location | Soil Depth (cm) | CHYDR | PHLM | LDIM | LIPID | ALKYL | NCOMP | STEROL | PEPTI | FATTY |
---|---|---|---|---|---|---|---|---|---|---|
% TII | ||||||||||
Summit | 0–15 | 7.9 a,* | 8.9 d | 2.4 a | 4.3 b | 9.1 e | 4.3 b,c | 1.7 a | 7.5 a | 0.9 a,b |
15–25 | 8.6 a | 11.0 c | 1.7 b | 5.5 a | 12.1 d | 5.2 a | 1.0 b | 7.1 a | 0.7 b | |
25–35 | 5.9 c | 13.0 b | 1.7 b | 5.8 a | 15.7 b | 4.7 a | 0.4 c | 6.1 b | 1.1 a | |
Footslope | 0–15 | 7.1 b | 8.7 d | 2.6 a | 5.2 a | 9.9 e | 3.7 c | 2.2 a | 6.3 b | 1.2 a |
15–25 | 7.0 b | 13.3 b | 1.5 b | 5.4 a | 14.1 c | 3.9 c | 1.2 b | 6.0 b | 1.2 a | |
25–35 | 7.8 a | 21.0 a | 0.3 c | 3.9 b | 22.9 a | 5.6 a | 0.0 d | 7.5 a | 0.1 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Leinweber, P.; Eckhardt, K.-U.; Sparks, D.L. The Composition and Stability of Clay-Associated Organic Matter along a Soil Profile. Soil Syst. 2018, 2, 16. https://doi.org/10.3390/soilsystems2010016
Chen C, Leinweber P, Eckhardt K-U, Sparks DL. The Composition and Stability of Clay-Associated Organic Matter along a Soil Profile. Soil Systems. 2018; 2(1):16. https://doi.org/10.3390/soilsystems2010016
Chicago/Turabian StyleChen, Chunmei, Peter Leinweber, Kai-Uwe Eckhardt, and Donald L. Sparks. 2018. "The Composition and Stability of Clay-Associated Organic Matter along a Soil Profile" Soil Systems 2, no. 1: 16. https://doi.org/10.3390/soilsystems2010016
APA StyleChen, C., Leinweber, P., Eckhardt, K. -U., & Sparks, D. L. (2018). The Composition and Stability of Clay-Associated Organic Matter along a Soil Profile. Soil Systems, 2(1), 16. https://doi.org/10.3390/soilsystems2010016