Quantitative Estimation of Fougerite Green Rust in Soils and Sediments by Citrate—Bicarbonate Kinetic Extractions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
- -
- 0–15 cm (OH/AG): a black organic horizon above an organo-mineral horizon with a diffuse transition. No oxidoreduction mottles have been detected;
- -
- 15–50 cm (Go): a silty horizon, with oximorphic properties, i.e., bluish-grey colors in cores (5 BG 6/1 according to Munsell’s chart) with some discolorations along roots and numerous oxidoreduction mottles (specifically 5 Y 6/4 and 2.5 Y 5/6, moist); structure is massive and the piezometric level of the water table is frequently present in this horizon;
- -
- 50–80 cm (Gr): a silty horizon, with reducing conditions, i.e., homogeneous in color and clearly blue (5 BG 6/1), almost permanently waterlogged (10 months per year), without roots. No oxidoreduction mottles have been observed. Texture changes progressively from 60 cm to 80 cm and limit between Gr and Cg is diffuse;
- -
- 80 cm and more (Cg): the granitic saprolite with reducing properties, i.e., bluish-green color (5 BG 6/1), permanently waterlogged.
2.2. Soil Analysis
2.3. Soil Sampling
2.4. Chemical Extraction Procedure with CB
2.5. X-Ray Diffraction
2.6. Mössbauer Spectroscopy
3. Results
3.1. Kinetic Selective Extractions
3.2. XRD Patterns
3.3. Mössbauer Spectra
4. Discussion
- The first fraction, F1, extractable for a duration less than 10 h, is composed of an “indefinable mixture” of Al, Si, Fe and Mg. During this step, 70% Si, 80% Al, 23% Fe and 80% Mg extractable by CB are released in solution.
- The second fraction, F2, extractable between 6 and 168 h, is essentially composed of Fe and Mg. During this time interval, 520 mmol kg−1 of Fe and 54 mmol kg−1 of Mg are released in solution with a constant mole ratio Fe/Mg equal to 10, whereas the Al and Si amounts are negligible.
- The third fraction, F3, is composed of the residual minerals, which are not dissolved by CB extraction.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Soil Sample
Appendix A.2. Reagent
Appendix A.3. Procedure
- (1).
- In a glove box in darkness, weigh, in 12 separate 50 mL tubes, 500 mg of soil sample. One or two repetitions at each time of reaction.
- (2).
- Add 50 mL of CB reagent to each tube. Soil/solution ratio is ca. 1 for 100 in weight.
- (3).
- Close tubes and shake on high for 10 min.
- (4).
- After 1 h, shake and collect supernatant solutions.
- (5).
- Immediately, filter at 0.45 μm with Millipore filters.
- (6).
- Acidify with supra-pure HNO3.
- (7).
- Repeat operation from points 4 to 6 for extraction after 6, 48, 168, 336 and 504 h.
- (8).
- Shake all samples three times a day.
- (9).
- Quickly perform analyses of Si, Al, Fe and Mg by inductively coupled plasma-atomic emission spectrometry (ICP-AES).
- (10).
- Compute the % of each element extracted relative to the total concentration of the element and plot the % of extraction vs. time (see Figure 1).
Appendix A.4. Method of Interpretation
References
- Cornell, R.M.; Schwermann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Vysotskii, G.N. Gley. Pochvovedeniye 1905, 4, 291–327. [Google Scholar]
- Vysotskii, G.N. Gley. An abridged publication of Vysotskii 1905 on the 257th Anniversary of the Russian Academy of Science. Eurasian Soil Sci. J. 1999, 32, 1063–1068. [Google Scholar]
- Ponnamperuma, F.N.; Tianco, E.M.; Loy, T. Redox equilibria in flooded soils: I. The ion hydroxide systems. Soil Sci. J. 1967, 103, 374–382. [Google Scholar] [CrossRef]
- Bernal, J.D.; Dasgupta, D.R.; Mackay, A.L. The Oxides and Hydroxides of Iron and Their Structural Inter-Relationships. Clay Miner. Bull. 1959, 4, 15–21. [Google Scholar] [CrossRef]
- Trolard, F.; Abdelmoula, M.; Bourrié, G.; Humbert, B.; Génin, J.-M.R. Mise en évidence d’un constituant de type “rouilles vertes” dans les sols hydromorphes—Proposition de l’existence d’un nouveau minéral: La “fougérite”. CR Acad. Sci. 1996, 323, 1015–1022. [Google Scholar]
- Trolard, F.; Génin, J.-M.R.; Abdelmoula, M.; Bourrié, G.; Humbert, B.; Herbillon, A.J. Identification of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim. Cosmochim. Acta 1997, 61, 1107–1111. [Google Scholar] [CrossRef]
- Trolard, F.; Bourrié, G.; Abdelmoula, M.; Refait, P.H.; Feder, F. Fougerite, a new mineral of the pyroaurite-iowaite group: Description and crystal structure. Clays Clay Miner. 2007, 55, 323–334. [Google Scholar] [CrossRef]
- Bourrié, G.; Trolard, F.; Refait, P.H.; Feder, F. A solid-solution model for Fe(II)-Fe(III)-Mg(II) green rusts and fougerite and estimation of their Gibbs free energies of formation. Clays Clay Miner. 2004, 52, 382–394. [Google Scholar] [CrossRef]
- Bourrié, G.; Trolard, F.; Génin, J.-M.R.; Jaffrezic, A.; Maître, V.; Abdelmoula, M. Iron control by equilibria between hydroxy-green rusts and solutions in hydromorphic soils. Geochim. Cosmochim. Acta. 1999, 63, 3417–3427. [Google Scholar] [CrossRef]
- Feder, F.; Trolard, F.; Klingelhöfer, G.; Bourrié, G. In situ Mössbauer spectroscopy: Evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth. Geochim. Cosmochim. Acta 2005, 69, 4463–4483. [Google Scholar] [CrossRef]
- Halevy, I.; Alesker, M.; Schuster, E.M.; Popovitz-Biro, R.; Feldman, Y. A Key Role for Green Rust in the Precambrian Oceans and the Genesis of Iron Formations. Nat. Geosci. 2017, 10, 135–139. [Google Scholar] [CrossRef]
- Russell, M. Green rust: The simple organizing “seed” of all life. Life 2018, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Trolard, F.; Bourrié, G. Chapter 5: Geochemistry of Green Rusts and Fougerite. Adv. Agronomy 2008, 99, 227–288. [Google Scholar]
- Refait, P.H.; Abdelmoula, M.; Trolard, F.; Génin, J.-M.R.; Ehrhardt, J.J.; Bourrié, G. Mössbauer and XAS study of a green rust mineral; the partial substitution of Fe2+ by Mg2+. Amer. Mineralogist. 2001, 86, 731–739. [Google Scholar] [CrossRef]
- Loyaux-Lawniczak, S.; Refait, P.; Ehrhardt, J.J.; Lecomte, P.; Génin, J.M.R. The reduction of chromate ions by Fe(II) layered hydroxides. Hydrol. Earth Syst. Sci. 1999, 3, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.; Chen, M.; Liu, C.; Li, F.; Long, J.; Gao, T.; Wu, F.; Lei, J.; Gu, M. Cr release from Cr-substituted goethite during aqueous Fe(II) induced recrystallization. Minerals 2018, 8, 367. [Google Scholar] [CrossRef]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite. Environ. Sci. Technol. 2017, 51, 4259–4268. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Cassandra, M.; Murphy, A.; Waite, T.D.; Collins, R.N. Fe(II) Interactions with Smectites: Temporal Changes in Redox Reactivity and the Formation of Green Rust. Environ. Sci. Technol. 2017, 51, 12573–12582. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources; Reports No. 106; Food and Agriculture Organization: Rome, Italy, 2014. [Google Scholar]
- Borggaard, O.K. Phase identification by selective dissolution techniques. In Iron in Soils and Clay Minerals; Stucki, D., Ed.; Reibel Publishing Company: Dordrecht, The Netherlands, 1988; pp. 83–98. [Google Scholar]
- Feder, F. Soil map update: Procedure and problems encountered for the island of Réunion. Catena 2013, 110, 215–224. [Google Scholar] [CrossRef]
- Mehra, O.P.; Jackson, M.L. Iron oxides removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Jeanroy, E.; Guillet, B.; Delcroix, P.; Janot, Ch. Les formes du fer dans les sols: Confrontation des méthodes chimiques avec la spectrométrie Mössbauer. Sci. Sol. 1983, 3–4, 185–194. [Google Scholar]
- Alary, K.; Babre, D.; Caner, L.; Feder, F.; Szwarc, M.; Naudan, M.; Bourgeon, G. Pre-treatment of soil samples rich in short-range-order minerals before particle-size analysis by the pipette method. Pedosphere 2013, 23, 20–28. [Google Scholar] [CrossRef]
- Tamm, O. Eine Method zur Bestimmung der organischen Komponenten des Gelcomplexes in Boden. Medd. Statens Skogsfösöksanstalt 1922, 19, 385–404. [Google Scholar]
- Singh, B.; Gilkes, R.J. Properties and Distribution of Iron Oxides and Their Association with Minor Elements in the Soils of South-Western Australia. J. Soil Sci. 1992, 43, 77–98. [Google Scholar] [CrossRef]
- Trolard, F.; Bourrié, G.; Jeanroy, E.; Herbillon, A.J.; Martin, H. Trace metals in natural iron oxides from laterites: A study using selective kinetic extraction. Geochim. Comoschim. Acta 1995, 59, 1285–1297. [Google Scholar] [CrossRef]
- Ciesielski, H.; Sterckeman, T.; Santerne, M.; Willery, J.-P. Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie 1997, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jeanroy, E.; Rajot, J.L.; Pillon, P.; Herbillon, A.J. Differential dissolution of hematite and goethite in dithionite and its application on soil yellowing. Geoderma 1991, 50, 79–94. [Google Scholar] [CrossRef]
- Righi, D.; Girault, P.; Meunier, A. Transformation des phyllosilicates dans un sol cryptopodzolique humifère du plateau de Millevaches, France. Clay Miner. 1986, 21, 43–54. [Google Scholar] [CrossRef]
- Klingelhöfer, G.; Morris, R.V.; Bernhardt, B.; Rodionov, D.; de Souza, P.A.; Squyres, S.W.; Foh, J.; Kankeleit, E.; Bonnes, U.; Gellert, R.; et al. Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. 2003, 108, 8067–8082. [Google Scholar] [CrossRef]
- Mitchell, B.D.; Smith, B.F.L.; Endredy, A.S. The effect of buffered sodium dithionite solution and ultrasonic agitation on soil clays. Israelian J. Chem. 1971, 9, 45–52. [Google Scholar] [CrossRef]
- Aurousseau, P.; Curmi, P.; Bouillé, S.; Charpentier, S. Les vermiculites hydroxy-alumineuses du massif Armoricain (France). Approches minéralogique, microanalytique et thermodynamique. Geoderma 1983, 31, 17–40. [Google Scholar] [CrossRef]
- Farmer, V.C.; Smith, B.F.L.; Wilson, M.J.; Loveland, P.J.; Payton, R.W. Readily-Extractable Hydroxyaluminium Interlayers in Clay-and Silt-Sized Vermiculite. Clay Miner. 1988, 23, 271–277. [Google Scholar] [CrossRef]
Depth 1 | pHwater | pHKCl | C | CEC | CF a | FS a | CS a | S b |
---|---|---|---|---|---|---|---|---|
cm | % | cmol(+)·kg−1 | g·kg−1 | g·kg−1 | g·kg−1 | |||
10 (OH/AG) | 4.5 | 3.7 | 7.5 | 4.3 | 76 | 364.7 | 450.9 | 108.4 |
35 (Go) | 4.5 | 3.7 | 1.6 | 1.7 | 109.6 | 262 | 536.5 | 91.9 |
65 (Gr) | 4.8 | 3.7 | 0.5 | 4.5 | 167.8 | 206.3 | 453 | 172.9 |
75 (Gr) | 4.2 | 3.4 | 0.4 | 4.9 | 119.5 | 185.3 | 278.9 | 416.3 |
85 (Cg) | 5.2 | 4 | 0.7 | 5.2 | 118.8 | 197.4 | 150.1 | 533.7 |
95 (Cg) | 4.8 | 3.7 | 0.4 | 6.1 | 98.6 | 182.8 | 131.4 | 587.3 |
Si a | Al a | Fe a | Mg a | ||
---|---|---|---|---|---|
Initial soil | total exchangeable | 11,000 | 1700 | 700 | 405 |
0 | 1 | 0.9 | 15.5 | ||
Time of CB | 1 | 20 | 60 | 120 | 105 |
6 | 140 | 160 | 160 | 226 | |
Extraction (hours) | 48 | 140 | 200 | 280 | 240 |
168 | 160 | 200 | 680 | 280 | |
336 | 180 | 200 | 680 | 280 | |
504 | 200 | 200 | 680 | 280 |
Samples | D1 | D2 | D3 | ||||||
---|---|---|---|---|---|---|---|---|---|
δ | ΔEQ | RA | δ | ΔEQ | RA | δ | ΔEQ | RA | |
initial | 1.05 | 2.62 | 50.9 | 0.89 | 2.41 | 6.1 | 0.25 | 0.80 | 43.0 |
+6 h CB | 1.04 | 2.68 | 54.6 | 0.84 | 2;29 | 4.8 | 0.30 | 0.71 | 40.6 |
+48 h CB | 1.05 | 2.67 | 56.9 | 0.83 | 2.39 | 8.5 | 0.30 | 0.68 | 34.6 |
+168 h CB | No spectrum | ||||||||
+504 h CB | No spectrum |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feder, F.; Trolard, F.; Bourrié, G.; Klingelhöfer, G. Quantitative Estimation of Fougerite Green Rust in Soils and Sediments by Citrate—Bicarbonate Kinetic Extractions. Soil Syst. 2018, 2, 54. https://doi.org/10.3390/soilsystems2040054
Feder F, Trolard F, Bourrié G, Klingelhöfer G. Quantitative Estimation of Fougerite Green Rust in Soils and Sediments by Citrate—Bicarbonate Kinetic Extractions. Soil Systems. 2018; 2(4):54. https://doi.org/10.3390/soilsystems2040054
Chicago/Turabian StyleFeder, Frédéric, Fabienne Trolard, Guilhem Bourrié, and Goestar Klingelhöfer. 2018. "Quantitative Estimation of Fougerite Green Rust in Soils and Sediments by Citrate—Bicarbonate Kinetic Extractions" Soil Systems 2, no. 4: 54. https://doi.org/10.3390/soilsystems2040054
APA StyleFeder, F., Trolard, F., Bourrié, G., & Klingelhöfer, G. (2018). Quantitative Estimation of Fougerite Green Rust in Soils and Sediments by Citrate—Bicarbonate Kinetic Extractions. Soil Systems, 2(4), 54. https://doi.org/10.3390/soilsystems2040054