Machine Learning-Based Prediction of Drainage in Layered Soils Using a Soil Drainability Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stochastic Weather Generation
2.2. Soil, Crop, and Meteorological Data
2.3. HYDRUS-1D Numerical Modelling
2.4. Soil Drainability Index
2.5. Supervised Machine Learning
3. Results
3.1. Climatic Data and Calibration of LARS-WG
3.2. Simulations with the Bare Soil Scenario
3.3. Simulations with Grass-Covered Lands (Pasture)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. How to Feed the World in 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water savings potentials of irrigation systems: Global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 2015, 19, 3073–3091. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Battisti, R.; Câmara, G.M.S.; Farias, J.R.B.; Hampf, A.C.; Nendel, C. The soybean yield gap in Brazil-magnitude, causes and possible solutions for sustainable production. J. Agric. Sci. 2015, 153, 1394–1411. [Google Scholar] [CrossRef]
- Wu, C.L.; Shukla, S.; Shrestha, N.K. Evapotranspiration from drained wetlands with different hydrologic regimes: Drivers, modeling, and storage functions. J. Hydrol. 2016, 538, 416–428. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone J. 2016, 15, 1–25. [Google Scholar] [CrossRef]
- Chen, M.; Willgoose, G.R.; Saco, P.M. Spatial prediction of temporal soil moisture dynamics using HYDRUS-1D. Hydrol. Process. 2014, 28, 171–185. [Google Scholar] [CrossRef]
- Liu, T.; Lai, J.; Luo, Y.; Liu, L. Study on extinction depth and steady water storage in root zone based on lysimeter experiment and HYDRUS-1D simulation. Hydrol. Res. 2015, 46, 871–879. [Google Scholar] [CrossRef]
- Leterme, B.; Mallants, D.; Jacques, D. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D. Hydrol. Earth Syst. Sci. 2012, 16, 2485–2497. [Google Scholar] [CrossRef] [Green Version]
- Ries, F.; Lange, J.; Schmidt, S.; Puhlmann, H.; Sauter, M. Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrol. Earth Syst. Sci. 2015, 19, 1439–1456. [Google Scholar] [CrossRef] [Green Version]
- Patle, G.T.; Singh, D.K.; Sarangi, A.; Sahoo, R.N. Modelling of groundwater recharge potential from irrigated paddy field under changing climate. Paddy Water Environ. 2017, 15, 413–423. [Google Scholar] [CrossRef]
- Zhu, Y.; Ren, L.; Zhang, Q.; Yu, Z.; Wu, Y.; Feng, H. The contribution of groundwater to soil moisture in Populus euphratica root zone layer. In Ecohydrology of Surface and Groundwater Dependent Systems: Concepts, Methods and Recent Developments. Proceedings of Symposium JS. 1 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association; IAHS Press: Hyderabad, India, 2009; pp. 181–190. [Google Scholar]
- Shouse, P.J.; Ayars, J.E.; ŠimŮnek, J. Simulating root water uptake from a shallow saline groundwater resource. Agric. Water Manag. 2011, 98, 784–790. [Google Scholar] [CrossRef]
- Zhu, Y.; Ren, L.; Horton, R.; Lü, H.; Chen, X.; Jia, Y.; Wang, Z.; Sudicky, E.A. Estimating the contribution of groundwater to rootzone soil moisture. Hydrol. Res. 2013, 44, 1102–1113. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, Y.; Bao, H.; Wenninger, J. Simulation of maize (Zea mays L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu River catchment, Northwest China. Hydrol. Sci. J. 2017, 62, 93–103. [Google Scholar]
- Zhao, Y.; Si, B.; He, H.; Xu, J.; Peth, S.; Horn, R. Modeling of Coupled Water and Heat Transfer in Freezing and Thawing Soils, Inner Mongolia. Water 2016, 8, 424. [Google Scholar] [CrossRef]
- Yang, R.; Tong, J.; Hu, B.X.; Li, J.; Wei, W. Simulating water and nitrogen loss from an irrigated paddy field under continuously flooded condition with Hydrus-1D model. Environ. Sci. Pollut. Res. 2017, 24, 15089–15106. [Google Scholar] [CrossRef]
- He, K.; Yang, Y.; Yang, Y.; Chen, S.; Hu, Q.; Liu, X.; Gao, F. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain. Water 2017, 9, 536. [Google Scholar] [CrossRef]
- Lamorski, K.; Pachepsky, Y.; Sławiński, C.; Walczak, R.T. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J. 2008, 72, 1243–1247. [Google Scholar] [CrossRef]
- Elbisy, M.S. Support Vector Machine and regression analysis to predict the field hydraulic conductivity of sandy soil. KSCE J. Civ. Eng. 2015, 19, 2307–2316. [Google Scholar] [CrossRef]
- Kotlar, A.M.; Iversen, B.V.; de Jong van Lier, Q. Evaluation of Parametric and Nonparametric Machine-Learning Techniques for Prediction of Saturated and Near-Saturated Hydraulic Conductivity. Vadose Zone J. 2019, 18. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M.; Lars-Wg, A. A Stochastic Weather Generator for Use in Climate Impact Studies; User Man Herts UK: Rothamsted Research, UK, 2002. [Google Scholar]
- De Jong van Lier, Q. Field capacity, a valid upper limit of crop available water? Agric. Water Manag. 2017, 193, 214–220. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; Simulation Monographs: Wageningen, The Netherlands, 1978; Volume 2. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Møller, A.B.; Beucher, A.; Iversen, B.V.; Greve, M.H. Predicting artificially drained areas by means of a selective model ensemble. Geoderma 2018, 320, 30–42. [Google Scholar] [CrossRef]
- De Faria, R.T.; Bowen, W.T. Evaluation of DSSAT soil-water balance module under cropped and bare soil conditions. Braz. Arch. Biol. Technol. 2003, 46, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A.; Scott, R.L.; Rosolem, R.; da Rocha, H.R. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrol. Earth Syst. Sci. 2015, 19, 2899–2910. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.G.; de Teixeiraa, A.H.C.; Sanob, E.E.; Leivasa, J.F. Pasture evapotranspiration as indicators of degradation in the Brazilian Savanna. A case study for Alto Tocantins watershed. In Proceedings Volume 9239, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI; SPIE REMOTE SENSING: Amsterdam, The Netherlands, 2014; Volume 2014, p. 92391Z-1. [Google Scholar]
- Feltrin, R.M.; de Paiva, J.B.D.; de Paiva, E.M.C.D.; Meissner, R.; Rupp, H.; Borg, H. Use of Lysimeters to Assess Water Balance Components in Grassland and Atlantic Forest in Southern Brazil. Water Air Soil Pollut. 2017, 228, 247. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Johnson, M.S.; Donner, S.D. Water use by terrestrial ecosystems: Temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environ. Res. Lett. 2012, 7, 24024. [Google Scholar] [CrossRef]
- Meirelles, M.L.; Franco, A.C.; Farias, S.E.M.; Bracho, R. Evapotranspiration and plant–atmospheric coupling in a Brachiaria brizantha pasture in the Brazilian savannah region. Grass Forage Sci. 2011, 66, 206–213. [Google Scholar] [CrossRef]
- Santos, A.J.B.; Quesada, C.A.; Da Silva, G.T.; Maia, J.F.; Miranda, H.S.; Carlos Miranda, A.; Lloyd, J. High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian Cerrado. Glob. Chang. Biol. 2004, 10, 877–885. [Google Scholar] [CrossRef]
- Nóbrega, R.L.B.; Guzha, A.C.; Torres, G.N.; Kovacs, K.; Lamparter, G.; Amorim, R.S.S.; Couto, E.; Gerold, G. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE 2017, 12, e0179414. [Google Scholar] [CrossRef]
- Sanches, L.; Vourlitis, G.L.; de Carvalho Alves, M.; Pinto-Júnior, O.B.; de Souza Nogueira, J. Seasonal patterns of evapotranspiration for a Vochysia divergens forest in the Brazilian Pantanal. Wetlands 2011, 31, 1215–1225. [Google Scholar] [CrossRef]
Soil | Layer (cm) | θr | θs | α (cm−1) | n | Ks (cm d−1) | λ |
---|---|---|---|---|---|---|---|
A Sandy Clay Loam | 0–20 | 0.186 | 0.436 | 0.0263 | 2.328 | 27.18 | 2.02 |
20–30 | 0.179 | 0.332 | 0.0275 | 1.697 | 25.49 | 0 | |
30–40 | 0.202 | 0.293 | 0.0070 | 2.919 | 42.29 | 7.17 | |
40–50 | 0.186 | 0.350 | 0.0262 | 1.523 | 42.77 | 0 | |
50–60 | 0.218 | 0.333 | 0.0154 | 2.570 | 34.12 | 0 | |
60–70 | 0.184 | 0.303 | 0.0181 | 1.869 | 43.24 | 0 | |
70–80 | 0.179 | 0.408 | 0.0269 | 2.754 | 118.79 | 1.99 | |
80–100 | 0.169 | 0.353 | 0.0289 | 1.735 | 79.29 | 0 | |
B Clay | 0–30 | 0.293 | 0.505 | 0.0172 | 1.525 | 10.43 | 8.21 |
30–45 | 0.272 | 0.506 | 0.0169 | 1.415 | 11.12 | 8.82 | |
45–60 | 0.288 | 0.469 | 0.0219 | 1.397 | 24.00 | 5.12 | |
60–75 | 0.289 | 0.418 | 0.0095 | 1.901 | 27.25 | 3.83 | |
75–90 | 0.255 | 0.483 | 0.0201 | 1.535 | 75.11 | 0 | |
90–100 | 0.270 | 0.409 | 0.0092 | 2.377 | 97.38 | 0 | |
C Sandy Clay Loam | 0–15 | 0.113 | 0.469 | 0.0593 | 1.608 | 38.20 | −0.36 |
15–30 | 0.138 | 0.362 | 0.0421 | 1.759 | 32.80 | 1.13 | |
30–45 | 0.112 | 0.332 | 0.0373 | 1.551 | 24.00 | 2.16 | |
45–60 | 0.144 | 0.329 | 0.0392 | 1.527 | 17.50 | 1.30 | |
60–100 | 0.142 | 0.351 | 0.0424 | 1.487 | 17.50 | 1.76 | |
D Clay | 0–20 | 0.275 | 0.463 | 0.0232 | 1.389 | 76.42 | 3.93 |
20–40 | 0.290 | 0.447 | 0.0181 | 1.356 | 113.85 | 4.71 | |
40–60 | 0.287 | 0.444 | 0.0136 | 1.443 | 120.54 | 4.98 | |
60–80 | 0.270 | 0.506 | 0.0254 | 1.590 | 1352.34 | 4.96 | |
80–100 | 0.257 | 0.513 | 0.0265 | 1.583 | 2014.19 | 4.97 | |
E Clay | 0–20 | 0.270 | 0.487 | 0.0647 | 1.925 | 163.1 | 3.41 |
20–30 | 0.267 | 0.444 | 0.0212 | 2.014 | 46.62 | 1.70 | |
30–40 | 0.263 | 0.441 | 0.0223 | 1.843 | 53.62 | 1.25 | |
40–50 | 0.270 | 0.489 | 0.053 | 1.919 | 174.25 | 2.94 | |
50–60 | 0.262 | 0.558 | 0.0468 | 1.931 | 225.07 | 1.09 | |
60–70 | 0.253 | 0.439 | 0.0145 | 1.717 | 31.30 | 0.01 | |
70–80 | 0.231 | 0.516 | 0.0242 | 1.535 | 97.42 | −0.28 | |
80–100 | 0.239 | 0.517 | 0.0211 | 1.494 | 88.55 | −0.44 | |
F Sandy Loam | 0–15 | 0.086 | 0.428 | 0.079 | 1.360 | 23.28 | −0.47 |
15–40 | 0.123 | 0.370 | 0.0394 | 1.452 | 85.92 | 8.62 | |
40–65 | 0.152 | 0.340 | 0.0171 | 1.805 | 131.52 | 6.12 | |
65–90 | 0.132 | 0.360 | 0.0168 | 1.596 | 152.64 | −3.02 | |
90–100 | 0.117 | 0.340 | 0.0131 | 1.482 | 102.72 | 0 | |
G Sandy | 0–10 | 0.094 | 0.398 | 0.0382 | 3.808 | 429.89 | 0 |
20–30 | 0.068 | 0.468 | 0.0985 | 1.694 | 472.85 | −1.70 | |
20–30 | 0.085 | 0.503 | 0.0778 | 1.800 | 522.89 | −0.77 | |
30–40 | 0.048 | 0.480 | 0.0694 | 2.427 | 1075.9 | 0 | |
40–50 | 0.050 | 0.453 | 0.069 | 2.576 | 781.20 | 0 | |
50–60 | 0.044 | 0.441 | 0.0637 | 2.864 | 819.26 | 0 | |
60–70 | 0.099 | 0.395 | 0.0714 | 4.345 | 845.33 | 0 | |
70–80 | 0.072 | 0.426 | 0.0587 | 3.324 | 575.35 | 0 | |
80–90 | 0.054 | 0.447 | 0.0915 | 2.257 | 621.58 | 0 | |
90–100 | 0.054 | 0.443 | 0.0872 | 2.479 | 1074.03 | 0 | |
H Clay | 0–10 | 0.228 | 0.326 | 0.0225 | 1.656 | 12.94 | 0 |
20–30 | 0.221 | 0.361 | 0.0311 | 1.457 | 49.08 | 0 | |
20–30 | 0.221 | 0.356 | 0.0233 | 1.668 | 238.99 | 8.71 | |
30–40 | 0.225 | 0.356 | 0.0452 | 1.378 | 184.30 | 6.19 | |
40–50 | 0.248 | 0.360 | 0.0213 | 1.816 | 106.01 | 9.69 | |
50–60 | 0.252 | 0.324 | 0.1184 | 1.364 | 781.08 | 0 | |
60–70 | 0.253 | 0.390 | 0.0184 | 1.545 | 54.58 | 4.34 | |
70–80 | 0.251 | 0.364 | 0.0335 | 1.497 | 34.61 | 0 | |
80–90 | 0.203 | 0.385 | 0.0483 | 1.483 | 457.82 | −3.31 | |
90–100 | 0.254 | 0.377 | 0.0286 | 2.159 | 795.70 | 5.49 |
Scenario | Ta | D | Ev | |||
---|---|---|---|---|---|---|
Season | Wet | Dry | Wet | Dry | Wet | Dry |
G30 | 7.2 (±0.9) | 3.2 (±1.0) | 6.6 (±3.0) | 1.7 (±1.0) | 1.7 (±1.2) | 0.7 (±0.25) |
G60 | 7.8 (±0.95) | 3.6 (±1.2) | 5.7 (±1.0) | 1.3 (±0.9) | 1.85 (±1.3) | 0.75 (±0.23) |
G90 | 8.1 (±1.0) | 3.9 (±1.2) | 5.3 (±3.0) | 1.1 (±0.8) | 1.9 (±1.35) | 0.8 (±0.23) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmandoost Kotlar, A.; V. Iversen, B.; de Jong van Lier, Q. Machine Learning-Based Prediction of Drainage in Layered Soils Using a Soil Drainability Index. Soil Syst. 2019, 3, 30. https://doi.org/10.3390/soilsystems3020030
Mehmandoost Kotlar A, V. Iversen B, de Jong van Lier Q. Machine Learning-Based Prediction of Drainage in Layered Soils Using a Soil Drainability Index. Soil Systems. 2019; 3(2):30. https://doi.org/10.3390/soilsystems3020030
Chicago/Turabian StyleMehmandoost Kotlar, Ali, Bo V. Iversen, and Quirijn de Jong van Lier. 2019. "Machine Learning-Based Prediction of Drainage in Layered Soils Using a Soil Drainability Index" Soil Systems 3, no. 2: 30. https://doi.org/10.3390/soilsystems3020030
APA StyleMehmandoost Kotlar, A., V. Iversen, B., & de Jong van Lier, Q. (2019). Machine Learning-Based Prediction of Drainage in Layered Soils Using a Soil Drainability Index. Soil Systems, 3(2), 30. https://doi.org/10.3390/soilsystems3020030