Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil, Biochar, and Minerals
2.2. Laboratory Incubation
2.3. Mineralization of Biochar-C and Native SOC
2.4. Mean Residence Time of Biochar-C and Native SOC
2.5. Statistical Analyses
3. Results
3.1. Total Carbon Mineralization
3.2. Mineralization of Native SOC and Biochar-C
3.3. Mean Residence Time (MRT) of Biochar-C and Native SOC
4. Discussion
4.1. Effects of Clay Minerals on Native SOC and Biochar-C Mineralization
4.2. Effects of Biochar on Native SOC Mineralization
4.3. Interactive Effects of Biochar and Clay Minerals on Native SOC
4.4. Mean Residence Time of Native SOC and Biochar-C
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2011; Volume 112, pp. 103–143. [Google Scholar]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.Y.; Singh, B.; Singh, B.P. Effect of temperature on biochar priming effects and its stability in soils. Soil Biol. Biochem. 2015, 80, 136–145. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.X.; Ok, Y.S. Biochars and the plant-soil interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Jones, D.L.; Murphy, D.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 2011, 43, 1723–1731. [Google Scholar] [CrossRef]
- Keith, A.; Singh, B.; Singh, B.P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ. Sci. Technol. 2011, 45, 9611–9618. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Santos, F.; Torn, M.S.; Bird, J.A. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol. Biochem. 2012, 51, 115–124. [Google Scholar] [CrossRef]
- Krull, E.S.; Baldock, J.A.; Skjemstad, J.O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 2003, 30, 207–222. [Google Scholar] [CrossRef]
- Köegel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Weng, Y.-T.; Wang, C.-C.; Chiang, C.-C.; Heng, T.; Song, Y.-F.; Huang, S.-T.; Liang, B. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography. Biogeosciences 2018, 15, 3133–3142. [Google Scholar] [CrossRef] [Green Version]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Vasilyeva, N.A.; Abiven, S.; Milanovskiy, E.Y.; Hilf, M.; Rizhkov, O.V.; Schmidt, M.W.I. Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a Chernozem. Soil Biol. Biochem. 2011, 43, 1985–1988. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J.E.; Skjemstad, J.O.; Luizao, F.J.; Engelhard, M.H.; Neves, E.G.; Wirick, S. Stability of biomassderived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Gartzia-Bengoetxea, N.; Arostegi, J.; Moragues, L.; Arias-González, A. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area. Sci. Total Environ. 2017, 587, 204–213. [Google Scholar] [CrossRef]
- Guan, S.; Liu, S.; Liu, R.; Zhang, J.; Ren, J.; Cai, H.; Lin, X. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. J. Integr. Agric. 2019, 18, 1496–1507. [Google Scholar] [CrossRef]
- Bruun, S.; Clauson-Kaas, S.; Bobuľská, L.; Thomsen, I.K. Carbon dioxide emissions from biochar in soil: Role of clay, microorganisms and carbonates. Eur. J. Soil Sci. 2014, 65, 52–59. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.; Singh, B.P.; Krull, E. Biochar carbon stability in four contrasting soils. Eur. J. Soil Sci. 2014, 65, 60–71. [Google Scholar] [CrossRef]
- Novak, J.M.; Cantrell, K.B.; Watts, D.W. Compositional and Thermal Evaluation of Lignocellulosic and Poultry Litter Chars via High and Low Temperature Pyrolysis. Bioenergy Res. 2013, 6, 114–130. [Google Scholar] [CrossRef]
- Schwertmann, U.; Cornell, R.M. Iron Oxides in the Laboratory: Preparation and Characterization; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar]
- Bruun, T.B.; Elberling, B.; Christensen, B.T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol. Biochem. 2010, 42, 888–895. [Google Scholar] [CrossRef]
- Kaiser, M.; Zederer, D.P.; Ellerbrock, R.H.; Sommer, M.; Ludwig, B. Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis. Geoderma 2016, 263, 1–7. [Google Scholar] [CrossRef]
- Gu, B.H.; Schmitt, J.; Chen, Z.H.; Liang, L.Y.; McCarthy, J.F. Adsorption and desorption of natural organic-matter on iron-oxide—Mechanisms and models. Environ. Sci. Technol. 1994, 28, 38–46. [Google Scholar] [CrossRef]
- Von Lützow, M.; Köegel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Singh, B.P.; Singh, B. Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils. Agric. Ecosyst. Environ. 2014, 191, 158–167. [Google Scholar] [CrossRef]
- Yoo, G.; Kang, H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J. Environ. Qual. 2012, 41, 1193–1202. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Nieto, M.A.; Lopez-de-Sa, E.G.; Gasco, G.; Mendez, A.; Plaza, C. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Sci. Total Environ. 2014, 482, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Liu, X.-R.; Du, Z.-L.; Wang, Y.-D.; Zhang, Q.-Z. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Res. 2014, 52, 505. [Google Scholar] [CrossRef]
- Ventura, M.; Zhang, C.; Baldi, E.; Fornasier, F.; Sorrenti, G.; Panzacchi, P.; Tonon, G. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur. J. Soil Sci. 2014, 65, 186–195. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy 2014, 9, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Whitman, W.B.; Woyke, T.; Klenk, H.-P.; Zhou, Y.; Lilburn, T.G.; Beck, B.J.; De Vos, P.; Vandamme, P.; Eisen, J.A.; Garrity, G.; et al. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: The genomes of soil and plant-associated and newly described type strains. Stand. Genomic Sci. 2015, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
Organic Carbon (%) | pH (1:5 H2O) | Sand (%) | Silt (%) | Clay (%) | δ13C (‰) | |
---|---|---|---|---|---|---|
Soil (Inceptisol) | 1.48 (±0.08) | 5.70 (±0.01) | 97.5(±0.1) | 1.2 (±0.1) | 1.3 (±0.1) | −28.15 (±0.02) |
Biochar | 74.3 (±0.11) | 7.46 (±0.18) | − | − | − | −13.75 (±0.06) |
Treatment | n | Mean | t Grouping 1 |
---|---|---|---|
S+B+Sm | 27 | 357.65 | a |
S+B+Ka | 27 | 339.44 | a,b |
S | 27 | 325.69 | b,c |
S+Sm | 27 | 316.52 | c |
S+B | 27 | 316.38 | c |
S+Go | 27 | 285.54 | d |
S+Ka | 27 | 278.89 | d |
S+B+Go | 27 | 243.14 | e |
Treatment | n | Mean | t Grouping 1 |
---|---|---|---|
S | 27 | 325.69 | a |
S+Sm | 27 | 316.52 | a |
S+Go | 27 | 285.54 | b |
S+Ka | 27 | 278.90 | b |
S+B | 27 | 76.46 | c |
S+B+Sm | 27 | 66.28 | d, c |
S+B+Ka | 27 | 59.19 | d, e |
S+B+Go | 27 | 46.71 | e |
Treatment | Native SOC | Biochar-C | ||
---|---|---|---|---|
Labile C (Days) | Recalcitrant C (Years) | Labile C (Days) | Recalcitrant C (Years) | |
S | 12.3(±1.5) | 9.5(±0.8) | - | - |
S+Sm | 10.8(±1.2) | 10.0(±1.2) | - | - |
S+Ka | 13.1(±0.9) | 12.2(±1.0) | - | - |
S+Go | 22.7(±3.4) | 13.4(±2.3) | - | - |
S+B | 5.7(±0.5) | 68.4(±11.3) | 11.0(±1.4) | 125.0(±0.0) |
S+B+Go | 15.9(±3.3) | 88.6(±21.7) | 21.9(±7.9) | 122.6(±12.4) |
S+B+Sm | 8.6(±0.9) | 88.9(±12.8) | 9.1(±0.9) | 138.6(±32.2) |
S+B+Ka | 7.0(±2.7) | 107.1(±46.5) | 14.1(±3.6) | 86.7(±38.3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Keitel, C.; Singh, B. Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils. Soil Syst. 2019, 3, 79. https://doi.org/10.3390/soilsystems3040079
Zhang Q, Keitel C, Singh B. Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils. Soil Systems. 2019; 3(4):79. https://doi.org/10.3390/soilsystems3040079
Chicago/Turabian StyleZhang, Qingzhong, Claudia Keitel, and Balwant Singh. 2019. "Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils" Soil Systems 3, no. 4: 79. https://doi.org/10.3390/soilsystems3040079
APA StyleZhang, Q., Keitel, C., & Singh, B. (2019). Evaluation of the Influence of Individual Clay Minerals on Biochar Carbon Mineralization in Soils. Soil Systems, 3(4), 79. https://doi.org/10.3390/soilsystems3040079