The 3R Principles for Applying Biochar to Improve Soil Health
Abstract
:1. Introduction
2. The Mechanisms for Biochar to Improve Soil Health
3. The Right Biochar Source
4. The Right Application Rate
5. The Right Placement in Soil
6. Conclusions
Funding
Conflicts of Interest
References
- Sombroek, W.G. Amazon Soils: A Reconnaissance of the Soils of the Brazilian Amazon Region; Centre for Agricultural Publications and Documentation: Wageningen, The Netherlands, 1966. [Google Scholar]
- Kern, D.C.; D’Aquino, G.; Rodrigues, T.E.; Frazao, F.J.L.; Sombroek, W.; Myers, T.P.; Neves, E.G. Distribution of Amazonian Dark Earths (terra preta) in the Brazilian Amazon. In Amazonian Dark Earths: Origin, Properties, Management; Lehmann, J., Kern, D., Glaser, B., Woods, W.I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 105–124. [Google Scholar]
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org. Geochem. 2000, 31, 669–678. [Google Scholar] [CrossRef]
- Guo, M. Pyrogenic carbon in Terra Preta soils. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; SSSA Spec. Publ. 63; Soil Science Society of America: Madison, WI, USA, 2016; pp. 15–27. [Google Scholar]
- USDA-NRCS. Soil Health; Natural Resources Conservation Service, U.S. Department of Agriculture: Washington, DC, USA, 2012. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 24 September 2019).
- Guo, M.; He, Z.; Uchimiya, S.M. Introduction to biochar as an agricultural and environmental amendment. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; SSSA Spec. Publ. 63; Soil Science Society of America: Madison, WI, USA, 2016; pp. 1–14. [Google Scholar]
- Lone, A.H.; Najar, G.R.; Ganie, M.A.; Sofi, J.A.; Ali, T. Biochar for sustainable soil health: A review of prospects and concerns. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Novak, J.M.; Ippolito, J.A.; Lentz, R.D.; Spokas, K.A.; Bolster, C.H.; Sistani, K.; Trippe, K.M.; Phillips, C.L.; Johnson, M.G. Soil health, crop productivity, microbial transport, and mine spoil response to biochars. BioEnerg. Res. 2016, 9, 454–464. [Google Scholar] [CrossRef]
- Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar effects on soil properties and wheat biomass vary with fertility management. Agronomy 2019, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Guo, M. Quality variations of poultry litter biochars generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Xiao, P.; Li, H. Valorization of agricultural byproducts through conversion to biochar and bio-oil. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma and Fuels; Simpson, B.K., Kwofie, E.M., Aryee, A.N., Eds.; John Wiley & Sons, Inc.: Somerset, NJ, USA, 2020; pp. 501–522. [Google Scholar]
- Marchetti, R.; Castelli, F.; Orsi, A.; Sghedoni, L.; Bochicchio, D. Biochar from swine manure solids: Influence on carbon sequestration and Olsen phosphorus and mineral nitrogen dynamics in soil with and without digestate incorporation. Ital. J. Agron. 2012, 7, e26. [Google Scholar] [CrossRef]
- Tian, J.; Miller, V.; Chiu, P.C.; Maresca, J.A.; Guo, M.; Imhoff, P.T. Nutrient release and ammonium sorption of poultry litter and wood biochars in stormwater treatment. Sci. Total Environ. 2016, 553, 596–606. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Schomberg, H. Characterization of designer biochar produced at different temperatures and their effects on loamy sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Roberts, D.A.; Paul, N.A.; Dworjanyn, S.A.; Bird, M.I.; de Nys, R. Biochar from commercially cultivated seaweed for soil amelioration. Sci. Rep. 2015, 5, 9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef] [Green Version]
- Guo, M. Application of biochar for soil physical improvement. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; SSSA Spec. Publ. 63; Soil Science Society of America: Madison, WI, USA, 2016; pp. 101–122. [Google Scholar]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Soil Sci. Plant Nutr. 2013, 13, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Kolb, S.E.; Fermanich, K.J.; Dornbush, M.E. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2009, 73, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Hseu, Z.; Jien, S.; Chien, W.; Liou, R.C. Impacts of biochar on physical properties and erosion potential of a mudstone slopeland soil. Sci. World J. 2014. [Google Scholar] [CrossRef]
- Peake, L.R.; Reid, B.J.; Tang, X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 2014, 235–236, 182–190. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Yang, M.; Zhang, J.; Xie, Y. Impacts of biochar application rates and particle sizes on runoff and soil loss in small cultivated loess plots under simulated rainfall. Sci. Total Environ. 2019, 649, 1403–1413. [Google Scholar] [CrossRef]
- Laghari, M.; Mirjat, M.S.; Hu, Z.; Fazal, S.; Xiao, B.; Hu, M.; Chen, Z.; Guo, D. Effects of biochar application rate on sandy desert soil properties and sorghum growth. CATENA 2015, 135, 313–320. [Google Scholar] [CrossRef]
- Revell, K.T.; Maguire, R.O.; Agblevor, F.A. Influence of poultry litter biochar on soil properties and plant growth. Soil Sci. 2012, 177, 402–408. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Morgan, K.; Li, Y.; Zotarelli, L.; Wang, Q.; Devalerio, J. What is 4R Nutrient Stewardship? University of Florida IFAS Extension: Gainesville, FL, USA, 2015; Available online: https://edis.ifas.ufl.edu/hs1264 (accessed on 12 October 2019).
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2017. [Google Scholar]
- Soil Health Institute. Tier 1 Indicators of Soil Health; Soil Health Institute: Morrisville, NC, USA, 2017; Available online: https://soilhealthinstitute.org/tier-1-indicators-soil-health/ (accessed on 14 October 2019).
- Silveira, M.L.; Kohmann, M.M. Maintaining soil fertility and health for sustainable pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Rouquette, J.M., Aiken, G., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 35–58. [Google Scholar]
- Moebius-Clune, B.N.; Moebiue-Clune, D.J.; Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.J.; van Es, H.M.; Thies, J.E.; Shayler, H.A.; McBride, M.B.; et al. Comprehensive Assessment of Soil Health, 3rd ed.; Cornell University: Ithaca, NY, USA, 2017; pp. 19–101. [Google Scholar]
- Rahman, G.K.M.M.; Rahman, M.M.; Alam, M.S.; Kamal, M.Z.; Mashuk, H.A.; Datta, R.; Meena, R.S. Biochar and organic amendments for sustainable soil carbon and soil health. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R., Pathan, S., Ceccherini, M., Eds.; Springer: Singapore, 2020; pp. 45–85. [Google Scholar]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Igalavithana, A.D.; Ok, Y.S.; Usman, A.R.A.; Al-Wabel, M.I.; Oleszczuk, P.; Lee, S.S. The effects of biochar amendment on soil fertility. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; SSSA Spec. Publ. 63; Soil Science Society of America: Madison, WI, USA, 2016; pp. 123–144. [Google Scholar]
- Paz-Ferreiro, J.; Mendez, A.; Gasco, G. Application of biochar for soil biological improvement. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; SSSA Spec. Publ. 63; Soil Science Society of America: Madison, WI, USA, 2016; pp. 145–174. [Google Scholar]
- Karaosmanoglu, F.; Ergudenler, A.; Sever, A. Biochar from the straw-stalk of rapeseed plant. Energy Fuels 2000, 14, 336–339. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A.; Goldberg, N.M.; Lima, I.M.; Laird, D.A.; Hicks, K.B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 2010, 34, 67–74. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterization and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Arazo, R.O.; Genuino, D.A.D.; de Luna, M.D.G.; Capareda, S.C. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustain. Environ. Res. 2017, 27, 7–14. [Google Scholar] [CrossRef]
- Adhikari, S.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef]
- Briggs, C.; Breiner, J.M.; Graham, R.C. Physical and chemical properties of pinus ponderosa charcoal: Implications for soil modification. Soil Sci. 2012, 177, 263–268. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Chiu, P.; Imhoff, P.; Guo, M. Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci. Total Environ. 2015, 512–513, 454–463. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Knowles, O.A.; Robinson, B.H.; Contangelo, A.; Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total. Environ. 2011, 409, 3206–3210. [Google Scholar] [CrossRef] [PubMed]
- Meerts, P. Mineral nutrient concentrations in sapwood and heartwood: A literature review. Ann. For. Sci. 2002, 59, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Shen, Y. Transformation and persistence of biochar carbon in soil. In Proceedings of the ASA-CSSA-SSSA International Annul Meeting, San Antonio, TX, USA, 18 October 2011. [Google Scholar]
- Gai, X.; Wang, H.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Paneque, M.; Rosa, J.M.; Franco-Navarro, J.D.; Colmenero-Flores, J.M.; Knicker, H. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena 2016, 147, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Barskov, S.; Zappi, M.; Buchireddy, P.; Dufreche, S.; Guillory, J.; Gang, D.; Hernandez, R.; Bajpai, R.; Bauider, J.; Cooper, R.; et al. Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew. Energy 2019, 142, 624–642. [Google Scholar] [CrossRef]
- Tekin, K.; Karagoa, S.; Bektas, S. A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Naisse, C.; Alexis, M.; Plante, A.; Wiedner, K.; Glaser, B.; Pozzi, A.; Carcaillet, C.; Criscuoli, I.; Rumpel, C. Can biochar and hydrochar stability be assessed with chemical methods? Org. Geochem. 2013, 60, 40–44. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Burlington, MA, USA, 2010. [Google Scholar]
- Zhang, J.; Liu, J.; Li, R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef]
- Intani, K.; Latif, S.; Islam, M.S.; Müller, J. Phytotoxicity of corncob biochar before and after heat treatment and washing. Sustainability 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Klasson, K.T.; Biohem, L.L.; Uchimiya, M.; Lima, M. Influence of biochar pyrolysis temperature and post-treatment on the uptake of mercury from flue gas. Fuel Process. Technol. 2014, 123, 27–33. [Google Scholar] [CrossRef]
- Guo, M.; Song, W. Converting poultry litter to activated carbon: Optimal carbonization conditions and product sorption for benzene. Environ. Technol. 2011, 32, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Vamvuka, D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview. Int. J. Energy Res. 2011, 35, 835–862. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Guo, M.; Li, H.; Baldwin, B.; Morrison, J. Thermal processing of animal manure for bioenergy and biochar. In Animal Manure: Production, Characteristics, Environmental Concerns and Management; Waldrip, H.M., Pagliari, P.H., He, Z., Eds.; ASA Spec. Publ. 67; American Society of Agronomy: Madison, WI, USA, 2020. [Google Scholar] [CrossRef]
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil–Version 2.1; International Biochar Initiative: Westerville, OH, USA, 2015; Available online: http://www.biochar-international.org/characterizationstandard (accessed on 13 October 2019).
- Camps-Arbestain, M.; Amonette, J.E.; Singh, B.; Wang, T.; Schmidt, H.P. A biochar classification system and associated test methods. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; pp. 165–194. [Google Scholar]
- Purdue University. Fundamentals of Soil Cation Exchange Capacity (CEC); Purdue University Cooperative Extension Service: West Lafayette, IN, USA, 1993; Available online: https://www.extension.purdue.edu/extmedia/AY/AY-238.html (accessed on 20 November 2019).
- Pennell, K.D. Specific surface area. In Methods of Soil Analysis Part 4—Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 295–315. [Google Scholar]
- Steiner, C. Considerations in biochar characterization. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; SSSA Spec. Publ. 63; Soil Science Society of America: Madison, WI, USA, 2016; pp. 87–100. [Google Scholar]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2019. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Kazda, R. Fertilizer value of lime-stabilized biosolids as a soil amendment. Agron. J. 2012, 104, 1679–1686. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Feng, X.; Song, W.; Guo, M. Transformation of phosphorus in speciation and bioavailability during converting poultry litter to biochar. Front. Sustain. Food Syst. 2018, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Abiven, S.; Kleber, M.; Pan, G.; Singh, B.P.; Sohi, S.P.; Zimmerman, A.R. Persistence of biochar in soil. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: Abingdon, UK, 2015; pp. 235–282. [Google Scholar]
- Steiner, C.; Das, K.C.; Garcia, M.; Forster, B.; Zech, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 2008, 51, 359–366. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.; Zhang, H.; Li, X.; Shen, Y.; Li, S. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci. 2016, 67, 495–507. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J.; Lukowski, M.; Marczewski, W.; Usowicz, J. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res. 2016, 164, 45–51. [Google Scholar] [CrossRef]
- Pratiwi, E.P.; Shinogi, Y. Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ. 2016, 14, 521–532. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Evans, D.E.; Watts, D.W.; Niandou, M.A.S.; Ahmedna, M. Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 2010, 175, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Glab, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y.; Shiono, T. Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Sci. 2016, 181, 20–28. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehman, J. Maize yield and nutrition during 4 years after biochar application to a Columbian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Mavi, M.S.; Singh, G.; Singh, B.P.; Sekhon, B.S.; Choudhary, O.P.; Sagi, S.; Berry, R. Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils. J. Soil Sci. Plant Nutr. 2018, 18, 41–59. [Google Scholar]
- Haefele, S.M.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.A.; Pfeiffer, E.M.; Knoblauch, C. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res. 2011, 121, 430–440. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total Environ. 2018, 654, 463–472. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramirez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, X.; Li, Y.; Yang, J.; Li, N.; An, N. Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in northeast China. Sci. Rep. 2019, 9, 16531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, J. Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems; International Biochar Initiative: Westerville, OH, USA, 2010; Available online: https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Application.pdf (accessed on 23 November 2019).
- Robb, S.; Joseph, S. A Report on the Value of Biochar and Wood Vinegar: Practical Experience of Users in Australia and New Zealand; Australia New Zealand Biochar Initiative, Inc.: Tyagarah, Australia, 2019; Available online: https://www.anzbi.org/wp-content/uploads/2019/06/ANZBI-2019-_-A-Report-on-the-Value-of-Biochar-and-Wood-Vinegar-v-1.1.pdf (accessed on 24 November 2019).
- Yang, Y.; Ma, S.; Zhao, Y.; Jing, M.; Xu, Y.; Chen, J. A field experiment on enhancement of crop yield by rice straw and corn stalk-derived biochar in Northern China. Sustainability 2015, 7, 13713–13725. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehr, V. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemson University. The Hidden Half of the Plant; Clemson University: Clemson, SC, USA, 2017; Available online: https://www.clemson.edu/cafls/research/coastal/documents/hiddenhalf ofplant.pdf (accessed on 23 November 2019).
- USDA-NRCS. National Engineering Handbook: Part 652–Irrigation Guide; 210-vi-NEH; Natural Resources Conservation Service, United State Department of Agriculture: Washington, DC, USA, 1997; pp. 3–8. [Google Scholar]
- Verheijen, F.G.A.; Zhuravel, A.; Silva, F.C.; Amaro, A.; Ben-Hur, M.; Keizer, J.J. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma 2019, 347, 194–202. [Google Scholar] [CrossRef]
- Blackwell, P.; Riethmuller, G.; Collins, M. Biochar application to soil. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 207–222. [Google Scholar]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; EUR 24099 EN; European Commission Joint Research Center: Ispra, Italy, 2010; pp. 49–50. [Google Scholar]
Feedstock | Production Conditions | Yield† | pH‡ | Ash¶ g kg−1 | CEC cmolc kg−1 | SSA m2 g−1 | WHC§ g g−1 | TN g kg−1 | TP g kg−1 | TK g kg−1 |
---|---|---|---|---|---|---|---|---|---|---|
Hard wood | 400 °C slow pyrolysis | 32.7% | 7.5 | 32.0 | 7.9 | 15.4 | 1.40 | 2.5 | 0.18 | 3.0 |
Hard wood | 500 °C slow pyrolysis | 25.8% | 8.2 | 42.0 | 7.5 | 26.6 | 1.44 | 3.0 | 0.34 | 3.6 |
Wood | For fuel charcoal | 9.2 | 46.0 | 112 | 7.6 | 0.03 | 0.46 | |||
Poplar wood | 400 °C slow pyrolysis | 32.0% | 9.0 | 19.0 | 144 | 3.0 | 7.8 | 0.44 | 4.2 | |
Pine chips | 400 °C slow pyrolysis | 35.0% | 7.6 | 7.3 | 2.6 | 0.15 | 1.4 | |||
Pine chips | 500 °C slow pyrolysis | 30.0% | 8.3 | 5.0 | 2.2 | 0.16 | 1.5 | |||
Spruce wood and needle mix | 400 °C slow pyrolysis | 36.0% | 6.9 | 35.0 | 73.5 | 1.8 | 10.2 | 0.44 | 3.3 | |
Greenwaste | 450 °C slow pyrolysis | 33.0% | 9.4 | 107.6 | 24.0 | 7.3 | 11.7 | |||
Switchgrass | 500 °C slow pyrolysis | 29.0% | 8.0 | 78.0 | 62.2 | 4.3 | 2.4 | |||
Rapeseed straw | 400 °C slow pyrolysis | 39.4% | 122.2 | 16.0 | 14.3 | |||||
Rapeseed straw | 600 °C slow pyrolysis | 32.2% | 138.5 | 17.6 | 15.3 | |||||
Wheat straw | 400 °C slow pyrolysis | 34.0% | 9.1 | 97.0 | 162 | 4.8 | 10.5 | 1.3 | 19.9 | |
Corn cobs | 450 °C slow pyrolysis | 26.4% | 10.3 | 65.2 | 71.1 | 11.9 | 2.9 | 25.6 | ||
Corn cobs | 500 °C fast pyrolysis | 18.5% | 7.8 | <1.0 | 8.5 | 4.4 | 43.4 | |||
Corn stover | 500 °C fast pyrolysis | 16.8% | 7.2 | 3.1 | 14.7 | 12.9 | 23.5 | |||
Peanut hulls | 400 °C slow pyrolysis | 40.0% | 7.9 | 82.0 | 0.52 | 27.0 | 2.6 | |||
Peanut hulls | 500 °C slow pyrolysis | 35.0% | 8.6 | 93.0 | 1.22 | 20.9 | 2.9 | |||
Rice husks | 600 °C slow pyrolysis | 39.0% | 9.9 | 470.0 | 115 | 11.0 | 0.3 | 4.0 | ||
Rice straw | 380 °C slow pyrolysis | 35.0% | 9.2 | 360.0 | 38.0 | 13.2 | 9.0 | 3.2 | 33.0 | |
Cotton stalk | 600 °C slow pyrolysis | 28.0% | 10.3 | 95.0 | 121 | 48.0 | 4.8 | 28.5 | ||
Cottonseed meal | 300 °C slow pyrolysis | 53.3% | 9.1 | 137.0 | <1.0 | 0.99 | 89.8 | 22.7 | 29.6 | |
Cottonseed meal | 400 °C slow pyrolysis | 40.8% | 10.1 | 173.3 | <1.0 | 1.14 | 58.7 | 26.3 | 33.5 | |
Cottonseed meal | 500 °C slow pyrolysis | 35.1% | 10.2 | 193.0 | <1.0 | 1.23 | 24.2 | 27.9 | 38.8 | |
Cottonseed meal | 600 °C slow pyrolysis | 29.4% | 10.3 | 212.7 | <1.0 | 1.31 | 5.0 | 31.3 | 42.4 | |
Poultry litter | 300 °C slow pyrolysis | 60.1% | 9.5 | 478.7 | 51.1 | 2.7 | 0.88 | 41.7 | 22.7 | 69.3 |
Poultry litter | 400 °C slow pyrolysis | 56.2% | 10.3 | 566.2 | 41.7 | 3.9 | 1.01 | 26.3 | 26.3 | 81.2 |
Poultry litter | 500 °C slow pyrolysis | 51.5% | 10.7 | 605.8 | 35.8 | 4.8 | 0.99 | 12.1 | 27.9 | 87.9 |
Poultry litter | 600 °C slow pyrolysis | 45.7% | 11.5 | 607.8 | 29.2 | 5.8 | 0.95 | 1.2 | 30.5 | 91.5 |
Pig manure solids | 420 °C slow pyrolysis | 40.3% | 9.7 | 345.0 | 21.1 | 38.5 | ||||
Cow manure | 400 °C slow pyrolysis | 9.0 | 703.0 | 13.5 | 4.4 | |||||
Sewage sludge | 300 °C slow pyrolysis | 67.5% | 486.0 | 36.0 | 79.0 | 7.7 | ||||
Sewage sludge | 600 °C slow pyrolysis | 44.2% | 9.7 | 591.0 | 79.6 | 33.0 | 198.0 | |||
Sewage sludge | 487 °C fast pyrolysis | 28.7% | 9.0 | 659.0 | 45.5 |
Carbonization Technique | Pyrolysis | Gasification | |
---|---|---|---|
Slow Pyrolysis | Fast Pyrolysis | ||
Feed particle size | Chips to logs for batch reactors <10 mm for moving-bed reactors | <2 mm | <5 mm |
Peak temperature | 300–500 °C for batch reactors 500–700 °C for moving-bed reactors | 700–1000 °C | 800–1200 °C |
Heating rate | <1 °C/s in batch reactors 5–50 °C/s in moving-bed reactors | >200 °C/s | >500 °C/s |
Solid residence time | Hours to days in batch reactors Minutes in moving-bed reactors | Seconds | <3 s |
O2 availability | O2-free | O2-free | Controlled air supply |
Main product | Charcoal | Bio-oil | Syngas |
Byproducts | Bio-oil and syngas | Char and syngas | Char and bio-oil |
Char yield† | 30%–40% for batch reactors 25%–35% for moving-bed reactors | 15%–25% | 5%–15% |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M. The 3R Principles for Applying Biochar to Improve Soil Health. Soil Syst. 2020, 4, 9. https://doi.org/10.3390/soilsystems4010009
Guo M. The 3R Principles for Applying Biochar to Improve Soil Health. Soil Systems. 2020; 4(1):9. https://doi.org/10.3390/soilsystems4010009
Chicago/Turabian StyleGuo, Mingxin. 2020. "The 3R Principles for Applying Biochar to Improve Soil Health" Soil Systems 4, no. 1: 9. https://doi.org/10.3390/soilsystems4010009
APA StyleGuo, M. (2020). The 3R Principles for Applying Biochar to Improve Soil Health. Soil Systems, 4(1), 9. https://doi.org/10.3390/soilsystems4010009