Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Bone Char (BC), Hydroxyapatite (HA), and Vivianite (VI)
3.2. P Release Efficiency
3.3. Kinetics of P Release
3.4. Elemental Composition during P Release
3.5. pH
3.6. Fourier-Transform Infrared Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [Green Version]
- Taşkin, M.B.; Şahin, Ö.; Taskin, H.; Atakol, O.; Inal, A.; Gunes, A. Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. J. Plant Nutr. 2018, 41, 1148–1154. [Google Scholar] [CrossRef]
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- van der Bom, F.J.T.; McLaren, T.I.; Doolette, A.L.; Magid, J.; Frossard, E.; Oberson, A.; Jensen, L.S. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma 2019, 355, 113909. [Google Scholar] [CrossRef]
- Sattari, S.Z.; Bouwman, A.F.; Giller, K.E.; van Ittersum, M.K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. USA 2012, 109, 6348–6353. [Google Scholar] [CrossRef] [Green Version]
- Hooda, P.S.; Truesdale, V.W.; Edwards, A.C.; Withers, P.J.A.; Aitken, M.N.; Miller, A.; Rendell, A.R. Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications. Adv. Environ. Res. 2001, 5, 13–21. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Heindel, R.C.; Lyons, W.B.; Welch, S.A.; Spickard, A.M.; Virginia, R.A. Biogeochemical weathering of soil apatite grains in the McMurdo Dry Valleys, Antarctica. Geoderma 2018, 320, 136–145. [Google Scholar] [CrossRef]
- Mehmood, A.; Akhtar, M.S.; Imran, M.; Rukh, S. Soil apatite loss rate across different parent materials. Geoderma 2018, 310, 218–229. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Watanabe, Y.; Yamada, H.; Ikoma, T.; Tanaka, J.; Stevens, G.W.; Komatsu, Y. Preparation of a zeolite NaP1/hydroxyapatite nanocomposite and study of its behavior as inorganic fertilizer. J. Chem. Technol. Biot. 2014, 89, 963–968. [Google Scholar] [CrossRef]
- Rothe, M.; Kleeberg, A.; Hupfer, M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth-Sci. Rev. 2016, 158, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.G.; Hudson-Edwards, K.A.; Bennett, A.J.; Vishnyakov, V. Early diagenetic vivianite [Fe3(PO4)2·8H2O] in a contaminated freshwater sediment and insights into zinc uptake: A μ-EXAFS, μ-XANES and Raman study. Appl. Geochem. 2008, 23, 1623–1633. [Google Scholar] [CrossRef] [Green Version]
- Siebers, N.; Kruse, J.; Leinweber, P. Speciation of Phosphorus and Cadmium in a Contaminated Soil Amended with Bone Char: Sequential Fractionations and XANES Spectroscopy. Water Air Soil Poll. 2013, 224, 1564. [Google Scholar] [CrossRef]
- Zimmer, D.; Panten, K.; Frank, M.; Springer, A.; Leinweber, P. Sulfur-enriched bone char as alternative p fertilizer: Spectroscopic, wet chemical, and yield response evaluation. Agriculture 2019, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Zwetsloot, M.J.; Lehmann, J.; Solomon, D. Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J. Sci. Food Agr. 2015, 95, 281–288. [Google Scholar] [CrossRef]
- Wopenka, B.; Pasteris, J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 2005, 25, 131–143. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.R.; Condron, L.M.; Davis, M.R.; Sherlock, R.R. Effects of plant species on microbial biomass phosphorus and phosphatase activity in a range of grassland soils. Biol. Fertil. Soils 2004, 40, 313–322. [Google Scholar] [CrossRef]
- Kpomblekou-A, K.; Tabatabai, M.A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agr. Ecosyst. Environ. 2003, 100, 275–284. [Google Scholar] [CrossRef]
- Johnson, S.E.; Loeppert, R.H. Role of organic acids in phosphate mobilization from iron oxide. Soil Sci. Soc. Am. J. 2006, 70, 222. [Google Scholar] [CrossRef] [Green Version]
- Eynard, A.; del Campillo, M.C.; Barrón, V.; Torrent, J. Use of vivianite (Fe3(PO4)2 8H2O) to prevent iron chlorosis in calcareous soils. Fert. Res. 1992, 31, 61–67. [Google Scholar] [CrossRef]
- Frost, R.L.; Martens, W.; Williams, P.A.; Kloprogge, J.T. Raman and infrared spectroscopic study of the vivianite-group phosphates vivianite, baricite and bobierrite. Mineral. Mag. 2002, 66, 1063–1073. [Google Scholar] [CrossRef]
- Berzina-Cimdina, L.; Borodajenko, N. Research of calcium phosphates using fourier transform infrared spectroscopy. In Introduction to Infrared Spectroscopy; Theophile, T., Ed.; Intech Open: London, UK, 2012; pp. 123–148. [Google Scholar]
- Chang, M.C.; Tanaka, J. FTIR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 2002, 23, 4811–4818. [Google Scholar] [CrossRef]
- Rehman, I.; Bonfield, W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci. Mater. Med. 1997, 8, 1–4. [Google Scholar] [CrossRef]
- Ren, F.Z.; Leng, Y. Carbonated apatite, type-A or type-B? Key Eng. Mat. 2011, 493–494, 293–297. [Google Scholar] [CrossRef]
- Vidhya, G.; kumar, G.S.; kattimani, V.S.; Girija, E.K. Comparative study of hydroxyapatite prepared from eggshells and synthetic precursors by microwave irradiation method for medical applications. Mater. Today Proc. 2019, 15, 344–352. [Google Scholar] [CrossRef]
- Wu, C.C.; Huang, S.T.; Tseng, T.W.; Rao, Q.L.; Lin, H.C. FTIR and XRD investigations on sintered fluoridated hydroxyapatite composites. J. Mol. Struct. 2010, 979, 72–76. [Google Scholar] [CrossRef]
- Flores-Cano, J.V.; Leyva-Ramos, R.; Carrasco-Marin, F.; Aragón-Piña, A.; Salazar-Rabago, J.J.; Leyva-Ramos, S. Adsorption mechanism of chromium(III) from water solution on bone char: Effect of operating conditions. Adsorption 2016, 22, 297–308. [Google Scholar] [CrossRef]
- Jia, P.; Tan, H.; Liu, K.; Gao, W. Removal of methylene blue from aqueous solution by bone char. Appl. Sci. 2018, 8, 1903. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Mayorga, C.K.; Bonilla-Petriciolet, A.; Silvestre-Albero, J.; Aguayo-Villarreal, I.A.; Mendoza-Castillo, D.I. Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl. Surf. Sci. 2015, 355, 748–760. [Google Scholar] [CrossRef]
- Pleshko, N.; Boskey, A.; Mendelsohn, R. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys. J. 1991, 60, 786–793. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oelkers, E.H.; Valsami-Jones, E. Phosphate Mineral Reactivity and Global Sustainability. Elements 2008, 4, 83–87. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; McDowell, R.W.; Sims, J.T. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2005; pp. 53–86. [Google Scholar]
- Dean, L.A.; Rubins, E.J. Anion exchange in soils: I. Exchangeable phosphorus and the anion-exchange capacity. Soil Sci. 1947, 63, 377–388. [Google Scholar] [CrossRef]
- Lazo, D.E.; Dyer, L.G.; Alorro, R.D. Silicate, phosphate and carbonate mineral dissolution behaviour in the presence of organic acids: A review. Miner. Eng. 2017, 100, 115–123. [Google Scholar] [CrossRef]
- Gypser, S.; Schütze, E.; Freese, D. Crystallization of single and binary iron- and aluminum hydroxides affect phosphorus desorption. J. Plant Nutr. Soil Sci. 2019, 741–750. [Google Scholar] [CrossRef]
- Gypser, S.; Hirsch, F.; Schleicher, A.M.; Freese, D. Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption. J. Environ. Sci. 2018, 70, 175–189. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Tan, W.; Li, W.; Feng, X.; Sparks, D.L. Characteristics of phosphate adsorption-desorption onto ferrihydrite. Soil Sci. 2013, 178, 1–11. [Google Scholar] [CrossRef]
- Blume, H.P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Scheffer/Schachtschabel. Lehrbuch der Bodenkunde, 16th ed.; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Ohtake, H.; Tsuneda, S. Phosphorus Recovery and Recycling; Springer: Singapore, 2019. [Google Scholar]
- Janusz, W.; Skwarek, E. The study of the properties of the hydroxyapatite/electrolyte interface. Ann. UMCS Chem. 2009, 64, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.C.; Posner, A.M.; Quirk, J.P. The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions. J. Colloid Interf. Sci. 1973, 42, 250–261. [Google Scholar] [CrossRef]
- Basak, B.B. Phosphorus release by low molecular weight organic acids from low-grade indian rock phosphate. Waste Biomass Valor. 2018, 11, 1. [Google Scholar] [CrossRef]
- Kpomblekou, A.K.; Tabatabai, M.A. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 1994, 158, 442–453. [Google Scholar] [CrossRef]
- Menezes-Blackburn, D.; Paredes, C.; Zhang, H.; Giles, C.D.; Darch, T.; Stutter, M.; George, T.S.; Shand, C.; Lumsdon, D.; Cooper, P.; et al. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils. Environ. Sci. Technol. 2016, 50, 11521–11531. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.K.; Zhu, Y.G.; Chittleborough, D. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids. J. Environ. Sci. 2004, 16, 5–8. [Google Scholar]
- Duputel, M.; van Hoye, F.; Toucet, J.; Gérard, F. Citrate adsorption can decrease soluble phosphate concentration in soil: Experimental and modeling evidence. Appl. Geochem. 2013, 39, 85–92. [Google Scholar] [CrossRef]
- Morshedizad, M.; Zimmer, D.; Leinweber, P. Effect of bone chars on phosphorus-cadmium-interactions as evaluated by three extraction procedures. J. Plant Nutr. Soil Sci. 2016, 179, 388–398. [Google Scholar] [CrossRef]
- Robinson, J.S.; Baumann, K.; Hu, Y.; Hagemann, P.; Kebelmann, L.; Leinweber, P. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis. Ambio 2018, 47, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, D.; Kruse, J.; Siebers, N.; Panten, K.; Oelschläger, C.; Warkentin, M.; Hu, Y.; Zuin, L.; Leinweber, P. Bone char vs. S-enriched bone char: Multi-method characterization of bone chars and their transformation in soil. Sci. Total Environ. 2018, 643, 145–156. [Google Scholar] [CrossRef]
- Iriarte-Velasco, U.; Sierra, I.; Zudaire, L.; Ayastuy, J.L. Preparation of a porous biochar from the acid activation of pork bones. Food Bioprod. Process. 2016, 98, 341–353. [Google Scholar] [CrossRef]
- Gutiérrez Ortiz, F.J.; Aguilera, P.G.; Ollero, P. Biogas desulfurization by adsorption on thermally treated sewage-sludge. Separ. Purif. Technol. 2014, 123, 200–213. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C.; Chen, H.R.; Chang, Y.M.; Tsai, Y.L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cao, X.; Zhao, L.; Sun, T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 2014, 111, 296–303. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrol. 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Li, W.; Xu, J.; Liang, Q. Behavior of Phosphorus during Co-gasification of Sewage Sludge and Coal. Energy Fuels 2012, 26, 2830–2836. [Google Scholar] [CrossRef]
- Ma, Y.L.; Matsunaka, T. Biochar derived from dairy cattle carcasses as an alternative source of phosphorus and amendment for soil acidity. Soil Sci. Plant Nutr. 2013, 59, 628–641. [Google Scholar] [CrossRef] [Green Version]
- Morshedizad, M.; Leinweber, P. Leaching of phosphorus and cadmium in soils amended with different bone chars. Clean Soil Air Water 2017, 45, 1600635. [Google Scholar] [CrossRef]
- Morshedizad, M.; Panten, K.; Klysubun, W.; Leinweber, P. Bone char effects on soil: sequential fractionations and XANES spectroscopy. SOIL 2018, 4, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Rajan, S.S.S.; Brown, M.W.; Boyes, M.K.; Upsdell, M.P. Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks. Fert. Res. 1992, 32, 291–302. [Google Scholar] [CrossRef]
- Guo, M. The 3R principles for applying biochar to improve soil health. Soil Syst. 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- McDowell, R.W.; Sharpley, A.N. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma 2003, 112, 143–154. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Whalen, J.K.; Cao, Y.; Quan, Z.; Liu, C.; Shi, Y. Kinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soils. J. Plant Nutr. Soil Sci. 2015, 178, 555–566. [Google Scholar] [CrossRef]
- Shariatmadari, H.; Shirvani, M.; Jafari, A. Phosphorus release kinetics and availability in calcareous soils of selected arid and semiarid toposequences. Geoderma 2006, 132, 261–272. [Google Scholar] [CrossRef]
- Lammers, A. Phosphatformen und Phosphatfreisetzung in Hochgedüngten Böden Europas; Herbert Utz Verlag: München, Germany, 1997. [Google Scholar]
- Chien, S.H.; Clayton, W.R. Application of elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Sparks, D.L. Kinetics of Soil Chemical Processes; Academic Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Goyne, K.W.; Brantley, S.L.; Chorover, J. Effects of organic acids and dissolved oxygen on apatite and chalcopyrite dissolution: Implications for using elements as organomarkers and oxymarkers. Chem. Geol. 2006, 234, 28–45. [Google Scholar] [CrossRef]
- Shi, R.; Jia, Y.; Wang, C.; Yao, S. Mechanism of arsenate mobilization from goethite by aliphatic carboxylic acid. J. Hazard. Mater. 2009, 163, 1129–1133. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Hu, H.; Zhang, T.; Zhou, Y. Dissolution of kaolinite induced by citric, oxalic, and malic acids. J. Colloid Interface Sci. 2005, 290, 481–488. [Google Scholar] [CrossRef]
- Henintsoa, M.; Becquer, T.; Rabeharisoa, L.; Gerard, F. Geochemical and microbial controls of the effect of citrate on phosphorus availability in a ferralsol. Geoderma 2017, 291, 33–39. [Google Scholar] [CrossRef]
- Hyacinthe, C.; van Cappellen, P. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Mar. Chem. 2004, 91, 227–251. [Google Scholar] [CrossRef]
- Liu, Q.; Matinlinna, J.P.; Chen, Z.; Ning, C.; Ni, G.; Pan, H.; Darvell, B.W. Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. Ceram. Int. 2015, 41, 6149–6157. [Google Scholar] [CrossRef]
- Figueiredo, M.; Fernando, A.; Martins, G.; Freitas, J.; Judas, F.; Figueiredo, H. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram. Int. 2010, 36, 2383–2393. [Google Scholar] [CrossRef]
- Barrère, F.; van Blitterswijk, C.A.; de Groot, K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. 2006, 1, 317–332. [Google Scholar]
- Koumoulidis, G.C.; Katsoulidis, A.P.; Ladavos, A.K.; Pomonis, P.J.; Trapalis, C.C.; Sdoukos, A.T.; Vaimakis, T.C. Preparation of hydroxyapatite via microemulsion route. J. Colloid Interface Sci. 2003, 259, 254–260. [Google Scholar] [CrossRef]
- Landi, E.; Celotti, G.; Logroscino, G.; Tampieri, A. Carbonated hydroxyapatite as bone substitute. J. Europ. Ceram. Soc. 2003, 23, 2931–2937. [Google Scholar] [CrossRef]
- Pan, H.; Darvell, B.W. Effect of carbonate on hydroxyapatite solubility. Cryst. Growth Des. 2010, 10, 845–850. [Google Scholar] [CrossRef]
- Gypser, S.; Freese, D. Phosphorus release from vivianite and hydroxyapatite by organic and inorganic compounds. Pedosphere 2020, 30, 190–200. [Google Scholar] [CrossRef]
- Smith, B.C. The C=O bond, part III: Carboxylic acids. Spectroscopy 2018, 33, 14–20. [Google Scholar]
- Issa, T.B.; Sayari, F.; Ghalla, H.; Benhamada, L. Synthesis, crystal structure, DFT calculations and molecular docking of l-pyroglutamic acid. J. Mol. Struct. 2019, 1178, 436–449. [Google Scholar] [CrossRef]
- Shkir, M.; Muhammad, S.; AlFaify, S.; Irfan, A.; Patil, P.S.; Arora, M.; Algarni, H.; Jingping, Z. An investigation on the key features of a D–π–A type novel chalcone derivative for opto-electronic applications. RSC Adv. 2015, 5, 87320–87332. [Google Scholar] [CrossRef]
- Pierre, J.L.; Gautier-Luneau, I. Iron and citric acid: A fuzzy chemistry of ubiquitous biological relevance. Biometals 2000, 13, 91–96. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of Soil and Fertilizer Phosphorus use. Reconciling Changing Concepts of Soil Phosphorus Behaviour with Agronomic Information; FAO: Roma, Italy, 2008. [Google Scholar]
Kinetic Model | Linearized Equation | Declaration |
---|---|---|
Elovich | Qt - amount of released P in mg P m−2 at time t α/a - initial P release constants in mg P m−2 min−1 β/b - P release rate constants in mg P m−2 min−1 kp - diffusion rate constant in m s−1 Q0 - equals 0 at the beginning of P release | |
Exponential | ||
Parabolic |
Vivianite | Hydroxyapatite | BC200 | BC200–2000 | BC2000 | |
---|---|---|---|---|---|
m2·g−1 | |||||
BET | 39.49 | 68.39 | 94.78 | 94.41 | 92.12 |
mg·g−1 | |||||
P | 96.59 ± 5.71 | 159.61 ± 2.33 | 142.8 ± 1.96 | ||
Ca | - | 370.32 ± 4.67 | 308.8 ± 4.63 | ||
Fe | 268.47 ± 15.43 | - | - | ||
C | - | - | 114.9 ± 0.31 | ||
N | - | - | 12.4 ± 0.36 | ||
S | - | - | 0.23 ± 0.05 | ||
Mg | - | - | 5.4 ± 0.12 | ||
K | - | - | 2.1 ± 0.26 |
CaCl2 | Citric Acid | |||||
---|---|---|---|---|---|---|
0.01 M | 0.05 M | 0.1 M | 0.01 M | 0.05 M | 0.1 M | |
Released P [mg· m−2] | ||||||
Vivianite | 0.0005 ± 0.00 | 0.0006 ± 0.00 | 0.0012 ± 0.00 | 0.16 ± 0.01 | 0.28 ± 0.07 | 0.48 ± 0.07 |
Hydroxyapatite | 0.0012 ± 0.00 | 0.0155 ± 0.00 | 0.0233 ± 0.00 | 0.26 ± 0.01 | 0.56 ± 0.01 | 0.68 ± 0.02 |
BC200 | 0.0000 ± 0.00 | 0.0000 ± 0.00 | 0.0000 ± 0.00 | 0.05 ± 0.00 | 0.22 ± 0.00 | 0.39 ± 0.00 |
BC200-2000 | 0.0001 ± 0.00 | 0.0002 ± 0.00 | 0.0001 ± 0.00 | 0.04 ± 0.00 | 0.18 ± 0.01 | 0.32 ± 0.00 |
BC2000 | 0.0001 ± 0.00 | 0.0001 ± 0.00 | 0.0001 ± 0.00 | 0.04 ± 0.00 | 0.15 ± 0.01 | 0.29 ± 0.01 |
Released P [%] | ||||||
Vivianite | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.05 ± 0.00 | 6.50 ± 0.30 | 11.46 ± 2.88 | 19.58 ± 2.68 |
Hydroxyapatite | 0.05 ± 0.00 | 0.66 ± 0.17 | 1.00 ± 0.19 | 11.13 ± 0.27 | 24.10 ± 0.49 | 29.34 ± 0.91 |
BC200 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 3.24 ± 0.07 | 14.87 ± 0.09 | 26.12 ± 0.04 |
BC200–2000 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 2.33 ± 0.02 | 11.59 ± 0.38 | 21.18 ± 0.20 |
BC2000 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 2.47 ± 0.11 | 9.95 ± 0.76 | 18.43 ± 0.89 |
Elovich | Exponential | Parabolic | ||||||
---|---|---|---|---|---|---|---|---|
R2 | S.E. | R2 | S.E. | R2 | S.E. | |||
Vivianite | CaCl2 | 0.01 M | 0.98 *** | 0.001 | 0.95 *** | 0.158 | 0.94 *** | 0.001 |
0.05 M | 0.95 *** | 0.002 | 0.96 *** | 0.164 | 0.96 *** | 0.002 | ||
0.1 M | 0.97 *** | 0.003 | 0.97 *** | 0.136 | 0.96 *** | 0.003 | ||
CA | 0.01 M | 0.960 | 0.468 | 0.94 *** | 0.260 | 0.870 | 0.858 | |
0.05 M | 0.830 | 1.912 | 0.92 ** | 0.351 | 0.800 | 2.064 | ||
0.1 M | 0.90 * | 2.322 | 0.96 * | 0.272 | 0.940 | 1.849 | ||
Hydroxyapatite | CaCl2 | 0.01 M | 0.87 *** | 0.008 | 0.82 *** | 0.173 | 0.62 *** | 0.013 |
0.05 M | 0.52 *** | 0.220 | 0.59 *** | 0.247 | 0.35 *** | 0.257 | ||
0.1 M | 0.74 *** | 0.336 | 0.69 *** | 0.602 | 0.48 *** | 0.475 | ||
CA | 0.01 M | 0.94 *** | 1.260 | 0.850 | 0.211 | 0.72 *** | 2.762 | |
0.05 M | 0.98 *** | 1.585 | 0.920 | 0.135 | 0.80 *** | 4.722 | ||
0.1 M | 0.96 *** | 2.391 | 0.890 | 0.145 | 0.78 *** | 5.771 | ||
BC200 | CaCl2 | 0.01 M | 0.96 *** | 0.000 | 0.93 *** | 0.100 | 0.86 *** | 0.000 |
0.05 M | 0.78 *** | 0.000 | 0.72 *** | 0.358 | 0.60 *** | 0.000 | ||
0.1 M | 0.89 *** | 0.000 | 0.91 *** | 0.135 | 0.78 *** | 0.000 | ||
CA | 0.01 M | 0.980 | 0.201 | 0.96 *** | 0.174 | 0.93 ** | 0.416 | |
0.05 M | 1.00 *** | 0.468 | 0.920 | 0.235 | 0.88 ** | 2.442 | ||
0.1 M | 0.99 *** | 0.878 | 0.910 | 0.215 | 0.86 *** | 4.533 | ||
BC200–2000 | CaCl2 | 0.01 M | 0.94 *** | 0.001 | 0.96 *** | 0.184 | 0.91 *** | 0.001 |
0.05 M | 0.80 *** | 0.003 | 0.89 *** | 0.406 | 0.76 *** | 0.004 | ||
0.1 M | 0.79 *** | 0.001 | 0.72 *** | 0.724 | 0.70 *** | 0.001 | ||
CA | 0.01 M | 0.990 | 0.103 | 0.93 *** | 0.185 | 0.85 ** | 0.413 | |
0.05 M | 0.98 *** | 0.716 | 0.900 | 0.231 | 0.82 * | 2.314 | ||
0.1 M | 0.98 *** | 1.215 | 0.900 | 0.219 | 0.82 *** | 4.179 | ||
BC2000 | CaCl2 | 0.01 M | 0.73 *** | 0.001 | 0.84 *** | 0.294 | 0.68 *** | 0.001 |
0.05 M | 0.96 *** | 0.001 | 0.92 *** | 0.230 | 0.91 *** | 0.001 | ||
0.1 M | 0.90 *** | 0.001 | 0.86 *** | 0.311 | 0.85 *** | 0.001 | ||
CA | 0.01 M | 0.980 | 0.164 | 0.92 *** | 0.192 | 0.83 ** | 0.475 | |
0.05 M | 0.97 *** | 0.816 | 0.900 | 0.209 | 0.820 | 1.952 | ||
0.1 M | 0.98 *** | 1.224 | 0.900 | 0.213 | 0.82 *** | 3.632 |
Elovich | Exponential | Parabolic | |||||
---|---|---|---|---|---|---|---|
α | β | a | b | kp | |||
Vivianite | CaCl2 | 0.01 M | 7.9·10−5 | 1.1·10−4 | 5.7·10−5 | 0.43 | 3.3·10−5 |
0.05 M | 8.8·10−5 | 8.4·10−3 | 6.5·10−5 | 0.46 | 4.6·10−5 | ||
0.1 M | 1.8·10−4 | 4.4·10−3 | 1.3·10−4 | 0.45 | 8.6·10−5 | ||
CA | 0.01 M | 0.02 | 27.97 | 0.01 | 0.60 | 0.01 | |
0.05 M | 0.03 | 15.72 | 0.01 | 0.72 | 0.02 | ||
0.1 M | 0.04 | 9.50 | 0.01 | 0.77 | 0.04 | ||
Hydroxyapatite | CaCl2 | 0.01 M | 2.1·10−3 | 5.8·10−3 | 4.6·10−4 | 0.22 | 5.5·10−5 |
0.05 M | 0.06 | 496.91 | 7.1·10−3 | 0.18 | 6.2·10−4 | ||
0.1 M | 0.01 | 200.28 | 2.6·10−3 | 0.53 | 1.5·10−3 | ||
CA | 0.01 M | 0.14 | 22.31 | 0.07 | 0.31 | 0.01 | |
0.05 M | 0.36 | 10.31 | 0.16 | 0.27 | 0.03 | ||
0.1 M | 0.55 | 9.42 | 0.21 | 0.25 | 0.04 | ||
BC200 | CaCl2 | 0.01 M | 2.6·10−5 | 3.2·10−5 | 7.9·10−6 | 0.22 | 1.1·10−6 |
0.05 M | 9.6·10−6 | 3.1·10−5 | 4.0·10−6 | 0.35 | 1.1·10−6 | ||
0.1 M | 7.6·10−6 | 5.1·10−5 | 3.6·10−6 | 0.26 | 6.9·10−7 | ||
CA | 0.01 M | 0.01 | 99.37 | 4.5·10−3 | 0.51 | 3.7·10−3 | |
0.05 M | 0.04 | 22.12 | 0.03 | 0.47 | 0.02 | ||
0.1 M | 0.09 | 13.10 | 0.06 | 0.41 | 0.03 | ||
BC200–2000 | CaCl2 | 0.01 M | 1.3·10−5 | 4.2·10−4 | 8.2·10−6 | 0.55 | 8.8·10−6 |
0.05 M | 2.0·10−5 | 2.3·10−4 | 7.8·10−6 | 0.68 | 1.6·10−5 | ||
0.1 M | 7.7·10−6 | 7.2·10−4 | 2.5·10−6 | 0.70 | 4.9·10−6 | ||
CA | 0.01 M | 0.01 | 146.37 | 0.01 | 0.40 | 2.4·10−3 | |
0.05 M | 0.05 | 29.33 | 0.03 | 0.41 | 0.01 | ||
0.1 M | 0.09 | 16.27 | 0.05 | 0.39 | 0.02 | ||
BC2000 | CaCl2 | 0.01 M | 1.4·10−5 | 7.2·10−4 | 1.0·10−5 | 0.40 | 5.1·10−6 |
0.05 M | 1.3·10−5 | 5.9·10−4 | 8.5·10−6 | 0.48 | 6.3·10−6 | ||
0.1 M | 9.8·10−6 | 8.7·10−4 | 6.6·10−6 | 0.46 | 4.3·10−6 | ||
CA | 0.01 M | 0.01 | 136.08 | 0.01 | 0.38 | 2.6·10−3 | |
0.05 M | 0.04 | 34.43 | 0.03 | 0.38 | 0.01 | ||
0.1 M | 0.08 | 18.24 | 0.05 | 0.39 | 0.02 |
Vivianite | Hydroxy Apatite | BC200 | BC200–2000 | BC2000 | |||
---|---|---|---|---|---|---|---|
Initial pH | H2O | 4.27 | 7.28 | 9.69 | |||
CaCl2 | 4.17 | 6.45 | 8.58 | ||||
CaCl2* | 0.01 M | 2 h | 4.72 ± 0.03 | 6.62 ± 0.04 | 7.48 ± 0.08 | 7.48 ± 0.23 | 7.62 ± 0.09 |
48–168 h | 4.82 ± 0.05 | 6.46 ± 0.05 | 6.91 ± 0.05 | 6.94 ± 0.01 | 6.97 ± 0.03 | ||
0.05 M | 2 h | 4.84 ± 0.02 | 6.28 ± 0.03 | 6.90 ± 0.04 | 6.93 ± 0.03 | 7.09 ± 0.07 | |
48–168 h | 4.85 ± 0.05 | 6.25 ± 0.02 | 6.70 ± 0.07 | 6.74 ± 0.06 | 6.83 ± 0.13 | ||
0.1 M | 2 h | 4.88 ± 0.02 | 6.24 ± 0.06 | 6.90 ± 0.04 | 6.98 ± 0.06 | 7.02 ± 0.21 | |
48–168 h | 4.86 ± 0.04 | 6.07 ± 0.02 | 6.66 ± 0.03 | 6.63 ± 0.04 | 6.72 ± 0.00 | ||
CA* | 0.01 M | 2 h | 5.30 ± 0.08 | 7.47 ± 0.05 | 8.67 ± 0.05 | 7.54 ± 0.15 | 7.44 ± 0.07 |
48–168 h | 6.76 ± 0.05 | 6.71 ± 0.02 | 7.60 ± 0.03 | 7.00 ± 0.06 | 7.10 ± 0.04 | ||
0.05 M | 2 h | 5.86 ± 0.01 | 7.06 ± 0.02 | 7.52 ± 0.04 | 7.05 ± 0.06 | 6.61 ± 0.01 | |
48–168 h | 6.43 ± 0.01 | 6.68 ± 0.01 | 6.39 ± 0.01 | 6.21 ± 0.01 | 6.23 ± 0.03 | ||
0.1 M | 2 h | 5.93 ± 0.01 | 7.03 ± 0.05 | 6.97 ± 0.02 | 6.69 ± 0.03 | 6.36 ± 0.01 | |
48–168 h | 6.61 ± 0.10 | 6.64 ± 0.02 | 6.20 ± 0.02 | 6.10 ± 0.01 | 6.08 ± 0.01 |
Vivianite1 | Hydroxyapatite2 | BC3 | Assignment | ||
---|---|---|---|---|---|
<200 µm | 200–2000 µm | >2000 µm | |||
3745–2570 | 3737–2585 | 3737–2585 | H2O | ||
3750–2500 | 3571 | 3571 | 3571 | 3571 | OH stretching |
1629 | 1640 | 1633 | 1633 | H2O | |
1452 | 1480 | 1480 | 1480 | CO32− | |
1418 | 1424 | 1424 | 1424 | ||
1155 | 1176 | PO43− ν3 | |||
1086 | 1136 | 1115 | 1136 | ||
1023 | |||||
993 | |||||
954 | 1014 | 1003 | 1077 | 1003 | PO43− ν1 |
963 | 963 | 963 | 963 | CO32− | |
827 | 876 | 877 | 877 | 877 | OH libration |
647 | 647 | PO43− ν4 | |||
621 | 619 | 620 | 620 | 620 | |
586 | 586 | 586 | 586 | ||
522 | 552 | PO43− ν2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütze, E.; Gypser, S.; Freese, D. Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil Syst. 2020, 4, 15. https://doi.org/10.3390/soilsystems4010015
Schütze E, Gypser S, Freese D. Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil Systems. 2020; 4(1):15. https://doi.org/10.3390/soilsystems4010015
Chicago/Turabian StyleSchütze, Elisabeth, Stella Gypser, and Dirk Freese. 2020. "Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds" Soil Systems 4, no. 1: 15. https://doi.org/10.3390/soilsystems4010015
APA StyleSchütze, E., Gypser, S., & Freese, D. (2020). Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil Systems, 4(1), 15. https://doi.org/10.3390/soilsystems4010015