Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites
2.2. Cores and Analyses
2.3. Calculation of Losses and Gains
3. Results
3.1. Peat Profiles and Layering
3.2. Bulk Density, Ash, Organic Matter and Carbon Content
3.3. Losses and Gains
4. Discussion
4.1. Loss of Organic Matter and Carbon
4.2. Thickness Loss
4.3. Matter Accumulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joosten, H.; Sirin, A.; Couwenberg, J.; Laine, J.; Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Bonn, A., Allot, T., Evans, M., Joosten, H., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 63–76. [Google Scholar]
- Leifeld, J.; Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef] [Green Version]
- Hawken, P. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming; Penguin Books: New York, NY, USA, 2017; 256p. [Google Scholar]
- Lamers, L.P.; Vile, M.A.; Grootjans, A.P.; Acreman, M.C.; van Diggelen, R.; Evans, M.G.; Richardson, C.J.; Rochefort, L.; Kooijman, A.M.; Roelofs, J.G.M.; et al. Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach. Biol. Rev. 2015, 90, 182–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotowski, W.; Ackerman, M.; Grootjans, A.B.; Klimkowska, A.; Rößling, H.; Wheeler, B. Restoration of temperate fens: Matching strategies with site potential. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Bonn, A., Allot, T., Evans, M., Joosten, H., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 170–191. [Google Scholar]
- Joosten, H.; Tanneberger, F.; Moen, A. Mires and Peatlands of Europe, Status, Distribution and Conservation; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2017; 780p. [Google Scholar]
- Zauft, M.; Fell, H.; Glaßer, F.; Rosskopf, N.; Zeitz, J. Carbon storage in the peatlands of Mecklenburg-Western Pomerania, north-east Germany. Mires Peat 2010, 6, 1–12. [Google Scholar]
- MLUV M-V (Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern). Konzept zum Schutz und zur Nutzung der Moore. Fortschreibung des Konzeptes zur Bestandssicherung und zur Entwicklung der Moore (Moorschutzkonzept); MLUV M-V (Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern): Schwerin, Germany, 2009; 109p.
- Jurasinski, G.; Ahmad, S.; Anadon-Rosell, A.; Berendt, J.; Beyer, F.; Bill, R.; Blume-Werry, G.; Couwenberg, J.; Günther, A.; Joosten, H.; et al. From understanding to sustainable use of peatlands: The WETSCAPES approach. Soil Syst. 2020, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Succow, M. Die Vegetation Nordmecklenburgischer Flußtalmoore und Ihre Anthropogene Umwandlung. Ph.D. Thesis, E.-M.-Arndt Universität, Greifswald, Germany, 1970. [Google Scholar]
- Günther, A.; Huth, V.; Jurasinski, G.; Glatzel, S. The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen. GCB Bioenergy 2015, 7, 1092–1106. [Google Scholar] [CrossRef]
- Bönsel, A.; Sonneck, A. Development of ombrotrophic raised bogs in North-east Germany 17 years after the adoption of a protective program. Wetl. Ecol. Manag. 2012, 20, 503–520. [Google Scholar] [CrossRef]
- Joosten, H.; de Klerk, P. DAMOCLES: A DAshing MOnolith Cutter for fine sectioning of peats and sediments into LargE Slices. Boreas 2007, 36, 76–81. [Google Scholar] [CrossRef]
- Matjuschenko, W. Schlüssel zur Bestimmung der in den Mooren vorkommenden Carexarten (translation by S. Ruoff). Geol. Archiv, Z. Gesamtgeb. d. Geol. 1924, 3, 183–188 + 192–193. [Google Scholar]
- Mauquoy, D.; van Geel, B. Mire and peat macros. In Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 3, pp. 2315–2336. [Google Scholar]
- Bertsch, K. Lehrbuch der Pollenanalyse; Ferdinand Enke: Stuttgart, Germany, 1942; 195p. [Google Scholar]
- Grosse-Brauckmann, G. Über pflanzliche Makrofossilien mitteleuropäischer Torfe. I. Gewebereste krautiger Pflanzen und ihre Bestimmung. Telma 1972, 2, 19–56. [Google Scholar]
- Michaelis, D. Ein Schlüssel zur Bestimmung von Braunmoosen in Torfen anhand einzelner Blättchen. Telma 2001, 31, 79–104. [Google Scholar]
- Birks, H.H. Plant macrofossil introduction. In Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 3, pp. 2266–2288. [Google Scholar]
- Grosse-Brauckmann, G.; Streitz, B. Pflanzliche Makrofossilien mitteleuropäischer Torfe. III. Früchte, Samen und einige Gewebe. Telma 1992, 22, 53–102. [Google Scholar]
- Telford, R.J.; Heegaard, E.; Birks, H.J.B. The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 2004, 14, 296–298. [Google Scholar] [CrossRef] [Green Version]
- Fægri, K.; Iversen, J. Textbook of Pollen Analysis, 4th ed.; Wiley: Chichester, UK, 1989; 328p. [Google Scholar]
- Moore, P.D.; Webb, J.A.; Collinson, M.E. Pollen Analysis, 2nd ed.; Blackwell Science: Oxford, UK, 1991; 216p. [Google Scholar]
- Prager, A.; Barthelmes, A.; Theuerkauf, M.; Joosten, H. Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Rev. Palaeobot. Palynol. 2006, 141, 7–31. [Google Scholar] [CrossRef]
- Barthelmes, A.; de Klerk, P.; Prager, A.; Theuerkauf, M.; Unterseher, M.; Joosten, H. Expanding NPP analysis to eutrophic and forested sites: Significance of NPPs in a Holocene wood peat section (NE Germany). Rev. Palaeobot. Palynol. 2012, 186, 22–37. [Google Scholar] [CrossRef]
- Michaelis, D.; Mrotzek, A.; Couwenberg, J. Roots, tissues, cells and fragments—How to characterize peat from drained and rewetted fens. Soil Syst. 2020, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- van Geel, B.; Coope, G.R.; van der Hammen, T. Palaeoecologyand stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Rev. Palaeobot. Palynol. 1989, 60, 25–129. [Google Scholar] [CrossRef]
- Joosten, H.; de Klerk, P. What’s in a name? Some thoughts on pollen classification, identification, and nomenclature in quaternary palynology. Rev. Palaeobot. Palynol. 2002, 122, 29–45. [Google Scholar] [CrossRef]
- Couwenberg, J.; de Klerk, P.; Endtmann, E.; Joosten, H.; Michaelis, D. Hydrogenetische Moortypen in der Zeit–eine Zusammenschau. In Landschaftsökologische Moorkunde, 2nd ed.; Succow, M., Joosten, H., Eds.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2001; pp. 399–403. [Google Scholar]
- Ewing, J.M.; Vepraskas, M.J. Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands 2006, 26, 119–130. [Google Scholar] [CrossRef]
- Succow, M.; Joosten, H. Landschaftsökologische Moorkunde, 2nd ed.; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2001; 622p. [Google Scholar]
- Michaelis, D.; Joosten, H. Mire development, relative sea level change, and tectonic movement along the Northeast-German Baltic Sea coast. Ber. Römisch-German. Komm. 2007, 88, 101–134. [Google Scholar]
- Roßkopf, N.; Fell, H.; Zeitz, J. Organic soils in Germany, their distribution and carbon stocks. Catena 2015, 133, 157–170. [Google Scholar] [CrossRef]
- Rydelek, P. Origin and composition of mineral constituents of fen peats from Eastern Poland. J. Plant Nutr. 2013, 36, 911–928. [Google Scholar] [CrossRef]
- Klingenfuß, C.; Roßkopf, N.; Walter, J.; Heller, C.; Zeitz, J. Soil organic matter to soil organic carbon ratios of peatland soil substrates. Geoderma 2014, 235, 410–417. [Google Scholar] [CrossRef]
- Couwenberg, J.; Thiele, A.; Tanneberger, F.; Augustin, J.; Bärisch, S.; Dubovik, D.; Liashchynskaya, N.; Michaelis, D.; Minke, M.; Skuratovich, A.; et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 2011, 674, 67–89. [Google Scholar] [CrossRef]
- Reichelt, F.; Lechtape, C. Greifswalder Moorstudie—Abschlussbericht Emissionsbilanzierung und Handlungsempfehlungen für die Moorflächen im Greifswalder Stadtgebiet; Greifswald Moor Centrum: Greifswald, Germany, 2019; 36p. [Google Scholar]
- Tiemeyer, B.; Albiac Borraz, E.; Augustin, J.; Bechtold, M.; Beetz, S.; Beyer, C.; Drösler, M.; Ebli, M.; Eickenscheidt, T.; Fiedler, S.; et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Chang. Biol. 2016, 22, 4134–4149. [Google Scholar] [CrossRef]
- Weir, W.W. Subsidence of peat lands of the Sacramento-San Joaquin delta, California. Hilgardia 1950, 20, 37–56. [Google Scholar] [CrossRef]
- Succow, M.; Jeschke, L. Moore in der Landshaft; Urania-Verlag: Jena, Germany, 1986; 268p. [Google Scholar]
- Parent, L.E.; Millette, J.A.; Mehuys, G.R. Subsidence and Erosion of a Histosol. Soil Sci. Soc. Am. J. 1982, 46, 404–408. [Google Scholar] [CrossRef]
- Deverel, S.J.; Leighton, D.A. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA. San Fr. Estuary Watershed Sci. 2010, 8, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, W.; Neemann, W.; Kuntze, H. Wind erosion on calcareous fenlands in North Germany. In Proceedings of the Fenland Symposium (British Society of Soil Science/IPS), Cambridge, UK, 8–12 April 1991. [Google Scholar]
- Loisel, J.; van Bellen, S.; Pelletier, L.; Talbot, J.; Hugelius, G.; Karran, D.; Yu, Z.; Nichols, J.; Holmquist, J. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Sci. Rev. 2017, 165, 59–80. [Google Scholar] [CrossRef]
- Young, D.M.; Baird, A.J.; Charman, D.J.; Evans, C.D.; Gallego-Sala, A.V.; Gill, P.J.; Hughes, P.D.M.; Morris, P.J.; Swindles, G.T. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Wördehoff, R. Kohlenstoffspeicherung als Teilziel der strategischen Waldbauplanung. Ph.D. Thesis, Georg-August-University, Göttingen, Germany, 2016. [Google Scholar]
- Mund, M.; Schulze, E.-D. Impacts of forest management on the carbon budget of European beech (Fagus sylvatica) forests. Allg. Forst Jagdztg. 2006, 177, 47–63. [Google Scholar]
Site | Reference Layer | Number of Samples | Mean Bulk Density | Mean ash/OM | Depth of 14C Date | 14C Date 1 (2σ Range) | Time before 1744 CE 4 |
---|---|---|---|---|---|---|---|
cm | mg cm−3 | cm | cal BP | a | |||
PD | 32.5–43 | 21 | 101 | 0.1285 | 26 | 2036 (1934–2128) 2 | 1830 (1728–1922) |
PW | 42.5–54.5 | 24 | 86 | 0.0996 | 40 | 3607 (3484–3694) 3 | 3401 (3278–3488) |
Depth Range | Thick-Ness | OM meas. | OM orig. | Loss of OM | C meas. | C orig. | Loss of C | |
---|---|---|---|---|---|---|---|---|
cm | mg cm−2 | |||||||
PD | ||||||||
degraded | 2.5–19.5 | 17 | 2 341 | 4 918 | 2 577 | |||
above 14C date | 2.5–26 | 23.5 | 3 081 | 5 814 | 2 733 | |||
above undisturbed | 2.5–32.5 | 30 | 3 721 | 6 571 | 2 850 | 1 424 1 | ||
PW | ||||||||
degraded | 11–36 | 25 | 3 357 | 16 605 | 13 246 | 1 575 | 9 409 | 7 834 |
above 14C date | 11–40 | 29 | 3 779 | 17 001 | 13 222 | 1 798 | 9 634 | 7 836 |
above undisturbed | 11–42.5 | 31.5 | 4 015 | 17 240 | 13 225 | 1 928 | 9 769 | 7 841 |
PW (ash corrected) | ||||||||
degraded | 11–36 | 25 | 3 359 | 13 583 | 10 224 | 1 575 | 7 697 | 6 122 |
above 14C date | 11–40 | 29 | 3 779 | 13 979 | 10 200 | 1 798 | 7 921 | 6 123 |
above undisturbed | 11–42.5 | 31.5 | 4 015 | 14 218 | 10 203 | 1 928 | 8 057 | 6 129 |
PD | PW (Ash Corrected) | PW | |||||||
---|---|---|---|---|---|---|---|---|---|
Total loss | OM | mg cm−2 | 2 850 | 10 244 | 13 246 | ||||
C | mg cm−2 | 1 424 1 | 6 122 | 7 834 | |||||
C | t ha−1 | 142.4 | 612.2 | 783.4 | |||||
Emission time | a | 273 | 50 | 253 | 30 | 223 + 30 | 253 | 30 | |
Loss per year | C | mg cm−2 a−1 | 5.22 | 28.50 | 24.20 | 204.05 | 30.96 | 261.14 | |
CO2 | g m−2 a−1 | 191 | 1 045 | 887 | 7 482 | 1 135 | 9 575 | ||
CO2 | t ha−1 a−1 | 2 | 10 | 9 | 75 | 6 + 30 | 11 | 96 |
PD Site | Method 1 | Method 2 |
---|---|---|
cm | cm | |
Thickness measured | 30 | 23.5 |
Thickness original | 73 | 103 (97−108) |
Thickness loss | 43 | 79 (73-84) |
Difference in loss estimates (Meth 2−Meth 1) | +36 cm | |
Loss per year (275 years) | 0.16 | 0.29 |
Loss per year (50 years) | 0.87 | 1.58 |
PW Site | Method 1 | Method 1 (Ash Corrected) | Method 2 | |
---|---|---|---|---|
cm | cm | cm | ||
Thickness measured | 29 | 29 | 29 | |
Thickness original | 217 | 179 | 191 (184−195) | |
Thickness loss | 188 | 150 | 162 (155−166) | |
Difference in loss estimates (Meth 2−Meth 1) | −26 cm | +12 cm | ||
Loss per year (275 years) | 0.68 | 0.54 | 0.59 | |
Loss per year (50 years) | 3.77 | 2.99 | 2.69 |
PW Layer C | |||
---|---|---|---|
Layer | cm | 0−11.0 | |
Total gain | OM total | mg cm−2 | 447 |
C total | mg cm−2 | 212 | |
C total | t ha−1 | 21.2 | |
Accumulation time | a | 20 | |
Gain per year | OM | g m−2 a−1 | 224 |
C | g m−2 a−1 | 106 | |
CO2 | g m−2 a−1 | 389 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrotzek, A.; Michaelis, D.; Günther, A.; Wrage-Mönnig, N.; Couwenberg, J. Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains. Soil Syst. 2020, 4, 16. https://doi.org/10.3390/soilsystems4010016
Mrotzek A, Michaelis D, Günther A, Wrage-Mönnig N, Couwenberg J. Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains. Soil Systems. 2020; 4(1):16. https://doi.org/10.3390/soilsystems4010016
Chicago/Turabian StyleMrotzek, Almut, Dierk Michaelis, Anke Günther, Nicole Wrage-Mönnig, and John Couwenberg. 2020. "Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains" Soil Systems 4, no. 1: 16. https://doi.org/10.3390/soilsystems4010016
APA StyleMrotzek, A., Michaelis, D., Günther, A., Wrage-Mönnig, N., & Couwenberg, J. (2020). Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains. Soil Systems, 4(1), 16. https://doi.org/10.3390/soilsystems4010016