Mobile Proximal Sensing with Visible and Near Infrared Spectroscopy for Digital Soil Mapping
Abstract
:1. Introduction
- (i)
- estimate local regression models for multiple soil properties, using subsurface field-moist soil diffuse reflectance spectra;
- (ii)
- evaluate the accuracy of predicted values for unknown samples (as both absolute and relative quantitative values);
- (iii)
- demonstrate the effectiveness of newly-developed digital soil map software for our proximal soil sensor, which can generate digital soil maps immediately after measurement in agricultural fields;
- (iv)
- describe an instance of decision making by a grower using such digital soil maps.
2. Materials and Methods
2.1. Mobile Proximal Sensor
2.2. VNIR Spectra, Field-Moist Soil Collection, and Soil Analysis
2.3. Absorption Spectral Wavelength of Soil Properties
2.4. Spectra Data Processing and Partial Least Squares Regression Setting
- (i)
- the peak waveforms can be separated from the broad absorption wavelengths;
- (ii)
- the peak wavelength values are enhanced more than with the first derivative;
- (iii)
- the peak wavelength value corresponds to the original absorbance wavelength (the peak waveform is inverted).
- (i)
- even when there are fewer response variables than explanatory variables, it is possible to estimate a regression model;
- (ii)
- it enables orthogonalization between wavelength variables, to avoid multicollinearity.
- (i)
- the wavelength range used for calculation was 350 to 1700 nm;
- (ii)
- the ‘polynomial order’ was second order;
- (iii)
- the ‘number of smoothing points’ was 3 to 41 (only odd numbers could be selected), and the guideline for selection was the ‘number of smoothing points’ with the highest R2.
- (i)
- the wavelength range used for calculation was 500 to 1600 nm, with reference to the report by Kodaira and Shibusawa [27];
- (ii)
- the ‘number of PCs’ (principal components; i.e., the number of PLSR factors) was 20; limited to this number, for each regression model, to prevent overfitting;
- (iii)
- the remaining settings were default settings.
2.5. Evaluation of Regression Models and Predicted Values
2.6. Digital Soil Mapping Software
- (i)
- classification of predicted values can be specified up to 5 levels;
- (ii)
- the boundary line of each field is displayed (boundary position data is required);
- (iii)
- statistics data of the mean, max, min, and coefficient of variation can be confirmed;
- (iv)
- the absorbance spectra, the absorbance spectra after pretreatment and predicted value at each measurement point can be confirmed;
- (v)
- a histogram of the selected area is displayed.
2.7. Workflow of Regression Model Estimation and Digital Soil Mapping
3. Results
3.1. Evaluation and Accuracy of Local Regression Models
3.2. Evaluation and Accuracy of Predicted Values for Unknown Samples
3.3. In-Situ Digital Soil Mapping
4. Discussion
4.1. Regression Model Accuracy and Actual Operation
4.2. Performance Indicators and Regression Model
4.3. Digital Soil Map for Growers
4.4. Potential of a Mobile Proximal Soil Sensor
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Shibusawa, S. Precision farming Japan model. Agric. Inf. Res. 2003, 12, 125–133. [Google Scholar]
- Debaene, G.; Niedźwiecki, J.; Pecio, A. Visible and near-infrared spectrophotometer for soil analysis: Preliminary results. Pol. J. Agron. 2010, 3, 3–9. [Google Scholar]
- Mouazen, A.M.; Alhwaimel, S.A.; Kuang, B.; Waine, T. Multiple on-line soil sensors and data fusion approach for delineation of water holding capacity zones for site specific irrigation. Soil Tillage Res. 2014, 143, 95–105. [Google Scholar] [CrossRef]
- Tümsavas‚, Z.; Tekin, Y.; Ulusoy, Y.; Mouazen, A.M. Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosyst. Eng. 2019, 177, 90–100. [Google Scholar] [CrossRef]
- Bernard, G.B.; Didier, B.; Bodovololona, R.; Oumar, B.; Cécile, V. Near infrared reflectance spectroscopy (NIRS) could be used for characterization of soil nematode community. Soil Biol. Biochem. 2011, 43, 1649–1659. [Google Scholar]
- Matsunaga, T.; Uwasawa, M. Application of near infrared spectrometry to quantitative analysis of soil physical and chemical properties. Jpn. J. Soil Sci. Plant Nutr. 1992, 63, 712–714. [Google Scholar]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R., Jr. Near-infrared reflectance spectroscopy-principal components regression analysis of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.; Singh, B.; McBratney, A. Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Aust. J. Soil Res. 2003, 41, 1101–1114. [Google Scholar] [CrossRef]
- Stenberg, B. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma 2010, 158, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Wetterlind, J.; Stenberg, B.; Söderström, M. Increased sample point density in farm soil mapping by local calibration of visible and near infrared prediction models. Geoderma 2010, 156, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Adeline, K.R.M.; Gomez, C.; Gorretta, N.; Roger, J.-M. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma 2017, 288, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Jaconi, A.; Vos, C.; Don, A. Near infrared spectroscopy as an easy and precise method to estimate soil texture. Geoderma 2019, 337, 906–913. [Google Scholar] [CrossRef]
- Śliwińska, A.; Smolinski, A.; Kucharski, P. Simultaneous analysis of heavy metal concentration in soil samples. Appl. Sci. 2019, 9, 4705. [Google Scholar] [CrossRef] [Green Version]
- Recena, A.; Fernández-Cabanás, V.M.; Delgado, A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma 2019, 337, 368–374. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Hummel, J.W. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Trans. ASAE 1993, 36, 1571–1582. [Google Scholar] [CrossRef]
- Shibusawa, S.; Hirako, S.; OTOMO, A.; Li, M.Z. Real-time underground soil spectrophotometer. J. Jpn. Soc. Agric. Mach. 1999, 61, 131–133. [Google Scholar]
- Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil properties using a VIS-NIR sensor. Soil Tillage Res. 2007, 93, 13–27. [Google Scholar] [CrossRef]
- Christy, C.D. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Comput. Electron. Agric. 2008, 61, 10–19. [Google Scholar] [CrossRef]
- Rodionov, A.; Welp, A.; Damerow, L.; Berg, T.; Amelung, W.; Pätzold, S. Towards on-the-go field assessment of soil organic carbon using Vis–NIR diffuse reflectance spectroscopy: Developing and testing a novel tractor-driven measuring chamber. Soil Tillage Res. 2015, 145, 93–102. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J. On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor. Biosyst. Eng. 2008, 99, 35–46. [Google Scholar] [CrossRef]
- Umeda, H.; Shibusawa, S.; Okayama, T.; Sakuma, D.Y.; Kaho, T.; Ninomiya, K. Study of the precision farming with soil maps describing environmental load using a real-time soil sensor. J. Jpn. Soc. Agric. Mach. 2011, 73, 37–44. [Google Scholar]
- Tekin, Y.; Kuang, K.; Mouazen, A.M. Potential of on-line visible and near infrared spectroscopy for measurement of pH for deriving variable rate lime recommendations. Sensors 2013, 13, 10177–10190. [Google Scholar] [CrossRef]
- Knadel, M.; Thomsen, A.; Schelde, K.; Greve, M.H. Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform. Comput. Electron. Agric. 2015, 114, 134–144. [Google Scholar] [CrossRef]
- Kodaira, M.; Shibusawa, S.; Ninomiya, K.; Kato, Y. Farm mapping techniques for effective soil management in large-scale farming. Agric. Inf. Res. 2009, 18, 110–121. [Google Scholar] [CrossRef]
- Kodaira, M.; Shibusawa, S. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma 2013, 199, 64–79. [Google Scholar] [CrossRef]
- Kodaira, M.; Shibusawa, S. Multivariate Regression model estimation and soil mapping of multiple soil properties by using a tractor-mounted soil analyzing system. J. Jpn. Soc. Agric. Mach. Food Eng. 2016, 78, 401–415. [Google Scholar]
- Kodaira, M.; Shibusawa, S. Development of calibration models for SiO2, Fe2O3, and Na2O using subsurface diffuse reflectance spectra. J. Jpn. Soc. Agric. Mach. Food Eng. 2018, 80, 114–122. [Google Scholar]
- Kodaira, M.; Shibusawa, S. Estimation of nitrogen available using soil spectra on paddy subsurface. J. Jpn. Soc. Agric. Mach. Food Eng. 2020, 82, 85–87. [Google Scholar]
- Japanese Geotechnical Society. Soil Test-Basics and Guidance, 2nd ed.; The Japanese Geotechnical Society; Maruzen: Tokyo, Japan, 2011; pp. 18–66. [Google Scholar]
- Agricultural Research Division. Analytical Methods for Soil and Crop Nutrition Diagnosis 2012; Local Independent Administrative Agency Hokkaido Research Organization: Hokkaido, Japan, 2012. [Google Scholar]
- Imai, H. Soil Nutrient Analysis, 15th ed.; Available Silicate; Yokendo: Tokyo, Japan, 2002; pp. 278–279. [Google Scholar]
- Imai, H. Soil Nutrient Analysis, 15th ed.; Free Iron Oxide; Yokendo: Tokyo, Japan, 2002; pp. 329–330. [Google Scholar]
- Palmer, K.F.; Williams, D. Optical properties of water in the near infrared. J. Opt. Soc. Am. 1974, 64, 1107–1110. [Google Scholar] [CrossRef]
- Soga, N.; Ota, R.; Nasu, H.; Yoshimoto, M. Preparation of and optical properties of amorphous solids containing high concentration of transition metal oxides. J. Soc. Mater. Sci. Jpn. 1982, 31, 986–991. [Google Scholar] [CrossRef]
- Matsunaga, T.; Uwasawa, M. Near infrared diffuse reflectance spectra of the upland soils in Japan. Jpn. J. Soil Sci. Plant. Nutr. 1992, 63, 403–410. [Google Scholar]
- Matsunaga, T.; Uwasawa, M. Near infrared diffuse reflectance spectra of clay minerals. Jpn. J. Soil Sci. Plant Nutr. 1993, 64, 329–331. [Google Scholar]
- Uchida, K.; Inoue, T. A practical alteration zoning based upon in-situ reflective spectroscopy measurement of rook samples in the vicinity of the Omori mine, Shimane prefecture, Japan. J. Soc. Resour. Geol. 1993, 43, 65–77. [Google Scholar]
- Ben-Dor, E.; Banin, A. Near-Infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Kumada, K. Absorption spectra of humic acids. Soil Sci. Plant Nutr. 1955, 1, 29–30. [Google Scholar] [CrossRef]
- Kumada, K.; Sato, O. Chromatographic separation of green humic acid from podzol humus. Soil Sci. Plant Nutr. 1962, 8, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Mamiya, M. The near-infrared absorption spectra of ammonium ion in the solution. Jpn. Anal. 1965, 14, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Waiser, T.H.; Morgan, C.L.S.; Brown, D.J.; Tom, H.C. In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 2007, 71, 389–396. [Google Scholar] [CrossRef]
- Iwamoto, M.; Kawano, S.; Uozumi, J. An Introduction of Near-Infrared Spectroscopy; Saiwai-Shobo: Tokyo, Japan, 2002. [Google Scholar]
- Ozaki, Y.; Kawata, S. Near-Infrared Spectroscopy; Japan Scientific Societies Press: Tokyo, Japan, 2008. [Google Scholar]
- Mohanty, B.; Gupta, A.; Das, B.S. Estimation of weathering indices using spectral reflectance over visible to mid-infrared region. Geoderma 2016, 266, 111–119. [Google Scholar] [CrossRef]
- Isono, Y.; Kimura, T.; Nakajima, S. Study of Near-Infrared Diffuse Reflectance Spectroscopy to Engineering Geological Material. Japan Society of Engineering Geology Chugoku-Shikoku Branch, Japan. Available online: http://www.jseg.or.jp/chushikoku/ronnbunn/PDF/PDF23/2311.pdf (accessed on 12 December 2019).
- Clark, D.H.; Mayland, H.F.; Lamb, R.C. Mineral analysis of forages with near infrared reflectance spectroscopy. Agron. J. 1987, 79, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Umeda, T.; Koyama, F.; Takamuku, K. Determination of mineral concentrations of beef cattle manure with near infrared reflectance spectroscopy. Bull. Fukuoka Agric. Res. Cent. 2001, 20, 105–108. [Google Scholar]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Miyashita, Y.; Sasaki, S. Chemometrics-Chemical Pattern Recognition and Multivariate Analysis; Kyoritsu Shuppan: Tokyo, Japan, 1995; pp. 55–72. [Google Scholar]
- Ozaki, Y.; Uda, A.; Akai, T. Multivariate Analysis for Chemists Introduction to Chemometrics; Kodansha: Tokyo, Japan, 2002; pp. 51–70. [Google Scholar]
- Mouazen, A.M.; Kuang, B. On-line visible and near infrared spectroscopy for in-field phosphorous management. Soil Tillage Res. 2016, 155, 471–477. [Google Scholar] [CrossRef]
- Ma, F.; Du, C.W.; Zhou, J.M.; Shen, Y.Z. Investigation of soil properties using different techniques of mid-infrared spectroscopy. Eur. J. Soil Sci. 2019, 70, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing soil properties in the laboratory, in situ, and on-line: A review. Adv. Agron. 2012, 114, 155–223. [Google Scholar]
- Malley, D.; Martin, P.; Ben-Dor, E. Application in analysis of soils. In Near Infrared Spectroscopy in Agriculture; Roberts, C., Workman, J., Reeves, J., III, Eds.; A Three Society Monograph (ASA, SSSA, CSSA): Madison, WI, USA, 2004; pp. 729–784. [Google Scholar]
- Kinoshita, R.; Bianca, N.M.-C.; Harold, M.E.; Hively, W.D.; Bilgili, A.V. Strategies for soil quality assessment using visible and near-infrared reflectance spectroscopy in a Western Kenya chronosequence. Soil Sci. Soc. Am. J. 2011, 76, 1776–1788. [Google Scholar] [CrossRef] [Green Version]
- Agricultural Policy Division. Hokkaido Fertilization Guide 2015; Local Independent Administrative Agency Hokkaido Research Organization: Hokkaido, Japan, 2015. [Google Scholar]
- Shree, R.S.D.; Jonathan, S.; Skye, W.; Leonardo, R.-L. Accurate and precise prediction of soil properties from a large mid-infrared spectral library. Soil Syst. 2019, 3, 11. [Google Scholar]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef]
- Deng, F.; Minasny, B.; Knadel, M.; McBratney, A.; Heckrath, G.; Greve, M.H. Using Vis-NIR spectroscopy for monitoring temporal changes in soil organic carbon. Soil Sci. 2013, 178, 389–399. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Webster, R.; Bui, E.N.; Baldock, J.A. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Glob. Change Biol. 2014, 20, 2953–2970. [Google Scholar] [CrossRef] [PubMed]
Correlation coefficient between regression coefficients | Property | Correlation coefficient between measured value | |||||||||||||||||
BSP | B-s | Ca | CaMg | CEC | CL | CN | CSP | C-t | Cu | DD | EC | ESP | Fe | HR | K | MC | |||
BSP | ― | 0.20 | 0.94 | 0.67 | 0.59 | −0.10 | 0.09 | 0.98 | 0.64 | −0.70 | −0.45 | −0.24 | 0.06 | −0.21 | 0.64 | −0.08 | −0.05 | ||
B-s | 0.03 | ― | 0.16 | −0.15 | 0.25 | 0.13 | 0.04 | 0.12 | 0.22 | −0.16 | 0.00 | 0.01 | 0.00 | 0.16 | 0.22 | 0.18 | −0.16 | ||
Ca | 0.31 | −0.07 | ― | 0.76 | 0.77 | −0.19 | 0.11 | 0.96 | 0.76 | −0.69 | −0.53 | −0.26 | −0.04 | −0.22 | 0.76 | −0.15 | 0.05 | ||
CaMg | 0.33 | −0.02 | 0.42 | ― | 0.40 | −0.12 | 0.36 | 0.80 | 0.76 | −0.40 | −0.29 | −0.20 | −0.18 | −0.34 | 0.76 | −0.43 | −0.01 | ||
CEC | 0.28 | 0.07 | 0.04 | 0.16 | ― | −0.31 | −0.10 | 0.58 | 0.56 | −0.70 | −0.52 | −0.11 | −0.10 | 0.05 | 0.56 | 0.14 | 0.25 | ||
CL | 0.10 | 0.30 | −0.23 | −0.30 | −0.04 | ― | 0.30 | −0.12 | −0.07 | 0.26 | 0.65 | 0.00 | 0.24 | −0.01 | −0.07 | −0.01 | −0.64 | ||
CN | 0.20 | 0.08 | 0.07 | 0.08 | −0.04 | 0.39 | ― | 0.18 | 0.36 | 0.16 | 0.19 | −0.41 | −0.23 | −0.27 | 0.36 | −0.60 | −0.22 | ||
CSP | 0.18 | 0.06 | 0.12 | 0.02 | 0.00 | 0.08 | 0.13 | ― | 0.72 | −0.65 | −0.46 | −0.27 | −0.01 | −0.27 | 0.72 | −0.21 | −0.03 | ||
C-t | 0.27 | 0.24 | 0.26 | 0.59 | 0.10 | −0.01 | 0.39 | 0.04 | ― | −0.39 | −0.29 | −0.15 | −0.19 | −0.36 | 1.00 | −0.27 | −0.06 | ||
Cu | −0.26 | −0.36 | −0.01 | −0.06 | −0.14 | 0.16 | 0.03 | −0.01 | −0.17 | ― | 0.77 | 0.03 | −0.08 | −0.15 | −0.39 | −0.24 | −0.19 | ||
DD | 0.15 | 0.14 | −0.26 | 0.06 | −0.03 | −0.13 | 0.03 | −0.03 | 0.25 | 0.05 | ― | 0.23 | 0.19 | 0.11 | −0.29 | 0.07 | −0.49 | ||
EC | 0.01 | 0.08 | −0.04 | −0.03 | −0.04 | 0.01 | 0.01 | −0.22 | 0.02 | −0.14 | 0.11 | ― | 0.48 | 0.10 | −0.15 | 0.44 | −0.03 | ||
ESP | 0.01 | 0.23 | −0.07 | −0.11 | −0.12 | 0.22 | −0.33 | −0.04 | −0.10 | 0.01 | 0.07 | 0.05 | ― | 0.07 | −0.19 | 0.32 | −0.34 | ||
Fe | −0.10 | −0.04 | −0.02 | 0.07 | 0.17 | −0.41 | −0.76 | −0.01 | −0.27 | −0.07 | −0.04 | −0.06 | −0.11 | ― | −0.36 | 0.33 | 0.26 | ||
HR | 0.23 | 0.13 | 0.35 | 0.28 | 0.18 | −0.07 | 0.17 | 0.06 | 0.38 | −0.08 | 0.13 | 0.01 | −0.20 | −0.07 | ― | −0.27 | −0.06 | ||
K | −0.29 | 0.17 | −0.17 | −0.18 | 0.08 | −0.26 | −0.78 | −0.08 | −0.32 | −0.02 | 0.04 | 0.00 | 0.10 | 0.78 | −0.24 | ― | −0.12 | ||
MC | −0.04 | −0.29 | 0.25 | 0.09 | 0.14 | −0.41 | −0.06 | −0.01 | −0.04 | −0.05 | −0.15 | −0.08 | −0.70 | 0.26 | 0.24 | 0.09 | ― | ||
Mg | −0.18 | −0.06 | −0.10 | −0.27 | 0.05 | 0.18 | −0.28 | 0.00 | −0.31 | −0.14 | −0.20 | 0.04 | −0.21 | 0.28 | −0.47 | 0.46 | 0.28 | ||
MgK | −0.13 | −0.03 | −0.03 | −0.08 | −0.16 | 0.03 | 0.28 | −0.06 | −0.02 | 0.09 | −0.20 | −0.04 | 0.08 | −0.37 | −0.07 | −0.04 | −0.10 | ||
Mn | −0.37 | 0.09 | −0.43 | −0.42 | −0.07 | 0.29 | −0.41 | −0.02 | −0.31 | 0.10 | 0.08 | −0.02 | 0.38 | 0.17 | −0.44 | 0.48 | −0.26 | ||
Na | −0.03 | 0.08 | 0.12 | 0.01 | −0.02 | −0.03 | −0.49 | −0.05 | −0.25 | 0.04 | −0.20 | −0.01 | 0.49 | 0.32 | −0.23 | 0.06 | −0.08 | ||
N-a | −0.06 | 0.09 | −0.07 | −0.03 | −0.12 | 0.03 | −0.03 | 0.01 | 0.09 | −0.09 | 0.16 | −0.03 | −0.04 | 0.08 | −0.07 | 0.06 | 0.00 | ||
N-h | 0.24 | 0.16 | 0.18 | 0.26 | 0.01 | 0.05 | 0.12 | 0.21 | 0.36 | −0.01 | 0.33 | −0.02 | −0.02 | −0.01 | 0.42 | −0.40 | −0.04 | ||
N-n | 0.21 | 0.05 | 0.26 | 0.17 | −0.05 | −0.02 | 0.14 | 0.01 | 0.29 | −0.02 | 0.29 | 0.07 | −0.15 | −0.01 | 0.34 | −0.14 | 0.18 | ||
N-t | 0.16 | 0.11 | 0.18 | 0.26 | 0.12 | −0.10 | 0.15 | 0.17 | 0.29 | −0.08 | 0.07 | −0.04 | −0.31 | 0.01 | 0.76 | −0.37 | 0.35 | ||
P-a | −0.42 | 0.15 | 0.16 | 0.14 | 0.07 | 0.19 | 0.37 | 0.21 | 0.24 | −0.21 | −0.01 | 0.06 | 0.18 | −0.36 | 0.38 | −0.38 | −0.15 | ||
PAC | 0.42 | −0.25 | 0.12 | 0.04 | 0.22 | −0.58 | −0.56 | −0.02 | −0.18 | −0.06 | −0.24 | 0.00 | −0.23 | 0.60 | −0.01 | 0.40 | 0.50 | ||
pH | 0.44 | −0.08 | 0.35 | 0.39 | 0.22 | −0.37 | −0.25 | 0.12 | 0.12 | 0.04 | −0.07 | −0.12 | 0.01 | 0.27 | 0.19 | 0.07 | 0.27 | ||
S | 0.12 | −0.46 | 0.30 | 0.13 | 0.04 | −0.13 | 0.28 | −0.08 | 0.13 | 0.21 | 0.06 | −0.06 | −0.34 | −0.30 | 0.23 | −0.11 | 0.49 | ||
SiO | 0.09 | −0.13 | −0.19 | 0.19 | 0.28 | −0.56 | −0.49 | 0.02 | 0.00 | −0.08 | −0.13 | −0.04 | −0.10 | 0.50 | 0.06 | 0.23 | 0.35 | ||
SL | 0.14 | 0.02 | 0.24 | 0.09 | −0.05 | −0.16 | −0.55 | 0.03 | −0.17 | −0.14 | −0.26 | 0.03 | 0.66 | 0.28 | −0.17 | 0.03 | −0.25 | ||
SOM | 0.08 | 0.07 | 0.18 | 0.25 | 0.14 | −0.13 | 0.18 | 0.19 | 0.25 | −0.01 | 0.03 | −0.03 | −0.43 | 0.01 | 0.67 | −0.21 | 0.37 | ||
y1 | −0.06 | 0.08 | −0.06 | −0.08 | −0.09 | 0.18 | 0.04 | 0.02 | 0.02 | 0.26 | 0.38 | 0.01 | 0.04 | 0.02 | −0.07 | −0.16 | −0.27 | ||
Zn | −0.09 | 0.15 | −0.27 | −0.11 | −0.14 | 0.29 | 0.23 | 0.12 | 0.02 | 0.26 | 0.15 | 0.00 | 0.14 | −0.12 | −0.37 | 0.00 | −0.58 | ||
Nc | 3 | 1 | 2 | 3 | 0 | 4 | 7 | 0 | 1 | 0 | 0 | 0 | 4 | 5 | 5 | 6 | 5 | ||
Property | Mg | MgK | Mn | Na | N-a | N-h | N-n | N-t | P-a | PAC | pH | S | SiO | SL | SOM | y1 | Zn | Nc | |
BSP | 0.10 | 0.11 | −0.30 | 0.27 | −0.29 | 0.30 | −0.17 | 0.65 | 0.39 | 0.14 | 0.89 | −0.02 | 0.23 | 0.13 | 0.43 | −0.66 | −0.07 | 12 | |
B-s | 0.47 | 0.14 | −0.14 | 0.08 | −0.15 | 0.16 | −0.06 | 0.24 | 0.58 | −0.23 | 0.11 | −0.28 | −0.20 | 0.24 | 0.00 | −0.09 | 0.47 | 3 | |
Ca | −0.03 | 0.08 | −0.30 | 0.25 | −0.30 | 0.33 | −0.15 | 0.77 | 0.34 | 0.23 | 0.89 | 0.05 | 0.26 | 0.12 | 0.56 | −0.64 | −0.13 | 12 | |
CaMg | −0.58 | −0.16 | −0.30 | −0.01 | −0.19 | 0.43 | −0.20 | 0.69 | 0.05 | 0.10 | 0.57 | 0.06 | 0.12 | 0.03 | 0.69 | −0.38 | −0.33 | 13 | |
CEC | 0.23 | 0.09 | −0.17 | 0.27 | −0.17 | 0.24 | 0.06 | 0.63 | 0.30 | 0.38 | 0.73 | 0.15 | 0.36 | 0.06 | 0.40 | −0.47 | 0.09 | 12 | |
CL | 0.00 | −0.06 | 0.01 | 0.10 | 0.15 | 0.32 | −0.14 | −0.17 | 0.30 | −0.70 | −0.22 | −0.85 | −0.55 | 0.42 | −0.16 | 0.28 | 0.26 | 6 | |
CN | −0.33 | 0.06 | −0.16 | −0.27 | −0.29 | 0.02 | −0.38 | 0.09 | −0.07 | −0.30 | −0.03 | −0.29 | −0.27 | 0.20 | 0.29 | −0.07 | −0.31 | 2 | |
CSP | −0.10 | 0.06 | −0.31 | 0.21 | −0.30 | 0.33 | −0.20 | 0.71 | 0.33 | 0.14 | 0.86 | 0.01 | 0.21 | 0.11 | 0.54 | −0.64 | −0.16 | 12 | |
C-t | −0.31 | −0.09 | −0.38 | 0.03 | −0.18 | 0.54 | −0.09 | 0.96 | 0.25 | 0.00 | 0.50 | −0.01 | −0.09 | 0.10 | 0.76 | −0.27 | −0.08 | 10 | |
Cu | −0.27 | −0.04 | 0.08 | −0.34 | 0.07 | −0.27 | −0.08 | −0.46 | −0.26 | −0.41 | −0.82 | −0.17 | −0.54 | 0.01 | −0.27 | 0.56 | −0.18 | 11 | |
DD | −0.10 | −0.16 | 0.06 | −0.02 | 0.33 | 0.33 | −0.03 | −0.36 | 0.08 | −0.59 | −0.50 | −0.57 | −0.47 | 0.30 | −0.14 | 0.57 | 0.39 | 12 | |
EC | 0.04 | −0.24 | 0.14 | 0.42 | 0.51 | 0.34 | 0.75 | −0.04 | −0.14 | −0.01 | −0.33 | 0.05 | −0.07 | −0.09 | −0.04 | 0.52 | 0.16 | 7 | |
ESP | 0.17 | −0.06 | 0.35 | 0.93 | 0.44 | 0.25 | 0.39 | −0.13 | 0.11 | −0.28 | −0.02 | −0.31 | −0.20 | 0.28 | −0.22 | 0.28 | 0.17 | 3 | |
Fe | 0.27 | −0.03 | 0.25 | 0.08 | 0.10 | −0.20 | 0.17 | −0.31 | 0.00 | 0.23 | −0.06 | 0.04 | 0.28 | −0.06 | −0.22 | 0.02 | 0.31 | 0 | |
HR | −0.31 | −0.92 | −0.38 | 0.03 | −0.18 | 0.54 | −0.09 | 0.96 | 0.25 | 0.00 | 0.50 | −0.01 | −0.09 | 0.10 | 0.76 | −0.27 | −0.08 | 11 | |
K | 0.43 | −0.47 | 0.14 | 0.36 | 0.34 | 0.16 | 0.52 | −0.10 | 0.27 | −0.04 | 0.01 | −0.02 | −0.01 | 0.05 | −0.38 | 0.16 | 0.53 | 7 | |
MC | 0.05 | 0.20 | −0.01 | −0.25 | −0.12 | −0.39 | 0.05 | 0.00 | −0.43 | 0.85 | 0.12 | 0.70 | 0.76 | −0.55 | 0.20 | −0.21 | −0.30 | 7 | |
Mg | ― | 0.43 | 0.01 | 0.23 | −0.07 | −0.23 | 0.05 | −0.22 | 0.27 | 0.13 | 0.19 | −0.04 | 0.19 | 0.07 | −0.40 | −0.17 | 0.37 | 5 | |
MgK | −0.19 | ― | 0.00 | −0.03 | −0.30 | −0.32 | −0.30 | −0.11 | −0.03 | 0.22 | 0.14 | 0.04 | 0.22 | −0.01 | 0.00 | −0.27 | −0.10 | 3 | |
Mn | 0.41 | −0.14 | ― | 0.29 | 0.23 | −0.20 | 0.23 | 0.01 | −0.12 | −0.02 | −0.24 | −0.08 | −0.01 | 0.13 | −0.24 | 0.15 | 0.06 | 0 | |
Na | 0.06 | −0.05 | 0.32 | ― | 0.37 | 0.33 | 0.39 | 0.11 | 0.21 | −0.13 | 0.25 | −0.24 | −0.07 | 0.30 | −0.06 | 0.09 | 0.19 | 2 | |
N-a | 0.06 | −0.07 | −0.01 | −0.01 | ― | 0.43 | 0.34 | −0.10 | −0.12 | −0.15 | −0.28 | −0.10 | −0.16 | 0.02 | −0.04 | 0.69 | 0.21 | 4 | |
N-h | −0.40 | −0.29 | −0.24 | −0.06 | 0.08 | ― | 0.12 | 0.57 | 0.27 | −0.29 | 0.24 | −0.36 | −0.23 | 0.28 | 0.47 | 0.27 | 0.29 | 6 | |
N-n | −0.14 | −0.24 | −0.30 | −0.03 | 0.02 | 0.36 | ― | 0.02 | −0.08 | 0.06 | −0.22 | 0.22 | −0.02 | −0.23 | −0.11 | 0.30 | 0.15 | 2 | |
N-t | −0.37 | 0.00 | −0.30 | −0.21 | −0.01 | 0.42 | 0.09 | ― | 0.29 | 0.09 | 0.54 | 0.07 | −0.03 | 0.05 | 0.73 | −0.26 | 0.01 | 11 | |
P-a | −0.38 | 0.20 | −0.42 | 0.02 | −0.01 | 0.19 | 0.02 | 0.41 | ― | −0.44 | 0.32 | −0.42 | −0.35 | 0.40 | −0.12 | −0.20 | 0.64 | 6 | |
PAC | 0.40 | −0.18 | 0.08 | 0.05 | −0.02 | −0.15 | −0.03 | 0.01 | −0.33 | ― | 0.34 | 0.72 | 0.86 | −0.51 | 0.26 | −0.37 | −0.31 | 8 | |
pH | 0.07 | −0.27 | 0.00 | 0.19 | −0.08 | 0.11 | 0.13 | 0.19 | 0.02 | 0.45 | ― | 0.07 | 0.48 | 0.10 | 0.37 | −0.72 | −0.02 | 12 | |
S | −0.10 | 0.11 | −0.46 | −0.31 | −0.08 | 0.08 | 0.28 | 0.17 | 0.02 | 0.10 | 0.14 | ― | 0.59 | 0.84 | 0.11 | −0.17 | −0.31 | 7 | |
SiO | 0.23 | −0.30 | 0.13 | 0.16 | −0.12 | −0.01 | 0.12 | 0.05 | −0.27 | 0.75 | 0.65 | 0.04 | ― | −0.44 | 0.16 | −0.43 | −0.25 | 9 | |
SL | −0.21 | −0.10 | 0.23 | 0.68 | 0.01 | 0.04 | −0.15 | −0.19 | 0.09 | 0.08 | 0.25 | −0.38 | 0.17 | ― | −0.02 | 0.02 | 0.26 | 6 | |
SOM | 0.03 | −0.05 | −0.25 | −0.31 | −0.05 | 0.32 | 0.06 | 0.89 | 0.33 | 0.06 | 0.16 | 0.06 | 0.06 | −0.26 | ― | −0.12 | −0.24 | 10 | |
y1 | −0.16 | 0.01 | 0.05 | 0.01 | 0.08 | 0.20 | 0.07 | −0.05 | −0.08 | −0.22 | −0.16 | −0.08 | −0.16 | −0.11 | −0.03 | ― | 0.16 | 10 | |
Zn | 0.00 | −0.01 | 0.40 | −0.06 | 0.02 | 0.01 | −0.04 | −0.34 | −0.32 | −0.29 | −0.20 | −0.33 | −0.20 | −0.16 | −0.28 | 0.37 | ― | 3 | |
Nc | 5 | 0 | 9 | 3 | 0 | 4 | 0 | 4 | 3 | 9 | 3 | 3 | 5 | 3 | 3 | 0 | 2 | ― |
Property | N | S.P. | F | Range | Calibration | Full Cross-Validation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | RMSE | R2 | S.D. | Range | RMSE | R2 | RPD | RER | ||||||||||
BSP | 218 | 13 | 10 | 36.0 | – | 129 | 7.78 | 0.82 | 18.5 | 92.7 | 10.8 | 0.66 | C | 1.72 | D | 8.62 | D | ||
B-s | 157 | 33 | 2 | 0.17 | – | 0.55 | 0.03 | 0.82 | 0.06 | 0.37 | 0.03 | 0.82 | B | 2.35 | C | 14.6 | C | ||
Ca | 219 | 19 | 8 | 259 | – | 1486 | 131 | 0.82 | 310 | 1231 | 152 | 0.76 | C | 2.04 | C | 8.09 | D | ||
CaMg | 224 | 15 | 7 | 2.39 | – | 20.3 | 2.12 | 0.82 | 5.04 | 17.9 | 2.47 | 0.76 | C | 2.05 | C | 7.26 | E | ||
CEC | 205 | 13 | 7 | 29.0 | – | 50.6 | 2.02 | 0.82 | 4.77 | 23.2 | 2.52 | 0.72 | C | 1.89 | D | 9.23 | D | ||
CL | 184 | 15 | 8 | 18.2 | – | 37.3 | 1.34 | 0.83 | 3.29 | 19.2 | 1.65 | 0.75 | C | 1.99 | D | 11.6 | C | ||
CN | 178 | 27 | 6 | 10.7 | – | 13.6 | 0.22 | 0.82 | 0.53 | 2.98 | 0.24 | 0.79 | C | 2.20 | C | 12.4 | C | ||
CSP | 213 | 7 | 5 | 28.4 | – | 110 | 8.22 | 0.82 | 19.5 | 81.6 | 9.93 | 0.74 | C | 1.96 | D | 8.21 | D | ||
C-t | 231 | 15 | 9 | 2.39 | – | 6.57 | 0.26 | 0.90 | 0.84 | 4.18 | 0.35 | 0.83 | B | 2.45 | C | 12.1 | C | ||
Cu | 116 | 15 | 5 | 0.24 | – | 0.73 | 0.04 | 0.81 | 0.09 | 0.49 | 0.05 | 0.71 | C | 1.86 | D | 10.6 | C | ||
DD | 231 | 19 | 14 | 0.66 | – | 1.04 | 0.03 | 0.86 | 0.09 | 0.38 | 0.05 | 0.69 | C | 1.80 | D | 7.35 | E | ||
EC | 120 | 5 | 4 | 0.09 | – | 0.18 | 0.01 | 0.82 | 0.02 | 0.09 | 0.01 | 0.67 | C | 1.73 | D | 7.70 | E | ||
ESP | 173 | 27 | 6 | 0.06 | – | 0.38 | 0.03 | 0.82 | 0.07 | 0.32 | 0.03 | 0.79 | C | 2.16 | C | 10.4 | C | ||
Fe | 143 | 31 | 6 | 4.01 | – | 5.33 | 0.12 | 0.82 | 0.29 | 1.33 | 0.14 | 0.78 | C | 2.15 | C | 9.75 | D | ||
HR | 231 | 27 | 8 | 4.12 | – | 11.3 | 0.51 | 0.88 | 1.46 | 7.20 | 0.58 | 0.84 | B | 2.50 | B | 12.4 | C | ||
K | 192 | 29 | 7 | 22.1 | – | 110 | 9.08 | 0.82 | 21.5 | 87.8 | 10.1 | 0.78 | C | 2.12 | C | 8.67 | D | ||
MC | 166 | 31 | 6 | 35.4 | – | 50.4 | 1.27 | 0.82 | 2.99 | 14.9 | 1.38 | 0.79 | C | 2.17 | C | 10.8 | C | ||
Mg | 183 | 29 | 7 | 28.9 | – | 114 | 8.12 | 0.83 | 19.5 | 84.6 | 9.20 | 0.78 | C | 2.12 | C | 9.20 | D | ||
MgK | 155 | 17 | 7 | 1.33 | – | 5.30 | 0.37 | 0.83 | 0.89 | 3.97 | 0.46 | 0.73 | C | 1.93 | D | 8.58 | D | ||
Mn | 183 | 21 | 7 | 17.6 | – | 92.5 | 7.90 | 0.83 | 19.1 | 74.8 | 9.19 | 0.77 | C | 2.08 | C | 8.14 | C | ||
Na | 182 | 17 | 7 | 1.17 | – | 5.02 | 0.36 | 0.82 | 0.86 | 3.85 | 0.42 | 0.76 | C | 2.04 | C | 9.08 | C | ||
N-a | 199 | 11 | 8 | 0.31 | – | 5.83 | 0.56 | 0.82 | 1.34 | 5.52 | 0.77 | 0.67 | C | 1.73 | D | 7.15 | E | ||
N-h | 218 | 23 | 10 | 2.20 | – | 12.2 | 0.82 | 0.82 | 1.96 | 10.0 | 1.01 | 0.74 | C | 1.94 | D | 9.95 | D | ||
N-n | 151 | 21 | 10 | 0.21 | – | 1.43 | 0.11 | 0.82 | 0.25 | 1.23 | 0.15 | 0.65 | D | 1.70 | D | 8.25 | D | ||
N-t | 229 | 33 | 8 | 0.19 | – | 0.49 | 0.03 | 0.83 | 0.06 | 0.30 | 0.03 | 0.79 | C | 2.16 | C | 10.3 | C | ||
P-a | 151 | 31 | 5 | 0.62 | – | 54.4 | 5.17 | 0.82 | 12.3 | 53.7 | 5.55 | 0.80 | C | 2.21 | C | 9.67 | D | ||
PAC | 231 | 13 | 8 | 1540 | – | 2699 | 79.1 | 0.86 | 215 | 1159 | 102 | 0.77 | C | 2.10 | C | 11.4 | C | ||
pH | 212 | 13 | 7 | 5.52 | – | 7.44 | 0.20 | 0.82 | 0.47 | 1.92 | 0.24 | 0.73 | C | 1.92 | D | 7.90 | E | ||
S | 165 | 21 | 5 | 24.4 | – | 52.3 | 1.79 | 0.82 | 4.23 | 28.0 | 2.00 | 0.78 | C | 2.12 | C | 14.0 | C | ||
SiO | 231 | 13 | 8 | 56.7 | – | 364 | 17.5 | 0.84 | 43.8 | 307 | 22.7 | 0.73 | C | 1.93 | D | 13.6 | C | ||
SL | 134 | 21 | 6 | 27.7 | – | 38.3 | 0.97 | 0.82 | 2.31 | 10.5 | 1.12 | 0.77 | C | 2.07 | C | 9.44 | D | ||
SOM | 219 | 33 | 8 | 13.8 | – | 21.3 | 0.70 | 0.82 | 1.65 | 7.42 | 0.77 | 0.79 | C | 2.15 | C | 9.66 | D | ||
y1 | 217 | 23 | 14 | 0.06 | – | 1.19 | 0.10 | 0.84 | 0.26 | 1.13 | 0.15 | 0.67 | C | 1.75 | D | 7.70 | E | ||
Zn | 165 | 29 | 5 | 2.24 | – | 13.2 | 0.94 | 0.82 | 2.24 | 11.0 | 1.03 | 0.79 | C | 2.18 | C | 10.7 | C |
Property | Prediction (N = 65) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.D. | RMSE | Range | IQ | R2 | RPD | RPIQ | RER | M.M. | M.P. | E.P.(%) | |||||
BSP | 22.9 | 25.1 | 105 | 21.1 | 0.08 | E | 0.91 | E | 0.84 | E | 4.17 | E | 78.7 | 89.6 | 13.9 |
B-s | 0.15 | 0.14 | 0.76 | 0.14 | 0.41 | E | 1.06 | E | 0.99 | E | 5.36 | E | 0.45 | 0.38 | 16.1 |
Ca | 318 | 360 | 1346 | 361 | 0.08 | E | 0.88 | E | 1.00 | E | 3.74 | E | 922 | 970 | 5.28 |
CaMg | 3.15 | 3.39 | 11.0 | 5.48 | 0.27 | E | 0.93 | E | 1.62 | D | 3.25 | E | 9.89 | 9.91 | 0.24 |
CEC | 4.15 | 7.31 | 19.6 | 5.44 | 0.00 | E | 0.57 | E | 0.74 | E | 2.67 | E | 46.8 | 41.3 | 11.7 |
CL | 3.97 | 3.10 | 15.8 | 6.49 | 0.39 | E | 1.28 | E | 2.09 | C | 5.09 | E | 27.1 | 27.1 | 0.01 |
CN | 0.50 | 0.44 | 2.46 | 0.46 | 0.34 | E | 1.13 | E | 1.03 | E | 5.55 | E | 12.7 | 12.6 | 0.45 |
CSP | 22.0 | 26.1 | 99.6 | 25.8 | 0.05 | E | 0.84 | E | 0.99 | E | 3.82 | E | 69.5 | 65.9 | 5.11 |
C-t | 0.79 | 0.51 | 3.93 | 0.72 | 0.65 | D | 1.54 | D | 1.41 | E | 7.68 | E | 4.69 | 4.47 | 4.55 |
Cu | 0.49 | 0.55 | 2.05 | 0.23 | 0.06 | E | 0.90 | E | 0.42 | E | 3.73 | E | 0.49 | 0.32 | 36.1 |
DD | 0.04 | 0.05 | 0.21 | 0.06 | 0.26 | E | 0.83 | E | 1.14 | E | 3.98 | E | 0.75 | 0.78 | 3.83 |
EC | 0.04 | 0.05 | 0.17 | 0.05 | 0.01 | E | 0.82 | E | 0.93 | E | 3.47 | E | 0.15 | 0.13 | 16.0 |
ESP | 0.14 | 0.21 | 0.92 | 0.13 | 0.00 | E | 0.65 | E | 0.60 | E | 4.34 | E | 0.31 | 0.15 | 50.8 |
Fe | 0.27 | 0.29 | 1.72 | 0.33 | 0.15 | E | 0.95 | E | 1.14 | E | 6.01 | E | 4.54 | 4.49 | 1.15 |
HR | 1.36 | 0.69 | 6.77 | 1.24 | 0.77 | C | 1.98 | D | 1.80 | D | 9.83 | D | 8.08 | 8.24 | 2.02 |
K | 19.4 | 18.9 | 88.5 | 23.1 | 0.12 | E | 1.02 | E | 1.22 | E | 4.67 | E | 40.6 | 43.3 | 6.52 |
MC | 6.43 | 4.41 | 29.2 | 7.65 | 0.68 | C | 1.46 | E | 1.73 | D | 6.62 | E | 46.1 | 45.7 | 0.70 |
Mg | 23.2 | 26.1 | 121 | 18.7 | 0.02 | E | 0.89 | E | 0.71 | E | 4.62 | E | 69.1 | 69.3 | 0.34 |
MgK | 2.03 | 2.31 | 9.40 | 2.15 | 0.03 | E | 0.88 | E | 0.93 | E | 4.07 | E | 4.56 | 3.41 | 25.2 |
Mn | 9.02 | 13.3 | 37.9 | 8.94 | 0.01 | E | 0.68 | E | 0.67 | E | 2.85 | E | 38.9 | 36.2 | 6.99 |
Na | 2.12 | 3.25 | 14.2 | 1.82 | 0.03 | E | 0.65 | E | 0.56 | E | 4.37 | E | 4.54 | 2.20 | 51.6 |
N-a | 0.36 | 1.24 | 2.18 | 0.37 | 0.10 | E | 0.29 | E | 0.30 | E | 1.75 | E | 0.62 | 1.38 | 121 |
N-h | 1.49 | 1.78 | 9.39 | 1.26 | 0.19 | E | 0.84 | E | 0.71 | E | 5.27 | E | 5.67 | 6.47 | 14.2 |
N-n | 0.95 | 0.95 | 4.13 | 0.60 | 0.28 | E | 1.00 | E | 0.63 | E | 4.34 | E | 1.14 | 0.72 | 36.9 |
N-t | 0.06 | 0.04 | 0.28 | 0.05 | 0.67 | C | 1.64 | D | 1.39 | E | 8.04 | D | 0.37 | 0.37 | 0.54 |
P-a | 24.6 | 35.6 | 104 | 30.7 | 0.05 | E | 0.69 | E | 0.86 | E | 2.94 | E | 48.2 | 22.3 | 53.7 |
PAC | 243 | 132 | 1078 | 314 | 0.78 | C | 1.84 | D | 2.38 | C | 8.16 | D | 2160 | 2100 | 2.76 |
pH | 0.57 | 0.74 | 2.40 | 0.46 | 0.00 | E | 0.77 | E | 0.63 | E | 3.25 | E | 7.01 | 6.68 | 4.67 |
S | 5.58 | 3.83 | 23.7 | 9.19 | 0.53 | D | 1.46 | E | 2.40 | C | 6.19 | E | 39.9 | 39.8 | 0.34 |
SiO | 40.6 | 35.2 | 208 | 23.9 | 0.54 | D | 1.15 | E | 0.68 | E | 5.90 | E | 141 | 162 | 15.0 |
SL | 2.76 | 3.22 | 12.3 | 3.66 | 0.00 | E | 0.86 | E | 1.14 | E | 3.82 | E | 33.0 | 32.4 | 1.95 |
SOM | 1.42 | 1.14 | 6.79 | 1.50 | 0.53 | D | 1.25 | E | 1.31 | E | 5.96 | E | 18.1 | 18.7 | 3.20 |
y1 | 0.39 | 0.41 | 2.34 | 0.11 | 0.01 | E | 0.96 | E | 0.28 | E | 5.76 | E | 0.26 | 0.32 | 21.9 |
Zn | 3.32 | 3.42 | 15.2 | 2.64 | 0.06 | E | 0.97 | E | 0.77 | E | 4.43 | E | 8.32 | 7.48 | 10.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodaira, M.; Shibusawa, S. Mobile Proximal Sensing with Visible and Near Infrared Spectroscopy for Digital Soil Mapping. Soil Syst. 2020, 4, 40. https://doi.org/10.3390/soilsystems4030040
Kodaira M, Shibusawa S. Mobile Proximal Sensing with Visible and Near Infrared Spectroscopy for Digital Soil Mapping. Soil Systems. 2020; 4(3):40. https://doi.org/10.3390/soilsystems4030040
Chicago/Turabian StyleKodaira, Masakazu, and Sakae Shibusawa. 2020. "Mobile Proximal Sensing with Visible and Near Infrared Spectroscopy for Digital Soil Mapping" Soil Systems 4, no. 3: 40. https://doi.org/10.3390/soilsystems4030040
APA StyleKodaira, M., & Shibusawa, S. (2020). Mobile Proximal Sensing with Visible and Near Infrared Spectroscopy for Digital Soil Mapping. Soil Systems, 4(3), 40. https://doi.org/10.3390/soilsystems4030040