Visible Near-Infrared Reflectance and Laser-Induced Breakdown Spectroscopy for Estimating Soil Quality in Arid and Semiarid Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Laboratory Analyses
2.2. Reflectance Measurements
2.3. Data Calibration and Modeling
3. Results
3.1. Calibration-Model 1 (A Statewide Library)
3.2. Calibration-Model 2 (A Local Spectral Library)
3.3. Calibration-Model 3 (A Temporal Spectra Library)
3.4. Validation-Model 1 (A Statewide Library)
3.5. Validation-Model 2 (A Local Spectral Library)
3.6. Validation-Model 3 (A Temporal Spectra Library)
4. Discussion
- Data visualization and cleaning: Numerous trimming procedures were conducted before the conclusion was finally made.
- Different models were considered before picking the best one for this analysis. Among the models considered were the Forest Regression, the Principal Component Regression, and the Partial Least Square Regression (PLSR).
- Obtaining suitable software for data processing and analysis.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karlen, D.; Andrews, S.; Doran, J. Soil quality: Current concepts and applications. Adv. Agron. 2001, 47, 1–40. [Google Scholar]
- Shepherd, K.D.; Walsh, M.G. Development of Reflectance Spectral Libraries for Characterization of Soil Properties. Soil Sci. Soc. Am. J. 2014, 66, 988. [Google Scholar] [CrossRef]
- Andrews, S.; Karlen, D.; Cambardella, C. The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Moebius-Clune, B.N.; Moebius-Clune, D.; Gugino, B.; Idowu, O.J.; Schindelbeck, R.R.; Ristow, A.J.; van Es, H.; Thies, J.; Shayler, H.; McBride, M.; et al. Comprehensive Assessment of Soil Health—The Cornell Framework Manual; Cornell University College of Agriculture and Life Science: Ithaca, NY, USA, 2016; ISBN 0967650763. [Google Scholar]
- Omer, M.; Idowu, O.; Ulery, A.; VanLeeuwen, D.; Guldan, S. Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems. Agriculture 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Bricklemyer, R.S.; Brown, D.J.; Turk, P.J.; Clegg, S. Comparing vis–NIRS, LIBS, and Combined vis–NIRS-LIBS for Intact Soil Core Soil Carbon Measurement. Soil Sci. Soc. Am. J. 2018, 82, 1482. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Science Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- McMillan, N.J.; Rees, S.; Kochelek, K.; Mcmanus, C. Geological applications of laser-induced breakdown spectroscopy. Geostand. Geoanalytical Res. 2014, 38, 329–343. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Cremers, D.A.; Radziemski, L.J. Handbook of Breakdown Spectroscopy; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ilhardt, P.D.; Nuñez, J.R.; Denis, E.H.; Rosnow, J.J.; Krogstad, E.J.; Renslow, R.S.; Moran, J.J. High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS). Soil Biol. Biochem. 2019, 131, 119–132. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. Adv. Agron. 2002, 75, 173. [Google Scholar]
- Ben-Dor, E.; Banin, A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Review: Infrared spectroscopy—Enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J. Near Infrared Spectrosc. 2007, 15, 1–19. [Google Scholar] [CrossRef]
- Gholoubi, A.; Emami, H.; Jones, S.B.; Tuller, M. A Novel Shortwave Infrared Proximal Sensing Approach to Quantify the Water Stability of Soil Aggregates. Soil Sci. Soc. Am. J. 2018, 82, 1358–1366. [Google Scholar] [CrossRef] [Green Version]
- Idowu, O.J.; Van Es, H.M.; Abawi, G.S.; Wolfe, D.W.; Ball, J.I.; Gugino, B.K.; Moebius, B.N.; Schindelbeck, R.R.; Bilgili, A.V. Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Plant Soil 2008, 307, 243–253. [Google Scholar] [CrossRef]
- McBratney, A.B.; Viscarra Rossel, R.A. Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content. Geoderma 1998, 85, 19–39. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA); Natural Resources Conservation Service Soils. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin; U.S. Department of Agriculture Handbook 296; USDA: Washington, DC, USA, 2006.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar] [CrossRef]
- Idowu, O.J.; Kircher, P. Soil quality of semi-arid conservation reserve program lands in Eastern New Mexico. Arid L. Res. Manag. 2016, 30, 153–165. [Google Scholar] [CrossRef]
- Schindelbeck, R.R.; van Es, H.M.; Abawi, G.S.; Wolfe, D.W.; Whitlow, T.L.; Gugino, B.K.; Idowu, O.J.; Moebius-Clune, B.N. Comprehensive assessment of soil quality for landscape and urban management. Landsc. Urban Plan. 2008, 88, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils (USDA); Handbook. 60; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Ludwick, A.E.; Reuss, J.O. Guide to Fertilizer Recommendations in Colorado; Colorado State University: Fort Collins, CO, USA, 1974. [Google Scholar]
- Hamel, C.; Hanson, K.; Selles, F.; Cruz, A.F.; Lemke, R.; McConkey, B.; Zentner, R. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 2006, 38, 2104–2116. [Google Scholar] [CrossRef]
- Wills, S.; Loecke, T.; Sequeira, C.; Teachman, G.; Grunwald, S.; West, L.T. Overview of the US rapid carbon assessment project: Sampling design, initial summary and uncertainty estimates. In Soil Carbon; Springer: Cham, Switzerland, 2014; pp. 95–104. [Google Scholar]
- University of Sydney. Soil Spectral Inference Workshop: Collating and Reading in Spectral Data; CRC Press: Sydney, Australia, 2013. [Google Scholar]
- Veum, K.S.; Sudduth, K.A.; Kremer, R.J.; Kitchen, N.R. Sensor data fusion for soil health assessment. Geoderma 2017, 305, 53–61. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Veum, K.S.; Sudduth, K.A.; Kremer, R.J.; Kitchen, N.R. Estimating a Soil Quality Index with VNIR Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2015, 79, 637. [Google Scholar] [CrossRef]
- Nicolodelli, G.; Cabral, J.; Menegatti, C.R.; Marangoni, B.; Senesi, G.S. Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part I. Soils and fertilizers. TrAC Trends Anal. Chem. 2019, 115, 70–82. [Google Scholar] [CrossRef]
- Glumac, N.G.; Dong, W.K.; Jarrell, W.M. Quantitative Analysis of Soil Organic Carbon Using Laser-Induced Breakdown Spectroscopy: An Improved Method. Soil Sci. Soc. Am. J. 2010, 74, 1922. [Google Scholar] [CrossRef]
- Bricklemyer, R.S.; Brown, D.J.; Turk, P.J.; Clegg, S.M. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 2013, 67, 1185–1199. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Ibrahim, M.; Jamil, Y.; Islam, M.S.; Abbas, F. Spectrochemical analysis of soil around leather tanning industry using laser induced breakdown spectroscopy. J. Chem. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, A.V.; Van Es, H.M.; Akbas, F.; Durak, A.; Hively, W. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. J. Arid Environ. 2010, 74, 229–238. [Google Scholar] [CrossRef]
- Brown, D.J.; Shepherd, K.D.; Walsh, M.G.; Dewayne Mays, M.; Reinsch, T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 2006, 132, 273–290. [Google Scholar] [CrossRef]
- Brown, D.J.; Bricklemyer, R.S.; Miller, P.R. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma 2005, 129, 251–267. [Google Scholar] [CrossRef]
- Cremers, D.A.; Ebinger, M.H.; Breshears, D.D.; Unkefer, P.J.; Kammerdiener, S.A.; Ferris, M.J.; Catlett, K.M.; Brown, J.R. Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS). J. Environ. Qual. 2001, 30, 2202–2206. [Google Scholar] [CrossRef]
- Askari, M.S.; Cui, J.; O’Rourke, S.M.; Holden, N.M. Evaluation of soil structural quality using VIS-NIR spectra. Soil Tillage Res. 2015, 146, 108–117. [Google Scholar] [CrossRef]
- Hussain, T.; Gondal, M.A. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis. J. Phys. Conf. Ser. 2013, 439, 012050. [Google Scholar] [CrossRef] [Green Version]
- Kimbrough, D.E.; Cohen, Y.; Winer, A.M.; Creelman, L.; Mabuni, C. A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 1999, 29, 1–46. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480. [Google Scholar] [CrossRef] [Green Version]
Sites | Number of Samples | Time of Sampling | Soil Texture | Management Practices |
---|---|---|---|---|
Commercial agricultural farms | 71 samples ‡ from 6 sampling areas † | Fall of 2016 | Sandy loam, clay loam, clay, loam, sandy clay loam, and loamy sand | Flood or sprinkler irrigated annual field crop systems, Flood or sprinkler irrigated vegetable systems and Flood or drip-irrigated orchards |
NMSU Agricultural Science Center, Los Lunas | 36 samples | Fall of 2016 | Sandy loam, sandy clay loam, sandy clay, clay loam, and clay |
|
NMSU Leyendecker Plant Science Center, Las Cruces | 36 samples per sampling season |
| Sandy loam and clay loam | Alfalfa fields, upland cotton (Gossypium hirsutum) fields and pecan (Carya illinoinensis) orchards |
Models † | Locations | Sample Size |
---|---|---|
Model 1 | All the data irrespective of locations across the state of New Mexico 71 commercial farm samples from 6 regions, 36 samples from NMSU Agricultural Science Center in Los Lunas, and 36 fall season samples from NMSU Leyendecker Plant Science Center in Las Cruces | 143 |
Model 2 | Data from NMSU Agricultural Science Center in Los Lunas, New Mexico, (34°46′00.34″ N, 106°45′31.95″ W, Elevation 1478.28 m) | 36 |
Model 3 | Data from NMSU Leyendecker Plant Science Center in Las Cruces, New Mexico, (32°11′5″ N, 106°44′26″ W, Elevation 1175.00 m) | |
● Winter | 36 | |
● Spring | 36 | |
● Summer | 36 | |
● Fall | 36 |
SQIs ‡ | Mean | S.D. | C.V. (%) | Min. | Max. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
SOM (%) † | 1.37 | 0.86 | 62.3 | 0.76 | 4.83 | 1.62 | 3.14 |
POXC (mg·kg−1) | 426 | 63.8 | 15.0 | 379 | 591 | 0.72 | −0.09 |
TMB (ng·g−1) | 2163 | 1849 | 85.5 | 891 | 11266 | 2.09 | 6.39 |
TBB (ng·g−1) | 1038 | 937 | 90.3 | 442 | 4841 | 2.07 | 5.19 |
TFB (ng·g−1) | 227 | 267 | 117 | 34.9 | 1280 | 1.91 | 3.79 |
MWD (mm) | 0.74 | 0.51 | 67.5 | 0.31 | 2.65 | 0.91 | 0.83 |
AGG > 2 mm (%) | 24.1 | 18.9 | 78.3 | 6.24 | 80.5 | 0.70 | 0.04 |
AGG < 0.25 mm (%) | 34.1 | 18.3 | 53.6 | 19.6 | 87.2 | 0.62 | −0.43 |
WAS (%) | 54.6 | 17.2 | 31.7 | 43.5 | 93.9 | -0.27 | −0.40 |
pH | 7.44 | 0.27 | 3.60 | 7.30 | 8.10 | -0.65 | 0.55 |
EC (dS·m−1) | 1.60 | 1.53 | 95.5 | 0.67 | 8.28 | 2.18 | 4.96 |
Ca (mg·kg−1) | 8.86 | 7.90 | 89.1 | 4.17 | 46.6 | 2.19 | 4.99 |
Mg (mg·kg−1) | 2.88 | 3.06 | 106 | 1.08 | 18.4 | 2.51 | 7.25 |
Na (mg·kg−1) | 6.56 | 9.13 | 139 | 1.75 | 62.6 | 3.19 | 12.6 |
Fe (mg·kg−1) | 4.16 | 3.58 | 85.9 | 2.09 | 21.2 | 2.46 | 7.52 |
SQIs | VNIRS | LIBS | VNIRS-LIBS | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
SOM (%) † | 0.19 | 0.66 | 0.61 | 0.43 | 0.65 | 0.54 |
POXC (mg·kg−1) | 0.30 | 51.5 | 0.81 | 26.4 | 0.68 | 36.2 |
TMB (ng·g−1) | 0.44 | 1211 | 0.96 | 430 | 0.82 | 835 |
TBB (ng·g−1) | 0.45 | 649 | 0.96 | 214 | 0.81 | 499 |
TFB (ng·g−1) | 0.41 | 189 | 0.96 | 68.8 | 0.80 | 120 |
MWD (mm) | 0.24 | 0.48 | 0.72 | 0.27 | 0.57 | 0.34 |
AGG > 2 mm (%) | 0.23 | 16.1 | 0.72 | 9.66 | 0.58 | 12.6 |
AGG < 0.25 mm (%) | 0.15 | 16.2 | 0.68 | 9.64 | 0.56 | 11.6 |
WAS (%) | 0.16 | 16.1 | 0.73 | 8.72 | 0.54 | 11.6 |
pH | 0.76 | 0.11 | 0.89 | 0.11 | 0.92 | 0.07 |
EC (dS·m−1) | 0.13 | 1.20 | 0.33 | 1.20 | 0.54 | 1.10 |
Ca (mg·kg−1) | 0.17 | 5.84 | 0.61 | 5.44 | 0.61 | 4.86 |
Mg (mg·kg−1) | 0.13 | 2.25 | 0.61 | 1.72 | 0.67 | 1.62 |
Na (mg·kg−1) | 0.13 | 7.80 | 0.58 | 4.59 | 0.59 | 6.41 |
Fe (mg·kg−1) | 0.15 | 2.66 | 0.69 | 1.38 | 0.63 | 2.12 |
SQIs ‡ | Mean | S.D. | C.V. (%) | Min. | Max. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
SOM (%) † | 1.28 | 0.81 | 63.4 | 0.29 | 4.47 | 2.09 | 5.99 |
POXC (mg·kg−1) | 381 | 32.7 | 8.58 | 288 | 452.1 | −0.17 | 0.76 |
TMB (ng·g−1) | 1489 | 1633 | 109 | 105 | 7943 | 2.27 | 6.38 |
TBB (ng·g−1) | 736 | 829 | 112 | 26.0 | 4152 | 2.38 | 7.56 |
TFB (ng·g−1) | 145 | 225 | 155 | 0.00 | 956 | 2.55 | 6.81 |
MWD (mm) | 0.64 | 0.49 | 77.0 | 0.13 | 2.03 | 1.00 | 0.24 |
AGG > 2 mm (%) | 19.3 | 18.7 | 96.6 | 0.28 | 65.1 | 0.81 | −0.57 |
AGG < 0.25 mm (%) | 32.5 | 16.1 | 49.6 | 6.65 | 64.2 | 0.35 | −0.74 |
WAS (%) | 64.0 | 11.3 | 17.7 | 43.4 | 87.1 | 0.07 | −0.50 |
pH | 7.58 | 0.15 | 2.00 | 7.30 | 7.90 | 0.31 | 0.07 |
EC (dS·m−1) | 0.69 | 0.34 | 48.8 | 0.30 | 2.00 | 1.91 | 5.55 |
Ca (mg·kg−1) | 4.53 | 1.94 | 42.9 | 2.05 | 10.9 | 1.34 | 2.12 |
Mg (mg·kg−1) | 1.13 | 0.56 | 49.3 | 0.44 | 2.68 | 1.43 | 1.85 |
Na (mg·kg−1) | 2.39 | 1.33 | 55.6 | 1.08 | 7.83 | 2.42 | 7.45 |
Fe (mg·kg−1) | 1.80 | 1.02 | 56.4 | 0.72 | 4.79 | 1.34 | 2.11 |
SQIs ‡ | VNIRS | LIBS | VNIRS-LIBS | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
SOM (%) † | 0.48 | 0.61 | 0.89 | 0.27 | 0.69 | 0.45 |
POXC (mg·kg−1) | 0.70 | 14.7 | 0.66 | 5.23 | 0.77 | 32.04 |
TMB (ng·g−1) | 0.55 | 1107 | 0.91 | 510 | 0.71 | 1058 |
TBB (ng·g−1) | 0.55 | 576 | 0.90 | 274 | 0.76 | 480 |
TFB (ng·g−1) | 0.67 | 134 | 0.95 | 48.4 | 0.77 | 131 |
MWD (mm) | 0.67 | 0.26 | 0.85 | 0.15 | 0.73 | 0.25 |
AGG > 2 mm (%) | 0.66 | 10.1 | 0.85 | 6.26 | 0.73 | 9.00 |
AGG < 0.25 mm (%) | 0.60 | 9.95 | 0.80 | 6.35 | 0.71 | 9.73 |
WAS (%) | 0.72 | 5.55 | 0.77 | 5.11 | 0.69 | 9.27 |
pH | 0.75 | 0.07 | 0.85 | 0.05 | 0.95 | 0.06 |
EC (dS·m−1) | 0.51 | 0.24 | 0.82 | 0.14 | 0.65 | 0.85 |
Ca (mg·kg−1) | 0.55 | 1.29 | 0.78 | 4.14 | 0.57 | 4.73 |
Mg (mg·kg−1) | 0.55 | 0.35 | 0.94 | 0.14 | 0.63 | 1.93 |
Na (mg·kg−1) | 0.63 | 0.83 | 0.77 | 0.63 | 0.67 | 5.08 |
Fe (mg·kg−1) | 0.54 | 0.72 | 0.80 | 0.38 | 0.66 | 1.62 |
SQIs ‡ | Fall | Winter | Spring | Summer | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
SOM (%) † | 0.61 | 0.22 | 0.90 | 0.10 | 0.75 | 0.19 | 0.68 | 0.14 |
POXC (mg·kg−1) | 0.62 | 27.1 | 0.70 | 13.4 | 0.75 | 9.68 | 0.51 | 20.6 |
MWD (mm) | 0.45 | 0.45 | 0.96 | 0.07 | 0.68 | 0.24 | 0.81 | 0.31 |
AGG > 2 mm (%) | 0.47 | 16.6 | 0.66 | 8.31 | 0.63 | 9.28 | 0.83 | 8.50 |
AGG < 0.25 mm (%) | 0.46 | 14.8 | 0.66 | 6.09 | 0.67 | 9.30 | 0.90 | 5.86 |
WAS (%) | 0.46 | 10.5 | 0.66 | 8.41 | 0.62 | 7.97 | 0.52 | 7.73 |
pH | 0.94 | 0.06 | 0.67 | 0.08 | 0.92 | 0.01 | 0.92 | 0.03 |
EC (dS·m−1) | 0.65 | 0.67 | 0.94 | 0.26 | 0.65 | 0.64 | 0.68 | 0.47 |
Ca (mg·kg−1) | 0.61 | 4.27 | 0.82 | 2.77 | 0.69 | 3.43 | 0.59 | 2.58 |
Mg (mg·kg−1) | 0.63 | 1.03 | 0.82 | 0.77 | 0.68 | 1.09 | 0.65 | 0.67 |
Na (mg·kg−1) | 0.71 | 3.09 | 0.89 | 2.11 | 0.63 | 4.45 | 0.74 | 2.27 |
Fe (mg·kg−1) | 0.71 | 0.97 | 0.95 | 0.28 | 0.61 | 0.91 | 0.84 | 0.42 |
SQIs ‡ | Fall | Winter | Spring | Summer | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
SOM (%) † | 0.83 | 0.14 | 0.81 | 0.13 | 0.87 | 0.14 | 0.64 | 0.15 |
POXC (mg·kg−1) | 0.65 | 26.0 | 0.83 | 10.0 | 0.77 | 9.34 | 0.67 | 16.9 |
MWD (mm) | 0.72 | 0.32 | 0.89 | 0.12 | 0.86 | 0.15 | 0.85 | 0.27 |
AGG > 2 mm (%) | 0.74 | 11.5 | 0.88 | 4.79 | 0.68 | 7.10 | 0.85 | 7.89 |
AGG < 0.25 mm (%) | 0.70 | 11.0 | 0.86 | 3.83 | 0.81 | 6.97 | 0.80 | 8.38 |
WAS (%) | 0.78 | 6.73 | 0.77 | 6.89 | 0.85 | 4.88 | 0.88 | 3.73 |
pH | 0.97 | 0.03 | 0.96 | 0.02 | 0.94 | 0.01 | 0.86 | 0.03 |
EC (dS·m−1) | 0.63 | 0.70 | 0.79 | 0.47 | 0.76 | 0.53 | 0.86 | 0.3 |
Ca (mg·kg−1) | 0.69 | 3.80 | 0.75 | 3.02 | 0.76 | 3.01 | 0.89 | 1.32 |
Mg (mg·kg−1) | 0.66 | 1.00 | 0.75 | 0.83 | 0.77 | 0.91 | 0.87 | 0.39 |
Na (mg·kg−1) | 0.62 | 3.57 | 0.82 | 2.67 | 0.79 | 3.30 | 0.88 | 1.56 |
Fe (mg·kg−1) | 0.81 | 0.79 | 0.86 | 0.59 | 0.79 | 0.66 | 0.89 | 0.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, M.; Idowu, O.J.; Brungard, C.W.; Ulery, A.L.; Adedokun, B.; McMillan, N. Visible Near-Infrared Reflectance and Laser-Induced Breakdown Spectroscopy for Estimating Soil Quality in Arid and Semiarid Agroecosystems. Soil Syst. 2020, 4, 42. https://doi.org/10.3390/soilsystems4030042
Omer M, Idowu OJ, Brungard CW, Ulery AL, Adedokun B, McMillan N. Visible Near-Infrared Reflectance and Laser-Induced Breakdown Spectroscopy for Estimating Soil Quality in Arid and Semiarid Agroecosystems. Soil Systems. 2020; 4(3):42. https://doi.org/10.3390/soilsystems4030042
Chicago/Turabian StyleOmer, Mohammed, Omololu J. Idowu, Colby W. Brungard, April L. Ulery, Bidemi Adedokun, and Nancy McMillan. 2020. "Visible Near-Infrared Reflectance and Laser-Induced Breakdown Spectroscopy for Estimating Soil Quality in Arid and Semiarid Agroecosystems" Soil Systems 4, no. 3: 42. https://doi.org/10.3390/soilsystems4030042
APA StyleOmer, M., Idowu, O. J., Brungard, C. W., Ulery, A. L., Adedokun, B., & McMillan, N. (2020). Visible Near-Infrared Reflectance and Laser-Induced Breakdown Spectroscopy for Estimating Soil Quality in Arid and Semiarid Agroecosystems. Soil Systems, 4(3), 42. https://doi.org/10.3390/soilsystems4030042