Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Soil Sampling
2.2. Soil Physicochemical and Hydrological Properties
2.3. Soil Biological Properties
2.4. Soil Bacterial Microbiome Characterization
2.5. Statistical Analysis and Bioinformatics
3. Results
3.1. Physicochemical and Hydrological Parameters
3.2. Biological Parameters
3.3. Bacterial Community Composition and Diversity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Börjesson, G.; Kätterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 2018, 112, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, P.; Ibrahim, M.; Hashim, R. Land Application of sewage sludge: Physicochemical and microbial response. Rev. Environ. Contam. Toxicol. 2011, 214, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Agrawal, M. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecol. Eng. 2010, 36, 969–972. [Google Scholar] [CrossRef]
- Lloret, E.; Pascual, J.A.; Brodie, E.L.; Bouskill, N.J.; Insam, H.; Juárez, M.F.-D.; Goberna, M. Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Appl. Soil Ecol. 2016, 101, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Hernández, T.; Moreno, J.I.; Costa, F. Influence of sewage sludge application on crop yields and heavy metal availability. Soil Sci. Plant. Nutr. 1991, 37, 201–210. [Google Scholar] [CrossRef]
- Mattana, S.; Petrovičová, B.; Landi, L.; Gelsomino, A.; Cortés, P.; Ortiz, O.; Renella, G. Sewage sludge processing determines its impact on soil microbial community structure and function. Appl. Soil Ecol. 2014, 75, 150–161. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Ge, Y.; Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 2008, 160, 554–558. [Google Scholar] [CrossRef]
- Kominko, H.; Gorazda, K.; Wzorek, Z. The possibility of organo-mineral fertilizer production from sewage Sludge. Waste Biomass Valorizat. 2017, 8, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- De Corato, U. Reusing sewage sludge in agriculture: A mini-review. Agri. Res. Tech. 2020, 24, 556260. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Redshaw, C.; Cooke, M.P.; Talbot, H.M.; McGrath, S.; Rowland, S. Low biodegradability of fluoxetine HCl, diazepam and their human metabolites in sewage sludge-amended soil. J. Soils Sediments 2008. [Google Scholar] [CrossRef]
- Stumpe, B.; Marschner, B. Long-term sewage sludge application and wastewater irrigation on the mineralization and sorption of 17β-estradiol and testosterone in soils. Sci. Total Environ. 2007, 374, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Zeng, Q.-Y.; Katsoyiannis, A. Concentration and speciation of heavy metals in six different sewage sludge-composts. J. Hazard. Mater. 2007, 147, 1063–1072. [Google Scholar] [CrossRef]
- Gerba, C.P.; Smith, J.E. Sources of pathogenic microorganisms and their fate during land application of wastes. J. Environ. Qual. 2005, 34, 42–48. [Google Scholar]
- Wang, K.; Mao, H.; Li, X. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresour. Technol. 2018, 249, 527–535. [Google Scholar] [CrossRef]
- Masciandaro, G.; Ceccanti, B.; Garcia, C. “In situ” vermicomposting of biological sludges and impacts on soil quality. Soil Biol. Biochem. 2000, 32, 1015–1024. [Google Scholar] [CrossRef]
- Hua, L.; Wu, W.; Liu, Y.; McBride, M.B.; Chen, Y. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ. Sci. Pollut. Res. Int. 2009, 16, 1–9. [Google Scholar] [CrossRef]
- Corrêa, R.S.; White, R.E.; Weatherley, A.J. Effect of compost treatment of sewage sludge on nitrogen behavior in two soils. Waste Manag. 2006, 26, 614–619. [Google Scholar] [CrossRef]
- Khalil, A.I.; Hassouna, M.S.; El-Ashqar, H.M.A.; Fawzi, M. Changes in physical, chemical and microbial parameters during the composting of municipal sewage sludge. World J. Microbiol. Biotechnol. 2011, 27, 2359–2369. [Google Scholar] [CrossRef]
- Bertoncini, E.I.; D’Orazio, V.; Senesi, N.; Mattiazzo, M.E. Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids. Bioresour. Technol. 2008, 99, 4972–4979. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; Von Fragstein, P.; Von Niemsdorff, P.; Hes, J. Effect of different organic wastes on soil propertie S and plant growth and yield: A review. Sci. Agric. Bohem. 2017, 48, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Araujo, A.S.F.D.; Vaish, B.; Bartelt-Hunt, S.; Singh, P.; Singh, R.P. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev. Environ. Sci. Biotechnol. 2016, 15, 677–696. [Google Scholar] [CrossRef]
- Delїbacak, S.; Voronїna, L.; Morachevskaya, E. Use of sewage sludge in agricultural soils: Useful or harmful. Eurasian J. Soil Sci. 2020, 9, 126–139. [Google Scholar] [CrossRef]
- Marschner, P.; Kandeler, E.; Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- Italian Legislative Decree no. 217 of April 29th 2006. Revisione della Disciplina in Materia di 630 Fertilizzanti; Ordinary Supplement no. 152; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2006.
- Violante, P. Chemical Methods of Soil Analysis; Franco Angeli Press: Milan, Italy, 2000. [Google Scholar]
- Rathje Jackson, M.L. Soil Chemical Analysis; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1958; pp. 251–252. [Google Scholar]
- Hénin, S.; Monnier, G. Evaluation de la stabilité de la structure du sol. In Proceedings of the 6th Congrès International Science du Sol, Paris, France, 6–11 February 1956. [Google Scholar]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Green, V.S.; Stott, D.E.; Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem. 2006, 38, 693–701. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Caraux, G.; Pinloche, S. PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinforma. Oxf. Engl. 2005, 21, 1280–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Mehrotra, A.; Kundu, K.; Sreekrishnan, T.R. Decontamination of heavy metal laden sewage sludge with simultaneous solids reduction using thermophilic sulfur and ferrous oxidizing species. J. Environ. Manag. 2016, 167, 228–235. [Google Scholar] [CrossRef]
- Bai, Y.; Mei, L.; Zuo, W.; Zhang, Y.; Gu, C.; Shan, Y.; Hu, J.; Dai, Q. Response of bacterial communities in coastal mudflat saline soil to sewage sludge amendment. Appl. Soil Ecol. 2019, 144, 107–111. [Google Scholar] [CrossRef]
- Pasqualone, A.; Delvecchio, L.N.; Lacolla, G.; Piarulli, L.; Simeone, R.; Cucci, G. Effect of composted sewage sludge on durum wheat: Productivity, phenolic compounds, antioxidant activity, and technological quality. J. Food Agric. Amp Environ. 2014, 12, 276–280. [Google Scholar]
- Pasqualone, A.; Summo, C.; Centomani, I.; Lacolla, G.; Caranfa, G.; Cucci, G. Effect of composted sewage sludge on morpho-physiological growth parameters, grain yield and selected functional compounds of barley. J. Sci. Food Agric. 2017, 97, 1502–1508. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Walter, I.; Martínez, F.; Cuevas, G. Plant and Soil Responses to the Application of Composted MSW in a Degraded, Semiarid Shrubland in Central Spain. Compost Sci. Util. 2013, 14, 147–154. [Google Scholar] [CrossRef]
- Ouni, Y.; Lakhdar, A.; Scelza, R.; Scotti, R.; Abdelly, C.; Barhoumi, Z.; Rao, M.A. Effects of two composts and two grasses on microbial biomass and biological activity in a salt-affected soil. Ecol. Eng. 2013, 60, 363–369. [Google Scholar] [CrossRef]
- Ramulu, U.S.S. Reuse of Municipal Sewage and Sludge in Agriculture; Scientific Publishers: Rajasthan, India, 2001; ISBN 978-81-7233-254-9. [Google Scholar]
- De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 2020, 13, 100192. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Organic amendment based on fresh and composted beet vinasse. Soil Sci. Soc. Am. J. 2006, 70, 900–908. [Google Scholar] [CrossRef]
- Bettiol, W.; Ghini, R. Impacts of sewage sludge in tropical soil: A case study in Brazil. Appl. Environ. Soil Sci. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, R.; Ochoa, V.; Hinojosa, M.B.; Carreira, J.A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem. 2008, 40, 2137–2145. [Google Scholar] [CrossRef]
- Torri, S.I.; Corrêa, R.S.; Renella, G. Soil carbon sequestration resulting from biosolids application. Appl. Environ. Soil Sci. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kızılkaya, R.; Bayraklı, B. Effects of N-enriched sewage sludge on soil enzyme activities. Appl. Soil Ecol. 2005, 30, 192–202. [Google Scholar] [CrossRef]
- Brussaard, L.; de Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Lavecchia, A.; Curci, M.; Jangid, K.; Whitman, W.B.; Ricciuti, P.; Pascazio, S.; Crecchio, C. Microbial 16S gene-based composition of a sorghum cropped rhizosphere soil under different fertilization managements. Biol. Fertil. Soils 2015, 51, 661–672. [Google Scholar] [CrossRef]
- Al-Kindi, S.; Abed, R.M.M. Effect of biostimulation using sewage sludge, soybean meal, and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Xun, W.; Zhao, J.; Xue, C.; Zhang, G.; Ran, W.; Wang, B.; Shen, Q.; Zhang, R. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environ. Microbiol. 2016, 18, 1907–1917. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Zhang, S.; Zhang, X.; Guo, D.; Zhou, W.; Huang, S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Männistö, M.; Ganzert, L.; Tiirola, M.; Häggblom, M.M.; Stark, S. Do shifts in life strategies explain microbial community responses to increasing nitrogen in tundra soil? Soil Biol. Biochem. 2016, 96, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Chen, M.; Feng, H.; Wei, M.; Song, F.; Lou, Y.; Cui, X.; Wang, H.; Zhuge, Y. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res. 2020, 198, 104540. [Google Scholar] [CrossRef]
Soil | Parameter | Value a |
Particle size distribution | Total sand (2 > ∅ > 0.02 mm) (g/kg) | 605 ± 5.11 |
Silt (0.02 > ∅ > 0.002 mm) (g/kg) | 200 ± 3.14 | |
Clay (∅ < 0.002 mm) (g/kg) | 195 ± 2.40 | |
Chemical properties | Total nitrogen (Kjeldahl method) (g/kg) | 0.9 ± 0.01 |
Available phosphorus (Olsen method) (mg/kg) | 22.5 ± 0.75 | |
Exchangeable potassium (BaCl2 method) (mg/kg) | 252 ± 3.58 | |
Organic matter (Walkley Black method) (g/100 g) | 1.6 ± 0.04 | |
Total limestone (g/100 g) | 2.6 ± 0.03 | |
Active limestone (g/100 g) | 1.4 ± 0.01 | |
pH | 7.3 ± 0.24 | |
ECe (dS/m) | 0.4 ± 0.09 | |
ESP | 0.8 ± 0.02 | |
CEC (BaCl2 method) (meq/100 g of soil d.m.) | 20.2 ± 0.36 | |
Hydrologic properties | Field capacity (g/kg of soil d.m.) | 236 ± 4.59 |
Wilting point (−1.5 MPa) (g/kg of soil d.m.) | 125 ± 2.16 | |
Bulk density (t/m3) | 1.4 ± 0.35 | |
Sewage Sludge Compost | Parameter | Value b |
pH | 7.7 | |
Humidity (g/100 g) | 23 | |
Organic carbon (g/100 g d.m.) | 22 | |
Total nitrogen (g/100 g d.m.) | 1.1 | |
Organic nitrogen (% of total N) | >80 | |
C/N | 20 | |
Total phosphorus (g/100 g d.m.) | 2.3 | |
Total potassium (g/100 g d.m.) | 1.2 | |
Humic and fulvic acids (g/100 g d.m.) | >7 | |
Pb (mg/kg) | <140 | |
Cd (mg/kg) | <1.5 | |
Ni (mg/kg) | <100 | |
Zn (mg/kg) | <500 | |
Cu (mg/kg) | <230 | |
Hg (mg/kg) | <1.5 | |
Cr (mg/kg) | <0.5 | |
Salinity (meq/100 g d.m.) | 21.00 | |
Particle size (mm) | 15 | |
Bulk density (kg/m3) | 600 |
Samples | Good Quality Sequences | Shannon | Simpson | Chao1 | ACE ** |
---|---|---|---|---|---|
C0 | 90,427 | 7.28 b | 334.52 b,c | 11,209 b | 14,353 a |
C3 | 65,487 | 7.34 a,b | 362.51 a | 11,260 b | 14,529 a |
C6 | 70,214 | 7.40 a | 419.76 a | 11,703 a | 15,023 a |
C9 | 65,505 | 7.43 a | 425.40 a | 11,718 a | 14,904 a |
C12 | 51,390 | 7.46 a | 418.12 a | 11,503 a | 14,286 a |
C6N | 64,625 | 7.36 a,b | 355.51 b | 11,285 b | 13,908 b |
Min | 76,453 | 7.18 c | 283.81 c | 10,270 c | 12,967 b |
OTUs | Dissimilarity Contribution | Cumulative % | C0 | C3 | C6 | C9 | C12 | C6N | Min |
---|---|---|---|---|---|---|---|---|---|
Actinobacteria | 32.71 | 32.71 | 19,714 | 14,927 | 14,048 | 12,539 | 9959 | 13,853 | 17,836 |
Alphaproteobacteria | 13.97 | 46.67 | 9857 | 7115 | 7868 | 6919 | 5280 | 7078 | 8380 |
Acidobacteria | 7.06 | 53.74 | 5779 | 4166 | 4883 | 4498 | 3408 | 4405 | 4647 |
Betaproteobacteria | 5.75 | 59.49 | 4047 | 3087 | 3312 | 2989 | 2111 | 2805 | 3272 |
Sphingobacteria | 5.17 | 64.65 | 2982 | 2004 | 2141 | 2020 | 1311 | 1750 | 2415 |
Gemmatimonadetes | 4.63 | 69.29 | 2160 | 1194 | 1159 | 1060 | 729 | 1166 | 1859 |
Bacteria_unclass. | 4.24 | 73.53 | 3776 | 2896 | 3425 | 2983 | 2660 | 3392 | 3616 |
Phycisphaerae | 3.97 | 77.5 | 3430 | 2400 | 2890 | 2750 | 2240 | 2640 | 3000 |
Cyanobacteria | 3.84 | 81.34 | 1210 | 516 | 53 | 242 | 6 | 89 | 530 |
Bacilli | 2.89 | 84.23 | 1704 | 1263 | 1773 | 1592 | 1143 | 1182 | 1782 |
Gammaproteobacteria | 2.88 | 87.1 | 1836 | 953 | 1050 | 1331 | 878 | 1053 | 1153 |
Deltaproteobacteria | 1.75 | 88.85 | 1365 | 1087 | 1184 | 1039 | 760 | 1042 | 1058 |
Planctomycetacia | 1.34 | 90.19 | 1425 | 1075 | 1248 | 1394 | 1195 | 1344 | 1421 |
Planctomycetes | 1.33 | 91.53 | 1040 | 745 | 762 | 709 | 686 | 789 | 1016 |
Thermomicrobia | 1.23 | 92.76 | 931 | 826 | 819 | 739 | 647 | 773 | 1010 |
Chloroplast | 0.78 | 93.54 | 383 | 200 | 166 | 196 | 100 | 142 | 144 |
Spartobacteria | 0.74 | 94.28 | 299 | 216 | 171 | 211 | 123 | 172 | 333 |
SubsectionIV | 0.68 | 94.96 | 219 | 154 | 63 | 65 | 17 | 45 | 29 |
OPB35 | 0.64 | 95.6 | 371 | 365 | 359 | 340 | 176 | 299 | 356 |
Chloroflexi | 0.64 | 96.24 | 498 | 430 | 558 | 444 | 395 | 452 | 368 |
Clostridia | 0.47 | 96.71 | 199 | 104 | 155 | 112 | 59 | 79 | 122 |
Proteobacteria_unclass. | 0.45 | 97.16 | 503 | 436 | 412 | 504 | 417 | 432 | 379 |
Nitrospira | 0.41 | 97.56 | 342 | 249 | 332 | 260 | 236 | 287 | 273 |
Anaerolineae | 0.40 | 97.97 | 180 | 76 | 145 | 116 | 64 | 103 | 95 |
Opitutae | 0.34 | 98.31 | 209 | 178 | 212 | 182 | 126 | 144 | 153 |
SubsectionIII | 0.31 | 98.62 | 10 | 0 | 0 | 0 | 0 | 3 | 129 |
Candidate_division_TM7 | 0.30 | 98.92 | 143 | 81 | 148 | 146 | 87 | 125 | 89 |
Verrucomicrobia | 0.27 | 99.19 | 134 | 26 | 24 | 41 | 31 | 28 | 36 |
Caldilineae | 0.27 | 99.46 | 294 | 311 | 303 | 324 | 275 | 352 | 329 |
Firmicutes | 0.25 | 99.71 | 7 | 12 | 43 | 0 | 66 | 24 | 1 |
Bacteroidetes | 0.17 | 99.88 | 85 | 55 | 67 | 93 | 46 | 66 | 73 |
Flavobacteria | 0.12 | 100 | 3 | 4 | 25 | 15 | 34 | 19 | 24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curci, M.; Lavecchia, A.; Cucci, G.; Lacolla, G.; De Corato, U.; Crecchio, C. Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil. Soil Syst. 2020, 4, 48. https://doi.org/10.3390/soilsystems4030048
Curci M, Lavecchia A, Cucci G, Lacolla G, De Corato U, Crecchio C. Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil. Soil Systems. 2020; 4(3):48. https://doi.org/10.3390/soilsystems4030048
Chicago/Turabian StyleCurci, Maddalena, Anna Lavecchia, Giovanna Cucci, Giovanni Lacolla, Ugo De Corato, and Carmine Crecchio. 2020. "Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil" Soil Systems 4, no. 3: 48. https://doi.org/10.3390/soilsystems4030048
APA StyleCurci, M., Lavecchia, A., Cucci, G., Lacolla, G., De Corato, U., & Crecchio, C. (2020). Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil. Soil Systems, 4(3), 48. https://doi.org/10.3390/soilsystems4030048