Manganese (Mn) Concentrations and the Mn-Fe Relationship in Shallow Groundwater: Implications for Groundwater Monitoring
Abstract
:1. Introduction
2. Geology and Hydrogeology of the Study Area
3. Data and Methods
3.1. Statistical Methods
3.2. Derivation of Background Concentrations for Mn
3.3. Mn-Fe-Difference (∆Mn-Fe)
4. Results
4.1. Groundwater Analyses
4.2. Spearman’s Rank Correlation
4.3. Trend Analyses
4.4. Background Values
5. Discussion
5.1. Background Concentrations in Groundwater
5.2. Trends of Mn Concentration
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McMahon, P.B.; Belitz, K.; Reddy, J.E.; Johnson, D. Elevated manganese concentrations in united states groundwater, role of land surface-soil-aquifer connections. Environ. Sci Technol. 2019, 53, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; Balkema Publishers: Leiden, The Netherlands, 2005; p. 649. [Google Scholar]
- Bjerg, P.L.; Ruegge, K.; Pedersen, J.K.; Christensen, T.H. Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (grindsted, denmark). Environ. Sci. Technol. 1995, 29, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.H.; Bjerg, P.L.; Banwart, S.A.; Jakobsen, R.; Heron, G.; Albrechtsen, H.J. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 2000, 45, 165–241. [Google Scholar] [CrossRef]
- Stumm, W. Chemische prozesse bei der bildung anoxischer grundwasser. Schweiz. Ing. und Archit. 1988, 106, 119–128. [Google Scholar]
- Coetzee, D.J.; McGovern, P.M.; Rao, R.; Harnack, L.J.; Georgieff, M.K.; Stepanov, I. Measuring the impact of manganese exposure on children’s neurodevelopment: Advances and research gaps in biomarker-based approaches. Environ. Health 2016, 15, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marins, K.; Lazzarotto, L.M.V.; Boschetti, G.; Bertoncello, K.T.; Sachett, A.; Schindler, M.S.Z.; Chitolina, R.; Regginato, A.; Zanatta, A.P.; Siebel, A.M.; et al. Iron and manganese present in underground water promote biochemical, genotoxic, and behavioral alterations in zebrafish (danio rerio). Environ. Sci. Pollut. Res. Int. 2019, 26, 23555–23570. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Levy, D.; Factor-Litvak, P.; Kline, J.; Van Geen, A.; Slavkovich, V.; LoIacono, N.J.; et al. Water manganese exposure and children’s intellectual function in araihazar, bangladesh. Environ. Health Perspect 2006, 114, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Wedepohl, K.H. The composition of the continental crust. Geochim. et Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Wendland, F.; Blum, A.; Coetsiers, M.; Gorova, R.; Griffioen, J.; Grima, J.; Hinsby, K.; Kunkel, R.; Marandi, A.; Melo, T. European aquifer typology: A practical framework for an overview of major groundwater composition at european scale. Env. Geol. 2008, 55, 77–85. [Google Scholar] [CrossRef]
- Koopmann, S.; Fröllje, H.; Hamer, K.; Kubier, A.; Pichler, T. Eisen-mangan-anomalien im grundwasser—Analyse der beeinflussenden prozesse (fe-mn-anomalies of groundwater—Analysis of influencing processes). Grundwasser 2020, 25, 113–126. [Google Scholar] [CrossRef]
- Jones, E.; Nico, P.; Ying, S.; Regier, T.; Thieme, J.; Keiluweit, M. Mn-driven carbon oxidation at oxic−anoxic interfaces. Environ. Sci. Technol. 2018, 52, 12349–12357. [Google Scholar] [CrossRef] [PubMed]
- Droll, M. Isenbeck-Schröter, M. Charakterisierung der hydrochemischen verhältnisse im oberflächennahen grundwasserleiter im block- und hollerland (bremen). In Geowissenschaften und Umwelt; Matschullat, J., Müller, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 115–120. [Google Scholar]
- Elbracht, J.; Meyer, R.; Reutter, E. Hydrogeological areas and subareas in lower saxony. GeoBericht 2016, 3, 3–118. [Google Scholar]
- Kubier, A.; Hamer, K.; Pichler, T. Cadmium background levels in groundwater in an area dominated by agriculture. Integr. Environ. Assess. Manag. 2020, 16, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BKG Bundesamt für Kartographie und Geodäsie. Corine Land Cover 10 Ha Clc10 (2012) Lbm-de2012—Land Cover Model Germany, Reference Year 2012; BKG Bundesamt für Kartographie und Geodäsie: Leipzig, Germany, 2018.
- European Commission. Directive 2000/60/ec of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; 2000/60/EC.; European Commission: Brussels, Belgium, 2000; p. 72. [Google Scholar]
- European Commission. Directive 2006/118/ec of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater Against Pollution and Deterioration; 2006/118/EC.; Official Journal of the European Communities: Brussels, Belgium, 2006; p. 13. [Google Scholar]
- Shand, P.; Edmunds, W.M. The baseline inorganic chemistry of european groundwaters. In Natural Groundwater Quality; Edmunds, W.M., Malden, P.S., Eds.; Blackwell Publishing: Oxford, UK, 2008; pp. 22–58. [Google Scholar]
- BGR, Bundesanstalt für Geowissenschaften und Rohstoffe. Hydrogeologische Karte Von Deutschland 1:200.000, Hintergrundwerte (Hük200 Hgw); Bundesanstalt für Geowissenschaften und Rohstoffe BGR: Hannover, Germany, 2014.
- ESRI Environmental Systems Research Institute. Arcgis Desktop 10; ESRI Environmental Systems Research Institute: Redlands, CA, USA, 2018. [Google Scholar]
- Belkhiri, L.; Boudoukha, A.; Mouni, L. A multivariate statistical analysis of groundwater chemistry data. International journal of environmental research. Int. J. Environ. Res. 2011, 5, 537–544. [Google Scholar]
- Zghibi, A.; Merzougui, A.; Zouhri, L.; Tarhouni, J. Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the korba unconfined aquifer system of cap-bon (north-east of tunisia). J. Afr. Earth Sci. 2014, 89, 1–15. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D.; McCray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Leyer, I.; Wesche, K. Multivariate Statistik in Der Ökologie. EINE Einführung; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lepeltier, C. A simplified statistical treatment of geochemical data by graphical representation. Econ. Geol. 1969, 64, 538–550. [Google Scholar] [CrossRef]
- Wagner, B.; Walter, T.; Himmelsbach, T.; Clos, P.; Beer, A.; Budziak, D.; Dreher, T.; Fritsche, H.; Hübschmann, M.; Marcinek, S.; et al. Hydrogeochemische hintergrundwerte der grundwässer deutschlands als web map service. Grundwasser 2011, 16, 155–162. [Google Scholar] [CrossRef]
- Miah, M.R.; Ijomone, O.M.; Okoh, C.O.A.; Ijomone, O.K.; Akingbade, G.T.; Ke, T.; Krum, B.; Da Cunha Martins, A., Jr.; Akinyemi, A.; Aranoff, N.; et al. The effects of manganese overexposure on brain health. Neurochem. Int. 2020, 135, 104688. [Google Scholar] [CrossRef]
- Kullar, S.S.; Shao, K.; Surette, C.; Foucher, D.; Mergler, D.; Cormier, P.; Bellinger, D.C.; Barbeau, B.; Sauve, S.; Bouchard, M.F. A benchmark concentration analysis for manganese in drinking water and iq deficits in children. Environ. Int. 2019, 130, 104889. [Google Scholar] [CrossRef]
- Tobiason, J.E.; Bazilio, A.; Goodwill, J.; Mai, X.; Nguyen, C. Manganese removal from drinking water sources. Curr. Pollut. Rep. 2016, 2, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Pichler, T.; Renshaw, C.E.; Sültenfuß, J. Geogenic as and mo groundwater contamination caused by an abundance of domestic supply wells. Appl. Geochem. 2017, 77, 68–79. [Google Scholar] [CrossRef]
- Pichler, T.; Koopmann, S. Should monitoring of molybdenum (mo) in groundwater, drinking water and well permitting made mandatory? Environ. Sci. Technol. 2020, 54, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepali, K.K.G. Metals concentration in textile and tannery effluents, associated soils and ground water. N. Y. Sci. J. 2010, 3, 82–89. [Google Scholar]
- Caruso, B.S.; Mirtskhulava, M.; Wireman, M.; Schroeder, W.; Kornilovich, B.; Griffin, S. Effects of manganese mining on water quality in the caucasus mountains, republic of georgia. Mine Water Environ. 2012, 31, 16–28. [Google Scholar] [CrossRef]
- Ying, S.; Schaefer, M.; Cock-Esteb, A.; Li, J.; Fendorf, S. Depth stratification leads to distinct zones of mn and arsenic contaminated groundwater. Environ. Sci. Technol. 2017, 51, 8926–8932. [Google Scholar] [CrossRef]
- Froelich, P.N.; Klinkhammer, G.P.; Bender, M.L.; Luedtke, N.A.; Heath, G.R.; Cullen, D.; Dauphin, P.; Hammond, D.; Hartmann, B.; Maynard, V. Early oxidation of organic matter in pelagic sediments of the eastern equatorial atlantic: Suboxic diagenesis. Geochim. et Cosmochim. Acta 1979, 43, 1075–1790. [Google Scholar] [CrossRef]
- Jurgens, B.C.; McMahon, P.B.; Chapelle, F.H.; Eberts, S.M. An excel® workbook for identifying redox processes in ground water. U.S. Geol. Surv. Open File Rep. 2009, 8. Available online: http://pubs.usgs.gov/of/2009/1004 (accessed on 30 July 2020).
- Wriedt, G.; Randt, C. Phosphat im grundwasser niedersachsens—Verteilung, einflussfaktoren und schwellenwert. Grundwasser 2019, 24, 109–127. [Google Scholar] [CrossRef]
- Gillispie, E.C.; Austin, R.E.; Rivera, N.A.; Bolich, R.; Duckworth, O.W.; Bradley, P.; Amoozegar, A.; Hesterberg, D.; Polizzotto, M.L. Soil weathering as an engine for manganese contamination of well water. Environ. Sci. Technol. 2016, 50, 9963–9971. [Google Scholar] [CrossRef]
- Wriedt, G.; De Vries, D.; Eden, T.; Federolf, C. Regionalisierte darstellung der nitratbelastung im grundwasser niedersachsens. Grundwasser 2019, 24, 1–15. [Google Scholar] [CrossRef]
- McMahon, P.B.; Chapelle, F.H. Redox processes and water quality of selected principal aquifer systems. Groundwater 2008, 46, 59–71. [Google Scholar] [CrossRef] [PubMed]
- DeSimone, L.; McMahon, P.B.; Rosen, M.R. The quality of our nation’s waters—Water quality in principal aquifers of the united states, 1991–2010. U.S. Geol. Surv. Circ. 2014, 1930, 151. [Google Scholar]
- Luther, G.W.; Sundby, B.; Lewis, B.L.; Brendel, P.J.; Silverberg, N. Interactions of mn with the nitrogen cycle: Alternative pathways to dinitrogen. Geochim. et Cosmochim. Acta 1997, 61, 4043–4052. [Google Scholar] [CrossRef]
- Kölle, W.; Strebel, O.; Böttcher, J. Formation of sulfate by microbial denitrification in a reducing aquifer. Form. Sulfate Microb. Denitrification Reducing Aquifer 1985, 3, 35–40. [Google Scholar]
- Tesoriero, A.; Terziotti, S.; Abrams, D.B. Predicting redox conditions in groundwater at a regional scale. Environ. Sci. Technol. 2015, 49, 9657–9664. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci. Total. Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef]
- Böhlke, J.K. Groundwater recharge and agricultural contamination. Hydrogeol. J. 2002, 10, 153–179. [Google Scholar] [CrossRef]
- Riedel, T.; Kübeck, C. Uranium in groundwater—A synopsis based on a large hydrogeochemical data set. Water Res. 2018, 129, 29–38. [Google Scholar]
- Kubier, A.; Pichler, T. Cadmium in groundwater—A synopsis based on a large hydrogeochemical data set. Sci. Total. Environ. 2019, 831–842. [Google Scholar] [CrossRef]
- Houben, G.J.; Martiny, A.; Baßler, N.; Langguth, H.-R.; Plüger, W.L. Assessing the reactive transport of inorganic pollutants in groundwater of the bourtanger moor area (nw germany). Environ. Geol. 2001, 41, 480–488. [Google Scholar]
- Houben, G.H.; Sitnikova, M.A.; Post, V.E.A. Terrestrial sedimentary pyrites as a potential source of trace metal release to groundwater e a case study from the emsland, germany. Appl. Geochem. 2017, 76, 99–111. [Google Scholar] [CrossRef]
Tidal Wetlands | Geesten | Fluviatile Lowlands | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter 1 | na | 50th | 90th | na | 50th | 90th | na | 50th | 90th |
K+ | 2375 | 7 | 36.00 | 13,713 | 3.2 | 17 | 10,947 | 3.10 | 18 |
Na+ | 2374 | 65.8 | 1200 | 13,371 | 15 | 32 | 10,630 | 17.00 | 60 |
NH4+ | 1821 | 1.8 | 19 | 13,990 | 0.04 | 0.5 | 10,501 | 0.27 | 2.58 |
Ca2+ | 2396 | 68 | 210 | 13,907 | 36 | 92 | 11,187 | 43 | 102 |
Fe | 2398 | 4.83 | 34 | 14,397 | 0.67 | 10.2 | 11,417 | 5.40 | 20.5 |
Mg2+ | 2401 | 14.8 | 96 | 13,912 | 5.6 | 15 | 11,094 | 5.7 | 14 |
Mn | 2448 | 0.46 | 3.4 | 14,965 | 0.12 | 0.51 | 12,041 | 0.27 | 0.94 |
Zn | 865 | 0.01 | 0.07 | 3728 | 0.02 | 0.09 | 2785 | 0.02 | 0.09 |
Al3+ | 1315 | 0.02 | 0.16 | 9317 | 0.03 | 1.09 | 7442 | 0.04 | 1 |
Cl− | 2438 | 93 | 2066 | 14,552 | 30.8 | 64 | 11,873 | 34.00 | 107 |
NO3− | 2421 | 0.22 | 2.99 | 14,603 | 4 | 106 | 11,678 | 0.50 | 58,4 |
NO2− | 2123 | 0.02 | 0.05 | 13,851 | 0.02 | 0.03 | 10,077 | 0.02 | 0.04 |
HCO3− | 2386 | 238 | 805 | 13,837 | 30.5 | 198 | 11,350 | 75.66 | 242 |
SO42− | 2393 | 14 | 177 | 14,781 | 48 | 112 | 11,903 | 56.00 | 149 |
PO43− | 721 | 0.46 | 5.25 | 3289 | 0.16 | 1.2 | 3154 | 0.24 | 1.37 |
BO3− | 126 | 0.5 | 5.10 | 580 | 0.06 | 0.27 | 450 | 0.08 | 0.49 |
O2 | 1960 | 0.2 | 1.40 | 12,775 | 1.7 | 9.1 | 9448 | 0.52 | 4.3 |
CH4 | 58 | 0.03 | 0.06 | 227 | 0.03 | 0.03 | 181 | 0.03 | 0.66 |
B | 283 | 0.08 | 1.11 | 1785 | 0.03 | 0.09 | 2029 | 0.03 | 0.14 |
DOC | 1291 | 6.6 | 22.9 | 7800 | 1.6 | 7.2 | 6050 | 4.1 | 19 |
N2 surplus | 78 | 0.25 | 6,27 | 402 | 2.87 | 12.4 | 289 | 4.56 | 14.6 |
pH value | 2381 | 6.8 | 8.03 | 14,473 | 6 | 7.4 | 11,829 | 6.3 | 7.3 |
conductivity | 1844 | 825 | 10,474 | 12,519 | 394 | 670 | 10,319 | 420 | 880 |
red. potential | 224 | 90 | 190 | 1045 | 250 | 540.4 | 1382 | 143 | 367 |
temperature | 1808 | 10.7 | 12.50 | 11,685 | 10 | 11 | 9844 | 10.3 | 11.7 |
tot. hardness | 218 | 2.77 | 19.95 | 1664 | 1.25 | 2.7 | 1304 | 1.30 | 3.3 |
Parameter | Tidal Wetland | Geest | Fluviatile Lowland |
---|---|---|---|
Mn | 1.00 | 1.00 | 1.00 |
Fe | 0.66 | 0.59 | 0.55 |
∆Mn-Fe ≥ 0 | 0.91 | 0.89 | 0.41 |
pH | 0.33 | 0.12 | 0.20 |
O2 | 0.10 | −0.37 | −0.13 |
SO42− | −0.06 | 0.17 | −0.40 |
NO3− | −0.06 | −0.30 | −0.09 |
NH4+ | 0.69 | −0.53 | 0.40 |
Fe | 1.00 | 1.00 | 1.00 |
Mn | 0.66 | 0.47 | 0.51 |
∆Mn-Fe ≥ 0 | 0.46 | 0.26 | 0.27 |
pH | −0.49 | 0.28 | 0.09 |
O2 | −0.02 | −0.59 | −0.33 |
SO42− | −0.06 | 0.02 | 0.11 |
NO3− | −0.28 | −0.63 | −0.51 |
NH4+ | 0.51 | 0.56 | 0.62 |
∆Mn-Fe ≥ 0 | 1.00 | 1.00 | 1.00 |
Mn | 0.86 | 0.9 | 0.9 |
Fe | 0.46 | 0.26 | 0.27 |
pH | −0.38 | −0.38 | −0.13 |
O2 | −0.09 | −0.14 | −0.24 |
SO42− | 0.39 | 0.18 | 0.25 |
NO3− | −0.12 | 0.23 | 0.15 |
NH4+ | 0.61 | 0.01 | 0.21 |
Mn | Increasing n = 45 | Decreasing n = 54 | No Trend n = 125 | |
---|---|---|---|---|
Fe | ||||
increasing n = 62 | 31 | 8 | 23 | |
decreasing n = 44 | 5 | 28 | 11 | |
no trend n = 118 | 9 | 18 | 91 |
Number of Analyses | Redox Environment | Criterion |
---|---|---|
23,779 of 31,946 | Mn reduction | Mn > 0.05 mg/L |
18,966 of 23,779 | Mn and Fe-reduction | Mn > 0.05 mg/L and Fe > 0.1 mg/L |
1079 of 18,966 | Mn and Fe-reduction with Mn exceeding Fe concentration | Mn > 0.05 mg/L, Fe > 0.1 mg/L and ∆Mn-Fe ≥ 0 |
746 of 1079 | Mn and Fe-reduction with Mn exceeding Fe concentration with denitrification | Mn > 0.05 mg/L, Fe > 0.1 mg/L, ∆Mn-Fe ≥ 0 and NO3 > 2.2 mg/L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamer, K.; Gudenschwager, I.; Pichler, T. Manganese (Mn) Concentrations and the Mn-Fe Relationship in Shallow Groundwater: Implications for Groundwater Monitoring. Soil Syst. 2020, 4, 49. https://doi.org/10.3390/soilsystems4030049
Hamer K, Gudenschwager I, Pichler T. Manganese (Mn) Concentrations and the Mn-Fe Relationship in Shallow Groundwater: Implications for Groundwater Monitoring. Soil Systems. 2020; 4(3):49. https://doi.org/10.3390/soilsystems4030049
Chicago/Turabian StyleHamer, Kay, Imke Gudenschwager, and Thomas Pichler. 2020. "Manganese (Mn) Concentrations and the Mn-Fe Relationship in Shallow Groundwater: Implications for Groundwater Monitoring" Soil Systems 4, no. 3: 49. https://doi.org/10.3390/soilsystems4030049
APA StyleHamer, K., Gudenschwager, I., & Pichler, T. (2020). Manganese (Mn) Concentrations and the Mn-Fe Relationship in Shallow Groundwater: Implications for Groundwater Monitoring. Soil Systems, 4(3), 49. https://doi.org/10.3390/soilsystems4030049