Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling and Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Effect of Site/Water on Phytoextraction of Heavy Metals
4.2. Effect of Site/Water on Vegetable Transfer Factor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Intergovernmental Panel on Climate Change, in Climate change 2014: Impacts, Adaptation, and Vulnerability: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 18 June 2021).
- Chaudhry, Q.U.Z. Climate Change Profile of Pakistan; Asian Development Bank: Mandaluyong, Philippines, 2017. [Google Scholar]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, M.A.; Vellore, R.; Xu, Y.; You, Q. Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya Assessment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–97. [Google Scholar]
- Ali, S.; Kiani, R.S.; Reboita, M.S.; Dan, L.; Eum, H.I.; Cho, J.; Dairaku, K.; Khan, F.; Shreshta, M.L. Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. Int. J. Climatol. 2021, 41, 559–581. [Google Scholar] [CrossRef]
- Barros, V.; Field, C.; Dokke, D.; Mastrandrea, M.; Mach, K.; Bilir, T.; Chatterjee, M.; Ebi, K.; Estrada, Y.; Genova, R. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Asif, M. Climatic Change, Irrigation Water Crisis and Food Security in Pakistan; Uppsala University: Uppsala, Sweden, 2013. [Google Scholar]
- Munir, T.M.; Perkins, M.; Kaing, E.; Strack, M. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change. Biogeosciences 2015, 12, 1091–1111. [Google Scholar] [CrossRef] [Green Version]
- Lone, M. Comparison of blended and cyclic use of water for agriculture. In Final Report University Grant Commission, Islamabad. Pakistan; University Grants Commission: Islamabad, Pakistan, 1995. [Google Scholar]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Mahmood, S. Waste water irrigation: Issues and constraints for sustainable irrigated agriculture. J. Ital. Agron. 2006, 3, 12–15. [Google Scholar]
- Drechsel, P.; Raschid-Sally, L.; Williams, S.; Weale, J. Recycling Realities: Managing health risks to make wastewater an asset. Water Policy Brief. 2006, 17, 1–7. [Google Scholar]
- Cooper, R.C. Public health concerns in wastewater reuse. Water Sci. Technol. 1991, 24, 55–65. [Google Scholar] [CrossRef]
- Mara, D.D.; Cairncross, S. Guidelines for the Safe Use of Wastewater and Excreta in Agriculture and Aquaculture; World Health Organization: London, UK, 1989. [Google Scholar]
- Curci, M.; Lavecchia, A.; Cucci, G.; Lacolla, G.; De Corato, U.; Crecchio, C. Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil. Soil Syst. 2020, 4, 48. [Google Scholar] [CrossRef]
- Thakur, I.S. Environmental Biotechnology: Basic Concepts and Applications; IK International: Delhi, India, 2011. [Google Scholar]
- Matzen, S.; Fakra, S.; Nico, P.; Pallud, C. Pteris vittata Arsenic Accumulation Only Partially Explains Soil Arsenic Depletion during Field-Scale Phytoextraction. Soil Syst. 2020, 4, 71. [Google Scholar] [CrossRef]
- Sharma, R.; Agrawal, M.; Marshall, F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull. Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M.; Marshall, F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef]
- Ilic, Z.; Filipovic-Trajkovic, R.; Jablanovic, M. Transfer factor (coefficient) soil/plant as indicator concentration of heavy metals content in different vegetable species. Contemp. Agric. 2001, 50, 41–44. [Google Scholar]
- Cui, Y.-J.; Zhu, Y.-G.; Zhai, R.-H.; Chen, D.-Y.; Huang, Y.-Z.; Qiu, Y.; Liang, J.-Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.; Datta, S.; Chhonkar, P.; Suribabu, K.; Singh, A. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Vassilev, A.; Yordanov, I. Reductive analysis of factors limiting growth of cadmium-treated plants: A review. Bulg. J. Plant Physiol. 1997, 23, 114–133. [Google Scholar]
- Lone, M.I.; Saleem, S.; Mahmood, T.; Saifullah, K.; Hussain, G. Heavy metal contents of vegetables irrigated by Sewage/Tubewell water. Int. J. Agric. Biol. 2003, 5, 533–535. [Google Scholar]
- Moral, R.; Cortés, A.; Gomez, I.; Mataix-Beneyto, J. Assessing changes in Cd phytoavailability to tomato in amended calcareous soils. Bioresour. Technol. 2002, 85, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Samantaray, S.; Rout, G. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Mir, I.R.; Rather, B.A.; Masood, A.; Majid, A.; Sehar, Z.; Anjum, N.A.; Sofo, A.; D’Ippolito, I.; Khan, N.A. Soil Sulfur Sources Differentially Enhance Cadmium Tolerance in Indian Mustard (Brassica juncea L.). Soil Syst. 2021, 5, 29. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
- Nolan, K.R. Copper toxicity syndrome. J. Orthomol. Psychiatry 1983, 12, 270–282. [Google Scholar]
- Di Toppi, L.S.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol. Environ. Saf. 2014, 100, 53–60. [Google Scholar] [CrossRef]
- Chaney, R.L.; Malik, M.; Li, Y.M.; Brown, S.L.; Brewer, E.P.; Angle, J.S.; Baker, A.J. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 1997, 8, 279–284. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Richards, L. Diagnosis and improving of saline and alkaline soils. US, Salinity Laboratory Staff. Agric. Handb. 1954, 46, 290. [Google Scholar]
- Zia, M.H.; Meers, E.; Ghafoor, A.; Murtaza, G.; Sabir, M.; Zia-ur-Rehman, M.; Tack, F. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere 2010, 79, 652–658. [Google Scholar]
- APHA. Standard methods for the examination of water and wastewater. Water Environ. Fed. 2005, 21, 258–259. [Google Scholar]
- Yargholi, B. Investigation of the Firozabad Wastewater Quality-Quantity Variation for Agricultural Use; Final Report; Iranian Agricultural Engineering Research Institute: Tehran, Iran, 2007. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Abbas, F.; Ibrahim, M.; Qureshi, T.I.; Gul, M.; Mahmood, A. Human health risk assessment of heavy metals in raw milk of buffalo feeding at wastewater-irrigated agricultural farms in Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 29567–29579. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Song, X.; Han, Y.; Liang, Z. Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. Int. J. Electrochem. Sci. 2011, 6, 5314–5324. [Google Scholar]
- Ng, C.C.; Rahman, M.M.; Boyce, A.N.; Abas, M.R. Heavy metals phyto-assessment in commonly grown vegetables: Water spinach (I. aquatica) and okra (A. esculentus). SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strack, M.; Munir, T.M.; Khadka, B. Shrub abundance contributes to shifts in dissolved organic carbon concentration and chemistry in a continental bog exposed to drainage and warming. Ecohydrology 2019, 12, e2100. [Google Scholar] [CrossRef]
Study Site | Soil Texture/Water | Chemistry | Heavy Metal Concentration (mg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil/Water | ECs/ECiw (dSm−1) | pHs/pHiw | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb | |
Khan village | |||||||||||
Soil | Sandy loam | 1.4 | 8.3 | 1.80 | 0.94 | 6.80 | 2.90 | 0.66 | 1.10 | 0.42 | 1.40 |
Water | Normal | 0.3 | 7.2 | 0.03 | 0.04 | 0.03 | 0.06 | 0.02 | - | - | 0.02 |
Vehari road | |||||||||||
Soil | Clay loam | 1.5 | 8.4 | 1.66 | 1.28 | 9.64 | 3.68 | 1.40 | 1.62 | 0.46 | 1.74 |
Water | Normal | 0.3 | 7.1 | 0.04 | 0.03 | 0.09 | 0.02 | 0.02 | 0.02 | - | - |
Shujabad road | |||||||||||
Soil | Sandy loam | 3.1 | 8.4 | 2.48 | 1.70 | 12.60 | 3.38 | 4.30 | 2.60 | 1.04 | 2.66 |
Water | Sewage | 2.8 | 6.9 | 0.06 | 0.14 | 0.31 | 0.11 | 0.04 | 0.09 | 0.06 | 0.06 |
Industrial estate | |||||||||||
Soil | Clay loam | 3.9 | 8.4 | 3.90 | 2.58 | 17.34 | 4.04 | 4.76 | 4.36 | 1.72 | 3.38 |
Water | Sewage | 3.6 | 6.8 | 0.10 | 0.11 | 0.34 | 0.19 | 0.06 | 0.08 | 0.09 | 0.11 |
Suraj miani | |||||||||||
Soil | Sandy loam | 2.7 | 8.3 | 2.12 | 2.04 | 11.66 | 3.36 | 2.28 | 3.98 | 1.34 | 2.60 |
Water | Normal + Sewage | 2.0 | 7.1 | 0.05 | 0.04 | 0.18 | 0.16 | 0.04 | 0.02 | 0.05 | 0.08 |
Sameeja abad | |||||||||||
Soil | Clay loam | 3.5 | 8.2 | 1.82 | 0.48 | 7.52 | 2.30 | 1.94 | 1.72 | 0.46 | 1.28 |
Water | Normal + Sewage | 2.1 | 7.1 | 0.40 | 0.08 | 0.07 | 0.14 | 0.07 | 0.40 | 0.07 | 0.05 |
UNESCAP * | -- | 6.1 | 5.00 | 1.00 | 2.00 | 1.50 | 0.10 | 1.00 | 1.00 | 0.50 | |
Pescod, MD ** | -- | 2.00 | 0.20 | 5.00 | 0.20 | 0.01 | 0.01 | 0.20 | 5.00 |
Site/Vegetable | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb |
---|---|---|---|---|---|---|---|---|
Khan Village | ||||||||
Brinjal | 8.6 ± 3.9 | 9.8 ± 0.6 | 13.3 ± 0.9 | 8.4 ± 0.5 | 7.8 ± 0.4 | 5.9 ± 5.8 | 6.0 ± 0.1 | 2.8 ± 0.2 |
Cauliflower | 11.4 ± 1.7 | 11.8 ± 0.6 | 6.2 ± 0.9 | 8.2 ± 3.5 | 7.0 ± 5.3 | 9.5 ± 10.0 | 9.3 ± 0.5 | 9.2 ± 7.5 |
Lettuce | 6.5 ± 3.8 | 3.2 ± 0.4 | 12.1 ± 0.3 | 7.2 ± 3.2 | 14.7 ± 0.4 | 9.0 ± 10.0 | 7.5 ± 1.0 | 4.6 ± 0.3 |
Spinach | 19.0 ± 1.6 | 11.0 ± 0.1 | 11.7 ± 8.5 | 15.9 ± 1.0 | 15.1 ± 0.6 | 10.0 ± 8.8 | 15.0 ± 0.0 | 9.0 ± 0.1 |
Vehari road | ||||||||
Brinjal | 11.2 ± 2.6 | 4.8 ± 0.7 | 8.1 ± 0.9 | 8.0 ± 0.0 | 3.3 ± 1.2 | 1.2 ± 0.5 | 8.0 ± 0.1 | 1.9 ± 0.2 |
Cauliflower | 13.4 ± 4.6 | 10.5 ± 0.7 | 8.5 ± 0.6 | 11.5 ± 0.5 | 1.5 ± 0.6 | 4.6 ± 1.3 | 5.9 ± 0.7 | 3.6 ± 0.5 |
Lettuce | 12.9 ± 6.8 | 3.1 ± 0.4 | 10.6 ± 0.5 | 3.7 ± 0.5 | 4.7 ± 0.5 | 0.9 ± 0.0 | 4.8 ± 0.5 | 2.1 ± 0.2 |
Spinach | 19.2 ± 2.2 | 12.0 ± 0.1 | 14.6 ± 0.5 | 13.1 ± 0.1 | 7.9 ± 0.0 | 2.6 ± 0.5 | 7.1 ± 0.3 | 5.0 ± 0.2 |
Shujabad road | ||||||||
Brinjal | 7.1 ± 1.4 | 5.0 ± 0.2 | 7.7 ± 0.5 | 12.0 ± 4.2 | 0.9 ± 0.0 | 2.2 ± 1.3 | 6.7 ± 0.5 | 0.9 ± 0.1 |
Cauliflower | 19.0 ± 0.8 | 8.6 ± 0.8 | 4.8 ± 1.7 | 6.1 ± 0.9 | 0.9 ± 0.1 | 7.0 ± 4.8 | 6.0 ± 0.1 | 3.3 ± 3.1 |
Lettuce | 6.4 ± 1.2 | 1.5 ± 0.6 | 7.5 ± 0.5 | 7.1 ± 3.2 | 1.9 ± 0.2 | 1.5 ± 1.0 | 4.0 ± 0.1 | 1.3 ± 0.5 |
Spinach | 20.1 ± 5.5 | 6.3 ± 0.5 | 14.7 ± 6.9 | 21.5 ± 3.7 | 3.3 ± 0.5 | 9.9 ± 5.8 | 8.0 ± 0.1 | 4.6 ± 0.5 |
Industrial estate | ||||||||
Brinjal | 9.0 ± 0.1 | 4.5 ± 1.7 | 8.6 ± 0.5 | 13.3 ± 1.4 | 1.8 ± 0.3 | 1.0 ± 0.1 | 4.6 ± 0.5 | 2.6 ± 1.0 |
Cauliflower | 14.4 ± 0.5 | 6.5 ± 1.0 | 11.3 ± 3.3 | 22.3 ± 2.5 | 1.1 ± 0.3 | 2.4 ± 1.0 | 8.8 ± 0.2 | 4.9 ± 2.1 |
Lettuce | 6.1 ± 0.4 | 3.0 ± 2.1 | 7.6 ± 0.5 | 8.21 ± 0.5 | 2.3 ± 0.5 | 0.9 ± 0.1 | 4.6 ± 0.5 | 2.7 ± 1.5 |
Spinach | 23.2 ± 5.2 | 6.0 ± 0.2 | 16.7 ± 1.5 | 39.2 ± 1.4 | 2.9 ± 0.2 | 9.9 ± 5.8 | 10.9 ± 0.0 | 8.1 ± 0.6 |
Soraj miani | ||||||||
Brinjal | 13.3 ± 0.5 | 3.2 ± 1.0 | 11.1 ± 1.6 | 13.0 ± 0.7 | 1.6 ± 0.5 | 0.9 ± 0.1 | 3.1 ± 0.2 | 1.3 ± 0.5 |
Cauliflower | 10.0 ± 0.1 | 5.8 ± 0.6 | 8.3 ± 0.9 | 14.9 ± 0.8 | 1.3 ± 0.5 | 2.5 ± 0.5 | 4.5 ± 0.7 | 12.2 ± 1.4 |
Lettuce | 11.8 ± 4.0 | 1.8 ± 0.6 | 8.7 ± 1.0 | 5.1 ± 0.6 | 2.0 ± 0.0 | 3.5 ± 5.7 | 2.2 ± 0.5 | 2.3 ± 0.8 |
Spinach | 17.8 ± 0.6 | 8.6 ± 0.8 | 13.8 ± 5.9 | 32.1 ± 0.6 | 2.7 ± 0.5 | 6.3 ± 4.4 | 8.0 ± 0.2 | 7.3 ± 0.5 |
Sameeja abad | ||||||||
Brinjal | 7.5 ± 1.8 | 18.7 ± 1.5 | 17.2 ± 3.8 | 10.7 ± 0.9 | 3.0 ± 0.1 | 2.0 ± 0.1 | 13.6 ± 0.5 | 3.1 ± 0.5 |
Cauliflower | 17.1 ± 1.1 | 19.3 ± 0.9 | 10.5 ± 5.3 | 31.8 ± 2.1 | 1.9 ± 0.0 | 3.9 ± 0.1 | 11.2 ± 1.0 | 15.1 ± 0.6 |
Lettuce | 9.8 ± 1.6 | 12.5 ± 1.7 | 11.0 ± 2.0 | 8.5 ± 0.6 | 2.3 ± 0.5 | 1.8 ± 0.2 | 9.7 ± 0.5 | 2.2 ± 0.5 |
Spinach | 21.8 ± 2.5 | 29.7 ± 0.5 | 30.7 ± 4.9 | 60.1 ± 0.2 | 4.5 ± 0.5 | 6.5 ± 5.0 | 5.9 ± 0.1 | 7.2 ± 0.5 |
Source | df | Zn | Cu | Fe | Mn | Cd | Cr | Ni | Pb |
---|---|---|---|---|---|---|---|---|---|
Site | |||||||||
F | 5, 96 | 2.69 | 93.99 | 6.13 | 66.17 | 168.86 | 3.07 | 243.52 | 20.86 |
p | 5, 96 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Vegetable | |||||||||
F | 5, 96 | 52.50 | 131.85 | 13.59 | 257.04 | 108.95 | 17.64 | 213.05 | 90.90 |
p | 5, 96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Site × Vegetable | |||||||||
F | 5, 96 | 3.31 | 4.20 | 2.59 | 13.13 | 4.30 | 0.88 | 68.92 | 4.55 |
p | 5, 96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 |
R2 | 5, 96 | 0.75 | 0.93 | 0.61 | 0.95 | 0.95 | 0.53 | 0.98 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Malik, S.A.; Saeed, S.; Rehman, A.-u.; Munir, T.M. Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Syst. 2021, 5, 35. https://doi.org/10.3390/soilsystems5020035
Ahmad I, Malik SA, Saeed S, Rehman A-u, Munir TM. Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Systems. 2021; 5(2):35. https://doi.org/10.3390/soilsystems5020035
Chicago/Turabian StyleAhmad, Iftikhar, Saeed Ahmad Malik, Shafqat Saeed, Atta-ur Rehman, and Tariq Muhammad Munir. 2021. "Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater" Soil Systems 5, no. 2: 35. https://doi.org/10.3390/soilsystems5020035
APA StyleAhmad, I., Malik, S. A., Saeed, S., Rehman, A. -u., & Munir, T. M. (2021). Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Systems, 5(2), 35. https://doi.org/10.3390/soilsystems5020035