Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of organic matter by weight loss-on-ignition. In Soil Organic Matter: Analysis and Interpretation; Special Publication No. 46; Magdoff, F.R., Tabatabai, M.A., Hanlon, E.A., Jr., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 21–31. [Google Scholar]
- Viscarra Rossel, R.V.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.; Lobsey, C. Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2011; Volume 113, pp. 243–291. [Google Scholar]
- Adamchuk, V.; Ji, W.; Viscarra Rossel, R.V.; Gebbers, R.; Tremblay, N.; Shannon, D.; Clay, D.; Kitchen, N. Proximal Soil and Plant Sensing. In ASA, CSSA, and SSSA Books; Wiley: Hoboken, NJ, USA, 2018; pp. 119–140. [Google Scholar]
- Coûteaux, M.-M.; Berg, B.; Rovira, P. Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biol. Biochem. 2003, 35, 1587–1600. [Google Scholar] [CrossRef]
- Viscarra, R.R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Disla, J.S.; Janik, L.J.; Viscarra Rossel, R.V.; Macdonald, L.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Dalal, R.; Henry, R. Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- McBratney, A.; Minasny, B.; Viscarra Rossel, R.V. Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma 2006, 136, 272–278. [Google Scholar] [CrossRef]
- Krishnan, P.; Alexander, J.D.; Butler, B.J.; Hummel, J.W. Reflectance Technique for Predicting Soil Organic Matter. Soil Sci. Soc. Am. J. 1980, 44, 1282–1285. [Google Scholar] [CrossRef]
- Morra, M.J.; Hall, M.H.; Freeborn, L.L. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spec-troscopy. Soil Sci. Soc. Am. J. 1991, 55, 288–291. [Google Scholar] [CrossRef]
- Henderson, T.L.; Baumgardner, M.F.; Franzmeier, D.P.; Stott, D.; Coster, D.C. High Dimensional Reflectance Analysis of Soil Organic Matter. Soil Sci. Soc. Am. J. 1992, 56, 865–872. [Google Scholar] [CrossRef]
- Sudduth, K.; Hummel, J.W. Portable, Near-infrared Spectrophotometer for Rapid Soil Analysis. Trans. ASAE 1993, 36, 185–193. [Google Scholar] [CrossRef]
- Sudduth, K.; Hummel, J.W. Soil Organic Matter, CEC, and Moisture Sensing with a Portable NIR Spectrophotometer. Trans. ASAE 1993, 36, 1571–1582. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near infrared reflectance spectroscopy-principal components regression analysis of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-W.; Laird, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 2002, 167, 110–116. [Google Scholar] [CrossRef]
- Martin, P.D.; Malley, D.F.; Manning, G.; Fuller, L. Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. Can. J. Soil Sci. 2002, 82, 413–422. [Google Scholar] [CrossRef]
- Shepherd, K.; Walsh, M. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Cozzolino, D.; Moron, A. The potential of near-infrared reflectance spectroscopy to analyze soil chemical and physical char-acteristics. J. Agric. Sci. 2003, 140, 65–71. [Google Scholar] [CrossRef]
- McBratney, A.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Malley, D.F.; Martin, P.D.; Ben-Dor, E. Application in Analysis of Soils. In Agronomy Monographs; Wiley: Hoboaken, NJ, USA, 2015; pp. 729–784. [Google Scholar]
- Christy, C. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Comput. Electron. Agric. 2008, 61, 10–19. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.V. The Soil Spectroscopy Group and the development of a global soil spectral library. NIR News 2009, 20, 14–15. [Google Scholar] [CrossRef]
- Stenberg, B. Effects of soil sample pre-treatment’s and standardized rewetting as interacted with sand classes on vis–NIR pre-dictions of clay and soil organic carbon. Geoderma 2010, 158, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.M.; Sudduth, K.A. Comparison of Two Spectrometers for Profile Soil Carbon Sensing; Paper No. 121338240; ASABE: St. Joseph, MI, USA, 2012. [Google Scholar]
- St. Luce, M.; Ziadi, N.; Nyiraneza, J.; Tremblay, G.; Zebarthc, B.; Whalen, J.; Laterrière, M. Near infrared reflectance spectroscopy prediction of soil nitrogen supply in humid temperate regions of Canada. Soil Sci. Soc. Am. J. 2012, 76, 1454–1461. [Google Scholar] [CrossRef]
- Kodaira, M.; Shibusawa, K. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma 2013, 199, 64–79. [Google Scholar] [CrossRef]
- Piikki, K.; Wetterlind, J.; Söderström, M.; Stenberg, B. Three-dimensional digital soil mapping of agricultural fields by integration of multiple proximal sensor data obtained from different sensing methods. Precis. Agric. 2014, 16, 29–45. [Google Scholar] [CrossRef]
- Dhawale, N.; Adamchuk, V.I.; Prasher, S.O.; Viscarra Rossel, R.V.; Ismail, A.A.; Kaur, J. Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer. Eur. J. Soil Sci. 2015, 66, 661–669. [Google Scholar] [CrossRef]
- Forrester, S.T.; Janik, L.J.; Disla, J.S.; Mason, S.; Burkitt, L.; Moody, P.; Gourley, C.J.P.; McLaughlin, M.J. Use of handheld mid-infrared spectroscopy and partial least-squares regression for the prediction of the phosphorus buffering index in Australian soils. Soil Res. 2015, 53, 67–80. [Google Scholar] [CrossRef]
- Ji, W.; Adamchuk, V.I.; Biswas, A.; Dhawale, N.; Sudarsan, B.; Zhang, Y.; Viscarra Rossel, R.V.; Shi, Z. Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields. Biosyst. Eng. 2016, 152, 14–27. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Ma, W.; Ji, W.; Xu, D.; Shi, Z.; Zhang, G. Rapid determination of soil classes in soil profiles using vis–NIR spectroscopy and multiple objectives mixed support vector classification. Eur. J. Soil Sci. 2019, 70, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Knadel, M.; de Jonge, L.W.; Tuller, M.; Rehman, H.U.; Jensen, P.W.; Moldrup, P.; Greve, M.H.; Arthur, E. Combining visible near-infrared spectroscopy and water vapor sorption for soil specific surface area estimation. Vadose Zone J. 2020, 19, 20007. [Google Scholar] [CrossRef] [Green Version]
- Dhawale, N.M.; Adamchuk, V.; Viscarra, R.; Prasher, S.; Whalen, J.K.; Ismail, A. Predicting Extractable Soil Phosphorus Using Visible/Near-Infrared Hyperspectral. Soil Reflectance Measurements; Paper No. CSBE13-047; The Canadian Society for Bioengineering: Renfrew, ON, Canada, 2013. [Google Scholar]
- Wetterlind, J.; Piikki, K.; Stenberg, B.; Söderström, M. Exploring the predictability of soil texture and organic matter content with a commercial integrated soil profiling tool. Eur. J. Soil Sci. 2015, 66, 631–638. [Google Scholar] [CrossRef]
- Piikki, K.; Söderström, M. Digital soil mapping of arable land in Sweden—Validation of performance at multiple scales. Geoderma 2019, 352, 342–350. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed vis–NIR soil spectra and their calibrations. Eur. J. Soil Sci. 2015, 66, 555–565. [Google Scholar] [CrossRef]
- Goldshleger, N.; Chudnovsky, A.; Ben-Dor, E. Using Reflectance Spectroscopy and Artificial Neural Network to Assess Water Infiltration Rate into the Soil Profile. Appl. Environ. Soil Sci. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Viscarra Rossel, R.A. Automated spectroscopic modelling with optimised convolutional neural networks. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebesohn, J.; Bill, R.; Mouazen, A. Machine Learning based Prediction of Soil Total Nitrogen, Organic Carbon and Moisture Content by Using vis–NIR Spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Milton, E.J. Principles of field spectrometry. Int. J. Remote. Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Deering, D.W. Field measurements of bidirectional reflectance. In Theory and Applications of Optical Remote Sensing; Asrar, G., Ed.; Wiley: New York, NY, USA, 1989; pp. 14–61. [Google Scholar]
- Rollin, E.M.; Milton, E.J.; Emery, D.R. Reference panel anisotropy and diffuse radiation—Some implications for field spectroscopy. Int. J. Remote Sens. 2000, 21, 2799–2810. [Google Scholar] [CrossRef]
- Leite, V.D.J.; de Oliveira, E.C.; Aucélio, R.Q. Impact of the sampling process on the measurement uncertainty, a case study: Physicochemical parameters in diesel. Accredit. Qual. Assur. 2021, 26, 1–9. [Google Scholar] [CrossRef]
- Chodak, M.; Ludwig, B.; Khanna, P.; Beese, F. Use of near infrared spectroscopy to determine biological and chemical char-acteristics of organic layers under spruce and beech stands. J. Plant Nutr. Soil Sci. 2002, 165, 27–33. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Madari, B.E.; Reeves, J.B., III; Machado, P.L.O.A.; Guimaraes, C.M.; Torres, E.; McCarty, G.W. Mid and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols. Geoderma 2006, 136, 245–249. [Google Scholar] [CrossRef]
- Nduwamungu, C.; Ziadi, N.; Parent, L.-É.; Tremblay, G.F.; Thuriès, L. Opportunities for, and limitations of, near infrared reflectance spectroscopy applications in soil analysis: A review. Can. J. Soil Sci. 2009, 89, 531–541. [Google Scholar] [CrossRef]
- Holman, J.P. Experimental Methods for Engineers, 7th ed.; McGraw Hill: New York, NY, USA, 2001. [Google Scholar]
- Milton, E.J.; Rollin, E.M.; Emery, D.R. Advances in field spectroscopy. In Advances in Environmental Remote Sensing; Danson, F.M., Plummer, S.E., Eds.; Wiley: Oxford, UK, 1995. [Google Scholar]
- De Bièvre, P. The 2012 International Vocabulary of Metrology: "VIM". Accredit. Qual. Assur. 2012, 17, 231–232. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Webster, R. Predicting soil properties from the Australian soil visible–near infrared spectroscopic database. Eur. J. Soil Sci. 2012, 63, 848–860. [Google Scholar] [CrossRef]
- Drongelen, W.V. Signal Averaging. In Signal Processing for Neuroscientists; Drongelen, W.V., Ed.; Academic Press: Cambridge, MA, USA, 2007; pp. 55–70. [Google Scholar]
- Soil Survey Division Staff. Soil Survey Manual; USDA-NRCS; US Government Print Off: Washington, DC, USA, 1993; pp. 63–65.
- Viscarra Rossel, R.A. ParLeS: Software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 2008, 90, 72–83. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Morgan, M.T.; Brouder, S.M. Development of an On-the-go Soil pH Mapping Method: Analysis of Meas-urement Variability. Appl. Eng. Agric. 2006, 22, 223–344. [Google Scholar] [CrossRef]
- Dhawale, N.M.; Adamchuk, V.I.; Prasher, S.O.; Viscarra, R.R.A.; Ismail, A.A. Analysis of the repeatability of soil spectral data obtained using different measurement techniques. In Proceedings of the 3rd Global Workshop on Proximal Soil Sensing, Potsdam, Germany, 26–29 May 2013; Gebbers, R., Ed.; ATB Leibniz-Institut fur Agratechnik Potsdam-Bornim: Potsdam, Germany, 2013; pp. 161–165. [Google Scholar]
- Li, X.; Ren, J.; Zhao, K.; Liang, Z. Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States. Remote Sens. 2019, 11, 388. [Google Scholar] [CrossRef] [Green Version]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- De Jong, S.; Kiers, H. Principal covariates regression. J. Chemom. Intell. Lab. Syst. 1992, 14, 155–164. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Martens, H.; Næs, T. Multivariate Calibration; Springer: Berlin/Heidelberg, Germany, 1984; pp. 147–156. [Google Scholar]
- Miller, R.O. A western evaluation of soil testing laboratory performance. Better Crops 2006, 90, 26–29. [Google Scholar]
- Vayssade, J.-A.; Paoli, J.-N.; Gée, C.; Jones, G. DeepIndices: Remote Sensing Indices Based on Approximation of Functions through Deep-Learning, Application to Uncalibrated Vegetation Images. Remote Sens. 2021, 13, 2261. [Google Scholar] [CrossRef]
Statistics | % Sand | % Clay | % SOM |
---|---|---|---|
Min | 26 | 2 | 3.9 |
Median | 56 | 9 | 5.8 |
Max | 93 | 33 | 25.6 |
Mean | 56 | 13 | 7.2 |
SD | 18 | 9 | 4.8 |
Test | Transformed Factors | Min | Median | Mean | Max |
---|---|---|---|---|---|
Ex situ | Raw | 1.69 | 1.76 | 1.81 | 2.18 |
Smooth | 1.62 | 3.04 | 3.37 | 8.71 | |
1st SGD | 0.47 | 1.91 | 2.49 | 6.93 | |
2nd SGD | 0.32 | 0.86 | 1.32 | 10.56 | |
In situ | Raw | 1.24 | 1.53 | 1.51 | 1.67 |
Smooth | 1.38 | 2.23 | 2.35 | 4.30 | |
1st SGD | 0.89 | 2.14 | 2.33 | 5.34 | |
2nd SGD | 0.52 | 1.59 | 1.70 | 3.88 |
Soil Property | Test | Raw | Smooth | 1st SGD a | 2nd SGD b |
---|---|---|---|---|---|
% sand | Ex situ | - | - | 1932, 1936, 1940 | 1413 |
In situ | - | - | 1447, 1452, 1940, 1944 | 1457, 1462, 1466, 1923 | |
% clay | Ex situ | - | - | 1936, 1940, 1944, 1948 | 1433, 1915, 1919, 1923 |
In situ | - | - | 1931, 1936, 1940, 1944 | 1919, 1923 | |
% SOM | Ex situ | 733, 786 | 712, 744 | 2114, 2117, 2121, 2148 | - |
In situ | - | 749, 770 | - | 602, 1738, 1742, 2159, 2182 |
Soil Property | Test | Raw | Smooth | 1st SGD a | 2nd SGD b |
---|---|---|---|---|---|
% sand | Ex situ | - | - | 1931 c, 1936 c, 1940, 1944 | 1413 c |
In situ | - | - | 1452, 1457, 1931,1936, 1940, 1944 | 1462 c, 1923 | |
% clay | Ex situ | - | - | 1940, 1944, 1948 | 1915, 1919, 1923 |
In situ | - | - | 1931, 1936, 1940 c, 1944c | 1923 | |
% SOM | Ex situ | 674 c, 679, 685 | 551, 556 c, 562, 568, 585 | - | |
In situ | - | 421, 722, 728 | 421, 585, 590, 1747 c, 1751 | 1605, 1543 |
Soil Property | Spectra | Model | Wavelengths, nm | RSE a | R2 | MP b | SEP c |
---|---|---|---|---|---|---|---|
% sand | 2nd SGD d | PLSR f | - | - | - | 2.96 | 3.78 |
1st SGD e | SLR g | 1931 | 4.26 | 0.59 | 3.22 | 11.31 | |
1st SGD | SLR | 1936 | 4.77 | 0.58 | 2.87 | 11.40 | |
2nd SGD | SLR | 1413 | 3.58 | 0.56 | 3.70 | 11.74 | |
1st SGD | SLR | 1940 | 5.06 | 0.56 | 2.65 | 11.75 | |
1st SGD | SLR | 1944 | 5.57 | 0.50 | 2.29 | 12.46 | |
% clay | 1st SGD | PLSR | - | - | - | 0.63 | 0.73 |
1st SGD | SLR | 1944 | 5.57 | 0.87 | 1.59 | 3.33 | |
1st SGD | SLR | 1940 | 5.06 | 0.87 | 1.74 | 3.35 | |
2nd SGD | SLR | 1920 | 9.06 | 0.86 | 0.98 | 3.55 | |
2nd SGD | SLR | 1924 | 10.38 | 0.85 | 0.85 | 3.61 | |
2nd SGD | SLR | 1915 | 8.07 | 0.83 | 1.08 | 3.86 | |
% SOM | 2nd SGD | PLSR | - | - | - | 0.99 | 1.09 |
1st SGD | SLR | 557 | 4.24 | 0.36 | 0.67 | 3.78 | |
1st SGD | SLR | 551 | 4.86 | 0.35 | 0.59 | 3.79 | |
1st SGD | SLR | 585 | 4.26 | 0.34 | 0.65 | 3.84 | |
1st SGD | SLR | 563 | 4.46 | 0.33 | 0.62 | 3.86 | |
Smooth | SLR | 685 | 6.70 | 0.31 | 0.40 | 3.92 | |
1st SGD | SLR | 568 | 4.89 | 0.31 | 0.54 | 3.93 | |
1st SGD | SLR | 680 | 7.35 | 0.30 | 0.36 | 3.95 | |
Smooth | SLR | 674 | 7.67 | 0.29 | 0.34 | 3.99 |
Soil Property | Spectra | Model | Wavelengths, nm | RSE a | R2 | MP b | SEP c |
---|---|---|---|---|---|---|---|
% sand | Raw | PLSR f | - | - | - | 2.64 | 4.09 |
2nd SGD d | SLR g | 1462 | 1.90 | 0.49 | 4.25 | 10.86 | |
1st SGD e | SLR | 1452 | 3.75 | 0.40 | 3.93 | 11.67 | |
1st SGD | SLR | 1944 | 2.34 | 0.50 | 3.96 | 11.83 | |
2nd SGD | SLR | 1924 | 2.17 | 0.39 | 3.35 | 12.06 | |
1st SGD | SLR | 1940 | 2.74 | 0.56 | 3.54 | 12.13 | |
1st SGD | SLR | 1936 | 3.30 | 0.58 | 3.31 | 12.33 | |
1st SGD | SLR | 1457 | 4.31 | 0.36 | 3.50 | 12.35 | |
% clay | 1st SGD | PLSR | - | - | - | 1.28 | 1.73 |
1st SGD | SLR | 1940 | 2.74 | 0.87 | 2.41 | 3.17 | |
1st SGD | SLR | 1936 | 3.30 | 0.85 | 2.28 | 3.38 | |
1st SGD | SLR | 1944 | 2.34 | 0.87 | 2.58 | 3.75 | |
1st SGD | SLR | 1932 | 3.64 | 0.78 | 2.32 | 4.28 | |
2nd SGD | SLR | 1924 | 2.17 | 0.85 | 2.12 | 4.46 | |
% SOM | 1st SGD | PLSR | - | - | - | 1.31 | 2.05 |
1st SGD | SLR | 1747 | 3.07 | 0.00 | 0.86 | 3.46 | |
2nd SGD | SLR | 1605 | 1.67 | 0.01 | 0.96 | 3.57 | |
1st SGD | SLR | 1752 | 2.67 | 0.00 | 0.85 | 3.59 | |
1st SGD | SLR | 1544 | 1.39 | 0.00 | 0.96 | 3.59 | |
Smooth | SLR | 422 | 2.77 | 0.28 | 0.74 | 3.76 | |
Smooth | SLR | 728 | 3.87 | 0.33 | 0.72 | 3.78 | |
Smooth | SLR | 723 | 3.97 | 0.34 | 0.69 | 3.82 | |
1st SGD | SLR | 591 | 4.60 | 0.00 | 0.48 | 3.98 | |
1st SGD | SLR | 422 | 2.80 | 0.00 | 0.51 | 3.99 | |
1st SGD | SLR | 585 | 5.07 | 0.00 | 0.52 | 3.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhawale, N.M.; Adamchuk, V.I.; Prasher, S.O.; Viscarra Rossel, R.A. Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture. Soil Syst. 2021, 5, 48. https://doi.org/10.3390/soilsystems5030048
Dhawale NM, Adamchuk VI, Prasher SO, Viscarra Rossel RA. Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture. Soil Systems. 2021; 5(3):48. https://doi.org/10.3390/soilsystems5030048
Chicago/Turabian StyleDhawale, Nandkishor M., Viacheslav I. Adamchuk, Shiv O. Prasher, and Raphael A. Viscarra Rossel. 2021. "Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture" Soil Systems 5, no. 3: 48. https://doi.org/10.3390/soilsystems5030048
APA StyleDhawale, N. M., Adamchuk, V. I., Prasher, S. O., & Viscarra Rossel, R. A. (2021). Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture. Soil Systems, 5(3), 48. https://doi.org/10.3390/soilsystems5030048