Modelling Salinity and Sodicity Risks of Long-Term Use of Recycled Water for Irrigation of Horticultural Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Modelling Scenarios
2.3. Model Description
2.4. Model Input Parameters
2.4.1. Soil Hydraulic Characteristics
2.4.2. Solute Transport Properties for UNSATCHEM
2.4.3. Root Water Uptake Parameters
2.4.4. Estimation of Potential Evaporation (Es) and Potential Transpiration (Tp)
2.5. Modelling Domain, Initial and Boundary Conditions
2.6. Model Calibration
3. Results and Discussion
3.1. Management Options in the Calcareous Soil
3.1.1. Changes in Soil pH in the Calcareous Soil
3.1.2. Salinity Distribution in the Calcareous Soil
3.1.3. Dynamics of the Sodium Adsorption Ratio (SAR) in the Calcareous Soil
3.1.4. Exchangeable Sodium Percentage (ESP) in the Calcareous Soil
3.1.5. Role of Leaching on Salinity Control
3.2. Management Options in the Hard Red-Brown (HRB) Soil
3.2.1. Changes in Soil pH
3.2.2. Salinity Distribution in the Soil
3.2.3. Dynamics of the Sodium Adsorption Ratio (SAR) in the HRB Soil
3.2.4. Exchangeable Sodium Percentage (ESP) in the HRB Soil
3.2.5. Role of Leaching for Salinity Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Soil Depth (cm) | θr | θs | α | n | Ks | L |
---|---|---|---|---|---|---|
(cm3 cm−3) | (cm3 cm−3) | (cm−1) | (-) | (cm day−1) | (-) | |
Soil Group 1: Calcareous soils (Cal) | ||||||
0–15 | 0.078 | 0.48 | 0.035 | 1.239 | 207.36 | 0.5 |
15–30 | 0.096 | 0.482 | 0.085 | 1.208 | 181.44 | 0.5 |
30–60 | 0.0758 | 0.485 | 0.2781 | 1.1639 | 146.00 | 0.5 |
60–100 | 0.0001 | 0.481 | 0.2305 | 1.1382 | 267.79 | 0.5 |
100–200 | 0.0735 | 0.4087 | 0.0242 | 1.298 | 22.91 | 0.5 |
Soil Group 2: Hard red-brown soils (HRB) | ||||||
0–15 | 0.073 | 0.469 | 0.025 | 1.217 | 50.11 | 0.5 |
15–30 | 0.101 | 0.446 | 0.059 | 1.187 | 40.61 | 0.5 |
30–60 | 0.109 | 0.465 | 0.282 | 1.133 | 13.98 | 0.5 |
60–100 | 0.1365 | 0.4588 | 0.0891 | 1.1216 | 13.33 | 0.5 |
100–200 | 0.0807 | 0.4112 | 0.0255 | 1.2196 | 12.82 | 0.5 |
Soil Type | Exchangeable Cation Concentration (meq/kg) | Gapon Coefficients | |||||
---|---|---|---|---|---|---|---|
Ca-X | Mg-X | Na-X | K-X | KCa/Na | KCa/K | KMg/Ca | |
Cal | 51.87 | 35.32 | 13.71 | 7.74 | 0.038 | 0.957 | 0.009 |
HRB | 53.17 | 60.61 | 36.93 | 15.32 | 0.033 | 0.753 | 0.065 |
Soil solution composition (meq/L) | |||||||
Ca2+ | Mg2+ | Na+ | K+ | Alk | Cl− | SO42− | |
Cal | 3.82 | 2.31 | 9.91 | 0.05 | 3.22 | 0.5 | 11.3 |
HRB | 2.94 | 3.58 | 14.81 | 0.58 | 3.78 | 2.28 | 15.34 |
References
- Qadir, M.; Wichelns, D.; Sally, L.R.; McCornick, P.G.; Drechsel, P.; Bahri, A.; Minhas, P.S. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Mavi, M.S.; Marschner, P.; Chittleborough, D.J.; Cox, J.W.; Sanderman, J. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol. Biochem. 2012, 45, 8–13. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Blackwell, J.; Carr, G.; Zhang, F.; Jackson, T.M. Wastewater irrigation and environmental health: Implications for water governance and public policy. Int. J. Hyg. Environ. Health 2012, 215, 255–269. [Google Scholar] [CrossRef]
- Hassena, A.B.; Zouari, M.; Trabelsi, L.; Khabou, W.; Zouari, N. Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short-term irrigation with treated wastewater. Agric. Water Manag. 2018, 207, 53–58. [Google Scholar] [CrossRef]
- Singh, P.K.; Deshbhratar, P.B.; Ramteke, D.S. Effects of sewage waste water irrigation on soil properties, crop yield and environment. Agric. Water Manag. 2012, 103, 100–104. [Google Scholar] [CrossRef]
- Lal, K.; Minhas, P.S.; Yadav, R.K. Long-term impact of wastewater irrigation and nutrient rates II. Nutrient balance, nitrate leaching and soil properties under peri-urban cropping systems. Agric. Water Manag. 2015, 156, 110–117. [Google Scholar] [CrossRef]
- Minhas, P.S.; Lal, K.; Yadav, R.K.; Dubey, S.K.; Chaturvedi, R.K. Impacts of long-term irrigation with domestic sewage and nutrient rates I. Performance, sustainability and produce quality of peri-urban cropping systems. Agric. Water Manag. 2015, 156, 100–109. [Google Scholar] [CrossRef]
- Elfanssi, S.; Ouazzani, N.; Mandi, L. Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agric. Water Manag. 2018, 202, 231–240. [Google Scholar] [CrossRef]
- Minhas, P.S. Sustainable management of brackish water agriculture. In Advances in Soil Science: Soil Water and Agronomic Productivity; Lal, R., Stewart, B.A., Eds.; CRC Press: London, UK, 2012; pp. 289–323. [Google Scholar]
- Mallants, D.; Phogat, V.; Oliver, D.; Ouzman, J.; Beirgadhar, Y.; Cox, J. Sustainable Expansion of Irrigated Agriculture and Horticulture in Northern Adelaide Corridor: Task 2; Technical Report Series No. 19/15; Goyder Institute for Water Research: Adelaide, Australia, 2019. [Google Scholar]
- Phogat, V.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Pitt, T.; Petrie, P.R. Impact of long-term recycled water irrigation on crop yield and soil chemical properties. Agric. Water Manag. 2020, 237, 106167. [Google Scholar] [CrossRef]
- Phogat, V.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Awad, J. Management of soil chemical changes associated with irrigation of protected crops. Agric. Water Manag. 2020, 227, 105845. [Google Scholar] [CrossRef]
- Oster, J.; Sposito, G.; Smith, C.J. Accounting for potassium and magnesium in irrigation water quality assessment. Calif. Agric. 2016, 70, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Rengasamy, P.; Marchuk, A. Cation ratio of soil structural stability (CROSS). Soil Res. 2011, 49, 280–285. [Google Scholar] [CrossRef]
- Laurenson, S.; Bolan, N.S.; Smith, E.; McCarthy, M. Review: Use of recycled wastewater for irrigating grapevines. Aust. J. Grape Wine Res. 2012, 18, 1–10. [Google Scholar] [CrossRef]
- Smith, C.; Oster, J.D.; Sposito, G. Potassium and magnesium in irrigation water quality assessment. Agric. Water Manag. 2015, 157, 59–64. [Google Scholar] [CrossRef]
- Bennett, J.M.L.; Marchuk, A.; Marchuk, S. An alternative index to the exchangeable sodium percentage for an explanation of dispersion occurring in soils. Soil Res. 2016, 54, 949–957. [Google Scholar] [CrossRef]
- Zhu, Y.; Ali, A.; Dang, A.; Wandel, A.P.; Bennett, J.; Mc, L. Re-examining the flocculating power of sodium, potassium, magnesium and calcium for a broad range of soils. Geoderma 2019, 352, 422–428. [Google Scholar] [CrossRef]
- Liang, X.; Rengasamy, P.; Smernik, R.; Mosley, L.M. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability? Agric. Water Manag. 2021, 243, 106422. [Google Scholar] [CrossRef]
- Rengasamy, P.; Sumner, M.E. Processes involved in sodic behavior. In Sodic Soil: Distribution, Management and Environmental Consequences; Sumner, M.E., Naidu, R., Eds.; Oxford University Press: New York, NY, USA, 1998; pp. 35–50. [Google Scholar]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant salt tolerance in agricultural salinity assessment and management. In ASCE Manuals and Reports on Engineering Practice No. 71, 2nd ed.; Wallender, W.W., Tanji, K.K., Eds.; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2012; pp. 405–459. [Google Scholar]
- Grattan, S.R.; Díaz, F.J.; Pedrero, F.; Vivaldi, G.A. Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions. Agric. Water Manag. 2015, 157, 48–58. [Google Scholar] [CrossRef]
- Rengasamy, P.; Olsson, K.A. Irrigation and sodicity. Aust. J. Soil Res. 1993, 31, 821–837. [Google Scholar] [CrossRef]
- Assouline, S.; Narkis, K. Effects of long-term irrigation with treated wastewater on the root zone environment. Vadose Zone J. 2013, 12, 1–10. [Google Scholar] [CrossRef]
- Stevens, D.P.; McLaughlin, M.J.; Smart, M.K. Effects of long-term irrigation with reclaimed water on soils of the Northern Adelaide Plains, South Australia. Aust. J. Soil Res. 2003, 41, 933–948. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, G. Leaching fraction and root zone salinity control. In Agricultural Salinity Assessment; Tanji, K., Ed.; American Society Civil Engineers: New York, NY, USA, 1990; pp. 237–261. [Google Scholar]
- Oster, J. Irrigation with poor quality water. Agric. Water Manag. 1994, 25, 271–297. [Google Scholar] [CrossRef]
- Paudel, I.; Cohen, S.; Shlizerman, L.; Jaiswal, A.K.; Shaviv, A.; Sadka, A. Reductions in root hydraulic conductivity in response to clay soil and treated waste water are related to PIPs down-regulation in Citrus. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Paudel, I.; Bar-Tal, A.; Levy, G.J.; Rotbart, N.; Ephrath, J.E.; Cohen, S. Treated wastewater irrigation: Soil variables and grapefruit tree performance. Agric. Water Manag. 2018, 204, 126–137. [Google Scholar] [CrossRef]
- Hulugalle, N.R.; Weaver, T.B.; Ghadiri, H.; Hicks, A. Changes in soil properties of an eastern Australian vertisol irrigated with treated sewage effluent following gypsum application. Land Degrad. Dev. 2006, 17, 527–540. [Google Scholar] [CrossRef]
- Levy, G.J.; Fine, P.; Goldstein, D.; Azenkot, A.; Zilberman, A.; Chazan, A.; Grinhut, T. Long term irrigation with treated wastewater (TWW) and soil sodification. Biosyst. Eng. 2014, 128, 4–10. [Google Scholar] [CrossRef]
- Assouline, S.; Narkis, K.; Gherabli, R.; Sposito, G. Combined effect of sodicity and organic matter on soil properties under long-term irrigation with treated wastewater. Vadose Zone J. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- Qian, Y.; Lin, Y. Comparison of soil chemical properties prior to and five to eleven years after recycled water irrigation. J. Environ. Qual. 2019, 48, 1758–1765. [Google Scholar] [CrossRef] [Green Version]
- Naidu, R.; Merry, R.H.; Churchman, G.J.; Wright, M.J.; Murray, R.S.; Fitzpatrick, R.W.; Zarcinas, B.A. Sodicity in South Australia—A review. Aust. J. Soil Res. 1993, 31, 911–929. [Google Scholar] [CrossRef]
- Rengasamy, P. Clay dispersion. In Soil Physical Measurement and Interpretation for Land Evaluation; McKenzie, B.M., Coughlan, K., Cresswell, H., Eds.; CSIRO Publishing: Melbourne, Australia, 2002; pp. 200–210. [Google Scholar]
- Minhas, P.S.; Qadir, M.; Yadav, R.K. Groundwater irrigation induced soil sodification and response options. Agric. Water Manag. 2019, 215, 74–85. [Google Scholar] [CrossRef]
- Warrington, D.N.; Goldstein, D.; Levy, G.J. Clay translocation within the soil profile as affected by intensive irrigation with treated wastewater. Soil Sci. 2007, 172, 692–700. [Google Scholar] [CrossRef]
- Nemera, D.B.; Bar-Tal, A.; Levy, G.J.; Lukyanov, V.; Tarchitzky, J.; Paudel, I.; Cohen, S. Mitigating negative effects of long-term treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea americana Mill.). Agric. Water Manag. 2020, 237, 106178. [Google Scholar] [CrossRef]
- Minhas, P.S.; Dubey, S.K.; Sharma, D.R. Comparative effects of blending, intra/inter-seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat. Agric. Water Manag. 2007, 87, 83–90. [Google Scholar] [CrossRef]
- Grattan, S.R.; Rhoades, J.D. Irrigation with saline groundwater and drainage water. In Agricultural Salinity Assessment and Management; Tanji, K.K., Ed.; American Society of Civil Engineers: New York, NY, USA, 1990; pp. 432–449. [Google Scholar]
- Stevens, R.; Harvey, G.; Partlington, D.; Coombe, B. Irrigation of grapevines with saline water at different growth stages I. effects on soil, vegetative growth, and yield. Aust. J. Agric. Res. 1999, 50, 343–355. [Google Scholar] [CrossRef]
- Stevens, R.; Walker, R. Response of grapevines to irrigation-induced saline-sodic conditions. Aust. J. Exp. Agric. 2002, 42, 323–331. [Google Scholar] [CrossRef]
- Maas, E.V. Salt tolerance of plants. In CRC Handbook of Plant Science in Agriculture; Christie, B.R., Ed.; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- George, M.; Pettygrove, G.; Davis, W. Crop selection and management. In Irrigation with Reclaimed Municipal Wastewater: A Guidance Manual; Pettygrove, G.S., Asano, T., Eds.; California State Water Resource Control Board: Sacramento, CA, USA, 1985. [Google Scholar]
- Sumner, M.E.; Radcliffe, D.E.; McCray, M.; Carter, E.; Clark, R.L. Gypsum as an ameliorant for subsoil hardpans. Soil Technol. 1990, 3, 253–258. [Google Scholar] [CrossRef]
- The Goyder Institute for Water Research. Northern Adelaide Plains Water Stocktake Technical Report; The Goyder Institute for Water Research: Adelaide, Australia, 2016. [Google Scholar]
- Department of Environment, Water and Natural Resources. Non-Prescribed Surface Water Resources Assessment—Adelaide and Mount Lofty Ranges Natural Resources Management Region; DEWNR Technical Report 2016/34; Department of Environment, Water and Natural Resources, Government of South Australia: Adelaide, Australia, 2016. [Google Scholar]
- Awad, J.; Vanderzalm, J.; Pezzaniti, D.; Olubukoa Esu, O.-O.; van Leeuwen, J. Sustainable Expansion of Irrigated Agriculture and Horticulture in Northern Adelaide Corridor: Source Water Options/Water Availability, Quality and Storage Consideration; Goyder Institute for Water Research Technical Report Series No. 19/16; Goyder Institute for Water Research: Adelaide, Australia, 2019. [Google Scholar]
- ANZECC; ARMCANZ. National Water Quality Management Strategy: Australian and New Zealand Guidelines for Fresh and Marine Water Quality; Australia and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand: Canberra, Australia, 2000; Volume 1, Chapters 1–7. [Google Scholar]
- Oliver, D.P.; Fruzangohar, M.; Johnston, C.; Ouzman, J.; Barry, K. Sustainable Expansion of Irrigated Agriculture and Horticulture in Northern Adelaide Corridor. Task 1: Development and Optimisation of Modelling Domain and Impact Assessment of Irrigation Expansion on the Receiving Environment; Technical Report Series No. 19/14; Goyder Institute for Water Research: Adelaide, Australia, 2019. [Google Scholar]
- Hall, J.A.S.; Maschmedt, D.J.; Biling, N.B. The Soil of Southern South Australia; The South Australian Land and Soil Book Series; Geological Survey of South Australia, Department of Water, Land and Biodiversity Conservation, Government of South Australia: Adelaide, Australia, 2009; Volume 1. [Google Scholar]
- Youngs, E.G. Hydraulic conductivity of saturated soils. In Soil and Environmental Analysis: Physical Methods, 2nd ed.; Smith, K.A., Mullins, C.E., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 141–181. [Google Scholar]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Assouline, S.; Kamai, T.; Šimůnek, J.; Narkis, K.; Silber, A. Mitigating the impact of irrigation with effluent water: Mixing with freshwater and/or adjusting irrigation management and design. Water Resour. Res. 2020, 56, e2020WR027781. [Google Scholar] [CrossRef]
- Oster, J.D.; Frenkel, H. The chemistry of the reclamation of sodic soils with gypsum and lime. Soil Sci. Soc. Am. J. 1980, 44, 41–45. [Google Scholar] [CrossRef]
- Rengasamy, P.; Greene, R.S.B.; Ford, G.W.; Jordan, P.; Mehanni, A.H. Evaluation of the Gypsum Requirement of Red-Brown Earths; Research Project Series No. 192; Department of Agriculture: Victoria, Australia, 1984. [Google Scholar]
- Singh, H.; Bajwa, M.S. Comparison of different models for describing gypsum dissolution kinetics in different aqueous salt solutions. Aust. J. Soil Res. 1990, 28, 947–953. [Google Scholar] [CrossRef]
- Northcote, K.H.; Skene, J.K.M. Australian Soils with Saline and Sodic Properties; Soil Publication, No. 27; Commonwealth Scientific and Industrial Research Organisation: Melbourne, Australia, 1972. [Google Scholar]
- Kelly, J.; Rangasamy, P. Diagnosis and Management of Soil Constraints: Transient Salinity, Sodicity and Alkalinity; Grain Research and Development Corporation Final Report of Project No. UA00023; University of Adelaide: Adelaide, Australia, 2006. [Google Scholar]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.17; HYDRUS Software Series 3; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2013. [Google Scholar]
- Enemark, T.; Peeters, L.J.M.; Mallants, D.; Batelaan, O. Hydrogeological conceptual model building and testing: A review. J. Hydrol. 2019, 569, 310–329. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Suarez, D.L. Sodic soil reclamation using multicomponent transport modeling. J. Irrig. Drain. Eng. 1997, 123, 367–376. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; Simulation Monographs: Wageningen, The Netherlands, 1978. [Google Scholar]
- Phogat, V.; Mahadevan, M.; Skewes, M.; Cox, J.W. Modeling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design. Irrig. Sci. 2012, 30, 315–333. [Google Scholar] [CrossRef]
- Phogat, V.; Skewes, M.A.; Mahadevan, M.; Cox, J.W. Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions. Agric. Water Manag. 2013, 118, 1–11. [Google Scholar] [CrossRef]
- Phogat, V.; Skewes, M.A.; McCarthy, M.G.; Cox, J.W.; Šimůnek, J.; Petrie, P.R. Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip. Agric. Water Manag. 2017, 180, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Walker, R.R.; Stevens, R.M.; Prior, L.P. Yield-salinity relationships of different grapevine (Vitis vinifera L.) scion-rootstock combinations. Aust. J. Grape Wine Res. 2002, 8, 150–156. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29; FAO: Rome, Italy, 1985; p. 174. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Charles, S.P.; Fu, G. Statistically Downscaled Projections for South Australia—Task 3 CSIRO Final Report; Goyder Institute for Water Research Technical Report Series No. 15/1; Goyder Institute for Water Research: Adelaide, Australia, 2015. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Phogat, V.; Cox, J.W.; Šimůnek, J. Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia. Agric. Water Manag. 2018, 201, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Phogat, V.; Šimůnek, J.; Skewes, M.A.; Cox, J.W.; McCarthy, M.G. Improving the estimation of evaporation by FAO-56 dual crop coefficient approach under subsurface drip. Agric. Water Manag. 2016, 178, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Kaledhonkar, M.J.; Tyagi, N.K.; Van Der Zee, S.E.A.T.M. Solute transport modelling in soil for irrigation field experiments with alkali water. Agric. Water Manag. 2001, 51, 153–171. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Šimůnek, J.; Ramos, T.B.; Martins, J.C.; Neves, M.J.; Pires, F.P. Multicomponent solute transport in soil lysimeters irrigated with waters of different quality. Water Resour. Res. 2006, 42, W08401. [Google Scholar] [CrossRef] [Green Version]
- Ramos, T.B.; Šimůnek, J.; Gonçalves, M.C.; Martins, J.C.; Prazeres, A.; Castanheira, N.L.; Pereira, L.S. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. J. Hydrol. 2011, 407, 129–144. [Google Scholar] [CrossRef]
- Shaygan, M.; Baumgartl, T.; Arnold, S.; Reading, L.P. The effect of soil physical amendments on reclamation of a saline-sodic soil: Simulation of salt leaching using HYDRUS-1D. Soil Res. 2018, 56, 829–845. [Google Scholar] [CrossRef]
- Kaledhonkar, M.J.; Keshari, A.K.; Van Der Zee, S.E.A.T.M. Relative sensitivity of ESP profile to spatial and temporal variability in cation exchange capacity and pore water velocity under simulated field conditions. Agric. Water Manag. 2006, 83, 58–68. [Google Scholar] [CrossRef]
- Kaledhonkar, M.J.; Sharma, D.R.; Tyagi, N.K.; Kumar, A.; Van Der Zee, S.E.A.T.M. Modeling for conjunctive use irrigation planning in sodic groundwater areas. Agric. Water Manag. 2012, 107, 14–22. [Google Scholar] [CrossRef]
- Mosley, L.M.; Cook, F.; Fitzpatrick, R. Field trial and modelling of different strategies for remediation of soil salinity and sodicity in the Lower Murray irrigation areas. Soil Res. 2017, 55, 670–681. [Google Scholar] [CrossRef]
- Mallants, D.; Šimůnek, J.; Torkzaban, S. Determining water quality requirements of coal seam gas produced water for sustainable irrigation. Agric. Water Manag. 2017, 189, 52–69. [Google Scholar] [CrossRef]
- Stevens, D. Sustainable Use of Recycled Water for Horticultural Irrigation on the Northern Adelaide Plains; Final Project Report, No. VG 97081; Horticulture Australia Ltd.: Sydney, Australia, 2004. [Google Scholar]
- Neilsen, G.H.; Stevenson, D.S.; Fitzpatrick, J.J. The effect of municipal waste-water irrigation and rate of N fertilization on petiole composition, yield and quality of Okanagan Riesling grapes. Can. J. Plant Sci. 1989, 69, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.G. Irrigation of grapevines with sewage effluent. Effects on yield and petiole composition. Am. J. Enol. Vitic. 1981, 32, 189–196. [Google Scholar]
- Paranychianakis, N.V.; Nikolantonakis, M.; Spanakis, Y.; Angelakis, A.N. The effect of recycled water on the nutrient status of Soultanina grapevines grafted on different rootstocks. Agric. Water Manag. 2006, 81, 185–198. [Google Scholar] [CrossRef]
- United States Salinity Lab. Staff. Diagnosis and Improvement of Saline and Alkali Soils; Handbook No. 60; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crop. Res. 2016, 189, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Bower, C.A. Cation-exchange equilibria in soils affected by sodium salts. Soil Sci. 1959, 88, 32–35. [Google Scholar] [CrossRef]
- Curtin, D.; Steppuhn, H.; Mernut, A.R.; Selles, F. Sodicity in irrigated soils in Saskatchewan: Chemistry and structural stability. Can. J. Soil Sci. 1995, 75, 17–184. [Google Scholar] [CrossRef]
- Harron, W.R.A.; Webster, G.R.; Cairns, R.R. Relationship between exchangeable sodium and sodium adsorption ratio in a Solonetzic soil association. Can. J. Soil Sci. 1983, 63, 461–467. [Google Scholar] [CrossRef]
- Chorom, M.; Rengasamy, P. Carbonate chemistry, pH, and physical properties of an alkaline sodic soil as affected by various amendments. Aust. J. Soil Res. 1997, 35, 149–161. [Google Scholar] [CrossRef]
- Stevens, D.P.; McLaughlin, M.J.; Owens, G.; Kelly, J.; Maier, N. Agronomic issues when using reclaimed water: The Northern Adelaide Plains Experience. In Water Recycle Australia 2000; Dhillon, P., Ed.; CSIRO Land and Water: Adelaide, Australia, 2000. [Google Scholar]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance—Current assessment. J. Irrig. Drain. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Suarez, D.L.; Wood, J.D.; Lesch, S.M. Effect of SAR on water infiltration under a sequential rain-irrigation management system. Agric. Water Manag. 2006, 86, 150–164. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Reading, L.; Baumgartl, T.; Bristow, K.L.; Lockington, D.A. Applying HYDRUS to flow in a sodic clay soil with solution composition dependent hydraulic conductivity. Vadose Zone J. 2012, 11, 1–10. [Google Scholar] [CrossRef]
- Reading, L.P.; Lockington, D.A.; Bristow, K.L.; Baumgartl, T. Are we getting accurate measurements of Ksat for sodic clay soils? Agric. Water Manag. 2015, 158, 120–125. [Google Scholar] [CrossRef]
Scenario No. | Water Quality | Gypsum Application (t/ha) | Scenario No. | Water Quality | Gypsum Application (t/ha) |
---|---|---|---|---|---|
1 | RW * | 0 | 14 | Alt1 | 1.72 |
2 | RW | 1.72 | 15 | Alt1 | 4.3 |
3 | RW | 4.3 | 16 | Alt1 | 8.6 |
4 | RW | 8.6 | 17 | Alt6 † | 0 |
5 | GW # | 0 | 18 | Alt6 | 1.72 |
6 | GW | 1.72 | 19 | Alt6 | 4.3 |
7 | GW | 4.3 | 20 | Alt6 | 8.6 |
8 | GW | 8.6 | 21 | RW + 0.3 LF | 8.6 |
9 | B (1:1) + | 0 | 22 | RW + 0.4 LF | 8.6 |
10 | B (1:1) | 1.72 | 23 | RW + 0.5 LF | 8.6 |
11 | B (1:1) | 4.3 | 24 | B + 0.3 LF | 8.6 |
12 | B (1:1) | 8.6 | 25 | B + 0.4 LF | 8.6 |
13 | Alt1 ″ | 0 | 26 | B + 0.5 LF | 8.6 |
Scenario No. | Water Quality | Gypsum Application (t/ha) | Scenario No. | Water Quality | Gypsum Application (t/ha) |
---|---|---|---|---|---|
1 | RW * | 0 | 17 | Alt1 | 1.72 |
2 | RW | 1.72 | 18 | Alt1 | 4.3 |
3 | RW | 4.3 | 19 | Alt1 | 8.6 |
4 | RW | 8.6 | 20 | Alt1 | 12.9 |
5 | RW | 12.9 | 21 | Alt6 † | 0 |
6 | GW # | 0 | 22 | Alt6 | 1.72 |
7 | GW | 1.72 | 23 | Alt6 | 4.3 |
8 | GW | 4.3 | 24 | Alt6 | 8.6 |
9 | GW | 8.6 | 25 | Alt6 | 12.9 |
10 | GW | 12.9 | 26 | RW + 0.3 LF | 8.6 |
11 | B (1:1) + | 0 | 27 | RW + 0.4 LF | 8.6 |
12 | B (1:1) | 1.72 | 28 | RW + 0.5 LF | 8.6 |
13 | B (1:1) | 4.3 | 29 | B + 0.3 LF | 8.6 |
14 | B (1:1) | 8.6 | 30 | B + 0.4 LF | 8.6 |
15 | B (1:1) | 12.9 | 31 | B + 0.5 LF | 8.6 |
16 | Alt1 ″ | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phogat, V.; Mallants, D.; Šimůnek, J.; Cox, J.W.; Petrie, P.R.; Pitt, T. Modelling Salinity and Sodicity Risks of Long-Term Use of Recycled Water for Irrigation of Horticultural Crops. Soil Syst. 2021, 5, 49. https://doi.org/10.3390/soilsystems5030049
Phogat V, Mallants D, Šimůnek J, Cox JW, Petrie PR, Pitt T. Modelling Salinity and Sodicity Risks of Long-Term Use of Recycled Water for Irrigation of Horticultural Crops. Soil Systems. 2021; 5(3):49. https://doi.org/10.3390/soilsystems5030049
Chicago/Turabian StylePhogat, Vinod, Dirk Mallants, Jirka Šimůnek, James W. Cox, Paul R. Petrie, and Timothy Pitt. 2021. "Modelling Salinity and Sodicity Risks of Long-Term Use of Recycled Water for Irrigation of Horticultural Crops" Soil Systems 5, no. 3: 49. https://doi.org/10.3390/soilsystems5030049
APA StylePhogat, V., Mallants, D., Šimůnek, J., Cox, J. W., Petrie, P. R., & Pitt, T. (2021). Modelling Salinity and Sodicity Risks of Long-Term Use of Recycled Water for Irrigation of Horticultural Crops. Soil Systems, 5(3), 49. https://doi.org/10.3390/soilsystems5030049