Evaluating Potential Ecological Risks of Heavy Metals of Textile Effluents and Soil Samples in Vicinity of Textile Industries
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection of Samples
2.1.1. Textile Industrial Effluents
2.1.2. Soil Sample
2.1.3. Plant Samples
2.2. Physico-Chemical Characteristics of Industrial Effluents and Soil
2.3. Heavy Metal Estimation
2.4. Metal Bioaccumulation Factor (BAF)
2.5. Genotoxicity Assessment
2.6. Pollution Assessment
2.7. Human Health Risk Assessment
2.7.1. Exposure Assessment
2.7.2. Non-Carcinogenic Risk Assessment
2.7.3. Carcinogenic Risk Assessment
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Characteristics of Industrial Effluents and Soil
Parameter | AU | AT | BU | BT | BIS Limits a | Soil | Soil Limits b |
---|---|---|---|---|---|---|---|
pH | 6.67 ± 0.05 | 7.49 ± 0.00 * | 7.43 ± 0.02 | 8.90 ± 0.02 * | 6.5–8.5 | 8.02 ± 0.01 | 6.5–8.5 |
EC (µS/cm) | 1908.67 ± 4.67 | 628.67 ± 1.86 * | 1858.33 ± 1.67 | 511.00 ± 2.00 * | - | 442.5 ± 4.79 | 450 |
TDS (mg/L) | 3366.33 ± 6.67 | 201.67 ± 1.67 * | 3666.67 ± 13.33 | 1813.33 ± 35.28 * | 500–2000 | - | - |
TS (mg/L) | 3473.33 ± 6.67 | 786.67 ± 13.34 * | 3893.33 ± 13.33 | 2000.00 ± 40.00 * | - | - | - |
TSS (mg/L) | 106.67 ± 6.67 | 585 ± 12.58 * | 226.67 ± 13.33 | 186.67 ± 13.33 | - | - | - |
Alkalinity (mg/L) | 656.67 ± 33.34 | 456.67 ± 33.34 * | 490.00 ± 57.74 | 356.67 ± 33.33 | 200–600 | - | - |
Hardness (mg/L) | 111.33 ± 6.67 | 151.33 ± 6.67 * | 191.33 ± 6.67 | 104.67 ± 6.67 * | 200–600 | - | - |
Calcium (mg/L) | 33.93 ± 2.67 | 17.90 ± 2.67 * | 60.65 ± 2.67 | 28.59 ± 2.67 * | 75–200 | 120.24 (mg/kg) ± 0.00 | 0–3500 mg/kg |
Magnesium (mg/L) | 17.58 ± 4.40 | 70.33 ± 4.40 * | 26.37 ± 7.61 | 21.98 ± 4.40 * | 30–100 | 176.64 (mg/kg) ± 6.09 | 0–500 mg/kg |
Sodium (mg/L) | 333.63 ± 1.62 | 308.20 ± 1.25 * | 141.08 ± 0.58 | 262.42 ± 1.04 * | - | 343.08 (mg/kg) ± 3.02 | 0–300 mg/kg |
Chloride (mg/L) | 232.41 ± 4.73 | 142.47 ± 4.73 * | 114.07 ± 4.73 | 66.74 ± 0.58 * | 250–1000 | - | - |
Phosphate (mg/L) | 1.58 ± 0.03 | 1.48 ± 0.02 | 2.08 ± 0.13 | 1.50 ± 0.03 * | - | - | - |
Bulk density (g/cc) | - | - | - | - | - | 1.08 ± 0.01 | - |
Sand (%) | - | - | - | - | - | 33.49 ± 0.72 | - |
Silt (%) | - | - | - | - | - | 26.05 ± 0.19 | - |
Clay (%) | - | - | - | - | - | 40.45 ± 0.68 | - |
TOC (%) | - | - | - | - | - | 2.22 ± 0.15 | - |
3.2. Heavy Metal Estimation
3.2.1. Heavy Metal Contents in Industrial Effluents
Heavy Metal | Content of Heavy Metals (mg/L) of Effluent | Normal Acceptable Range (USEPA) | Content of Heavy Metals (mg/kg) in Soil | Indian Limits for Soil (mg/kg) a | European Union Standards (mg/kg) b | ||||
---|---|---|---|---|---|---|---|---|---|
AU | AT | BU | BT | FAO,1985 | |||||
Cadmium | 0.004 ± 0.00 | N.D. | 0.002 ± 0.00 | 0.001 ± 0.00 | 2 | 0.01 | 1.33 ± 0.05 | 3–6 | 1 |
Chromium | 0.06 ± 0.00 | 0.05 ± 0.00 * | 0.06 ± 0.00 | 0.06 ± 0.00 | 2 | 0.10 | 16.43 ± 0.60 | - | 100 |
Cobalt | 1.72 ± 0.00 | 1.33 ± 0.00 * | 1.69 ± 0.00 | 1.42 ± 0.00 * | - | 0.05 | 214.60 ± 0.42 | - | 50 |
Copper | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.01 ± 0.00 * | 3 | 0.20 | 13.63 ± 1.88 | 135–270 | 100 |
Lead | 0.13 ± 0.00 | 0.11 ± 0.00 * | 0.14 ± 0.00 | 0.11 ± 0.00 * | 0.1 | 5 | 57.33 ± 1.20 | 250–500 | 100 |
Zinc | 0.09 ± 0.00 | 0.02 ± 0.00 * | 0.13 ± 0.00 | 0.07 ± 0.00 * | 5 | 2 | 92.52 ± 0.06 | 300–600 | 300 |
3.2.2. Heavy Metal Contents in Soil
3.2.3. Heavy Metal Contents in Leaves of Plants
3.3. Metal Bioaccumulation Factor (BAF)
3.4. Genotoxicity of Industrial Effluent
3.5. Pollution Assessment
3.6. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabrez, S.; Ahmad, M. Oxidative stress-mediated genotoxicity of wastewaters collected from two different stations in northern India. Mutat. Res. 2011, 726, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Islam, A. A Review on Textile Wastewater Characterization in Bangladesh. Resour. Environ. 2015, 5, 15–44. [Google Scholar]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and human health: Current status and future needs. Air Soil Water Res. 2020, 13, 1–23. [Google Scholar] [CrossRef]
- Mandour, R.A.; Azab, Y.A. The Prospective Toxic Effects of Some Heavy Metals Overload in Surface Drinking Water of Dakahlia Governorate, Egypt. J. Occup. Environ. Med. 2011, 2, 245–253. [Google Scholar]
- Huang, D.; Liu, X.; Jiang, S.; Wang, H.; Wang, J.; Zhang, Y. Current state and future perspectives of sewer networks in urban China. Front. Environ. Sci. Eng. 2018, 12, 2. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, M. Heavy metal load of soil, water and vegetables in periurban Delhi. Environ. Monit. Assess. 2006, 120, 79–91. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agarwal, M.; Marshall, F.M. Heavy metals contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef]
- Zehra, S.; Arshad, M.; Mahmood, T.; Waheed, A. Assessment of heavy metal accumulation and their translocation in plant species. Afr. J. Biotechnol. 2009, 8, 2802–2810. [Google Scholar]
- Doherty, V.F.; Sogbanmu, T.O.; Kanife, U.C.; Wright, O. Heavy metals in vegetables collected from selected farm and market sites in Lagos, Nigeria. Glob. Adv. Res. J. GJAR 2012, 1, 137–142. [Google Scholar]
- Egito, L.C.M.; Medeiros, M.D.G.; Medeiros, S.R.B.D.; Agnez-Lima, L.F. Cytotoxic and genotoxic potential of surface water from the Pitimbu river, Northeastern/RN Brazil. Gen. Mol. Biol. 2007, 30, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Alam, Z.M.; Ahmad, S.; Malik, A.; Ahmad, M. Genotoxic and mutagenic potential of agricultural soil irrigated with tannery effluents at Jajmau (Kanpur), India. Arch. Environ. Contam. Toxicol. 2009, 57, 463–476. [Google Scholar] [CrossRef]
- Alam, Z.M.; Ahmad, S.; Malik, A.; Ahmad, M. Mutagenicity and genotoxicity of tannery effluents used for irrigation at Kanpur, India. Ecotoxicol. Environ. Saf. 2010, 73, 1620–1628. [Google Scholar] [CrossRef]
- Magdaleno, A.; Puig, A.; de Cabo, L.; Salinas, C.; Arreghini, S.; Korol, S.; Bevilacqua, S.; Liopez, L.; Moretton, J. Water pollution in an urban Argentine river. Bull. Environ. Contam. Toxicol. 2001, 67, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Ohe, T.; Watanabe, T.; Wakabayashi, K. Mutagens in surface waters: A review. Mutat. Res. 2004, 567, 109–149. [Google Scholar] [CrossRef]
- Siddiqui, A.H.; Ahmad, M. The Salmonella mutagenicity of industrial, surface and ground water sample of Aligarh region of India. Mutat. Res. 2003, 541, 21–29. [Google Scholar] [CrossRef]
- Fatoki, O.S. Trace Zinc and Copper Concentrations in Roadside Vegetation and Surface Soils: A Measurement of Local Atmospheric Pollution in Alice, South Africa. Int. J. Environ. Stud. 2000, 57, 501–513. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Kumar, V.; Ertunc, G.; Brevik, E.C. Ecological risk assessment and source apportionment of heavy metals contamination: An appraisal based on the Tellus soil survey. Environ. Geochem. Health 2021, 43, 2121–2142. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, S.S.; Bhatt, S.A.; Kumar, V.; Kaur, M.; Sambyal, V.; Singh, J.; Vig, A.P.; Nagpal, A.K. Ecological risk assessment of metals in roadside agricultural soils: A modified approach. Hum. Ecol. Risk Assess. 2018, 24, 186–201. [Google Scholar] [CrossRef]
- Kachenko, A.G.; Singh, B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Poll. 2006, 169, 101–123. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer applications on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef]
- Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Chen, D.Y.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef]
- Lee, C.S.; Li, X.D.; Shi, W.Z.; Cheung, S.C.; Thornton, L. Metal contamination in urban, suburban and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Adimalla, N.; Wang, H. Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arab. J. Geosci. 2018, 11, 684. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Eziz, M.; Mohammad, A.; Mamut, A.; Hini, G. A human health risk assessment of heavy metals in agricultural soils of Yanqi Basin, Silk Road Economic Belt, China. Hum. Ecol. Risk Assess. 2018, 24, 1352–1366. [Google Scholar] [CrossRef]
- Adimalla, N. Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environ. Geochem. Health 2020, 42, 173–190. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; OSWER 9355; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 2002; pp. 4–24.
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E. Standard Methods for The Examination of Water and Wastewater, Centennial ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Kumar, V.; Bhatti, S.S.; Nagpal, A.K. Seasonal analysis of physico-chemical parameters of agricultural soil samples collected from banks of rivers Beas and Sutlej, Punjab, India. J. Chem. Pharm. Res. 2016, 8, 439–449. [Google Scholar]
- Trivedi, R.K.; Goel, P.K.; Trisal, C.L. (Eds.) Aquatic ecosystem. In Practical Methods in Ecology and Environmental Sciences; Enviro Media Pub: Bhopal, India, 1987; pp. 57–113. [Google Scholar]
- Nelson, D.W.; Sommer, L.E. Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis, Part 2. In Chemical and Microbiological Properties, 2nd ed.; ASA-SSSA: Madison, WI, USA, 1982; pp. 579–595. [Google Scholar]
- Jacob, H.; Clarke, G. Part 4. Physical method. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 2002; p. 1692. [Google Scholar]
- ISO 11277. Soil Quality-Determination of Particle Size Distribution in Mineral Soil Material-Method by Sieving and Sedimentation; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Sharma, D.; Katnoria, J.K.; Vig, A.P. Chemical changes of spinach waste during composting and vermicomposting. Afr. J. Biotechnol. 2011, 10, 3124–3127. [Google Scholar]
- Ehi-Eromosole, C.O.; Adaramodu, A.A.; Anake, W.U.; Ajanaku, C.O.; Edobor-Osoh, A. Comparison of three methods of digestion for trace metal analysis in suface dust collected from an Ewaste recycling site. Nat. Sci. 2012, 10, 1–6. [Google Scholar]
- Allen, S.E.; Grimshaw, H.M.; Rowland, A.P. Chemical Analysis. In Methods in Plant Ecology; Moore, P.D., Chapman, S.B., Eds.; Blackwell Scientific Publications: Oxford, UK; London, UK, 1986; pp. 285–344. [Google Scholar]
- Huang, M.; Zhou, S.; Sun, B.; Zhao, Q. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshun, China. Sci. Total Environ. 2008, 405, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Katnoria, J.K.; Arora, S.; Bhardwaj, R.; Nagpal, A.K. Evaluation of genotoxic potential of industrial waste contaminated soil extracts of Amritsar, India. J. Environ. Biol. 2011, 32, 363–367. [Google Scholar] [PubMed]
- Pathiratne, A.; Hemachandra., C.K.; De Silva, N. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities. Environ. Monit. Assess. 2015, 187, 1–12. [Google Scholar] [CrossRef]
- Hemachandra, C.K.; Pathiratne, A. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicty assessments of treated effluents discharged from textile industries. Ecotoxicol. Environ. Saf. 2016, 131, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Leme, D.M.; Marin-Morales, M.A. Allium cepa test in environmental monitoring: A review on its application. Mutat. Res. 2009, 682, 71–81. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Risk Assessment Guidance for Superfund. In Human Health Evaluation Manual, Part A; EPA/540/1–89/002; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- US Environmental Protection Agency. Guidelines for carcinogen risk assessment, EPA/630/P-03/001F. In Risk Assessment Forum; US Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- US Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (part F, Supplemental Guidance for Inhalation Risk Assessment); OSWER 9285; Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency: Washington, DC, USA, 2009; pp. 7–82.
- US Environmental Protection Agency. Exposure Factors Handbook, 2011 ed.; EPA/600/R-09/052F; National Center for Environmental Assessment: Washington, DC, USA, 2011.
- US Environmental Protection Agency. Exposure Factors Handbook; Volume 1: General Factors; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1997.
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Paul, S.A.; Chavan, S.K.; Khambe, S.D. Studies on characterization of textile industrial waste water in Solapur city. Int. J. Chem. Sci. 2012, 10, 632–642. [Google Scholar]
- Ramamurthy, N.; Balasaraswathy, S.; Sivasakthivelan, P. Biodegradation and Physico-chemical changes of textile effluent by various fungal species. Rom. J. Biophys. 2011, 21, 113–123. [Google Scholar]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- Vyas, P.B. An aerobic treatment for Dudh Sagar dairy, Mahesana. J. Ind. Pollut. Control. 2011, 27, 29–32. [Google Scholar]
- Bureau of Indian Standards. Indian Standard Drinking Water Specification; Bureau of Indian Standards: New Delhi, India, 2012; p. 10500.
- Awashthi, S.K. (Ed.) Central and State Rules as Amended for 1999: Prevention of Food Adulteration Act No. 37 of 1954; Ashoka Law House: New Delhi, India, 2000. [Google Scholar]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2018, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Adinew, B. Textile effluent treatment and decolorization techniques—A review. Chem. Bulg. J. Sci. Educ. 2012, 21, 434–456. [Google Scholar]
- Chukwu, L.O. Physico-chemical characterization of pollutant load of treated industrial effluents in Lagos metropolis, Nigeria. J. Indus. Poll. Control 2006, 22, 17–22. [Google Scholar]
- Hussein, F.H. Chemical properties of treated textile dyeing wastewater. Asian J. Chem. 2013, 25, 9393–9400. [Google Scholar] [CrossRef]
- European Union. Heavy Metals in Wastes, European Commission on Environment 2000. Available online: http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf (accessed on 21 July 2014).
- Zhao, Z.; Hazelton, P. Evaluation of accumulation and concentration of heavy metals in different urban roadside soil types in Miranda Park, Sydney. J. Soils Sediment. 2016, 16, 2548–2556. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Sambyal, V.; Nagpal, A.K. Heavy metals bioaccumulation in Berseem (Trifoliumalexandrium) cultivated in areas under intensive agriculture, Punjab, India. SpringerPlus 2016, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, S.S.; Sambyal, V.; Singh, J.; Nagpal, A.K. Analysis of soil characteristics of different land uses and metal bioaccumulation in wheat grown around rivers: Possible human health risk assessment. Environ. Dev. Sustain. 2017, 19, 571–588. [Google Scholar] [CrossRef]
- Aschale, M.; Sileshi, Y.; Kelly-Quinn, M.; Hailu, D. Pollution Assessment of Toxic and Potentially Toxic Elements in Agricultural Soils of the City Addis Ababa, Ethiopia. Bull. Environ. Contam. Toxicol. 2017, 98, 234–243. [Google Scholar] [CrossRef]
- Chabukdhara, M.; Munjal, A.; Nema, A.K.; Gupta, S.K.; Kaushal, R.K. Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Hum. Ecol. Risk Assess. 2016, 22, 736–752. [Google Scholar] [CrossRef]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtoi, China. Ecol. Indic. 2017, 72, 510–520. [Google Scholar] [CrossRef]
- Guan, Z.H.; Lil, X.G.; Wang, L. Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau. Environ. Sci. Pollut. Res. 2018, 25, 7625–7637. [Google Scholar] [CrossRef] [PubMed]
- Krailertrattanachai, N.; Ketrot, D.; Wisawapipat, W. The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand. Int. J. Environ. Res. Public Health 2019, 16, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szwalec, A.; Mundała, P.; Kędzior, R.; Pawlik, J. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environ. Monit. Assess. 2020, 192, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Ahmad, I.; Rahman, I. Effect of Environmental Pollution on Heavy Metals Content of Withamnia somnifera. J. Chin. Chem. Soc. 2007, 54, 339–343. [Google Scholar] [CrossRef]
- Ahmed, F.; Fakhruddin, A.N.M.; Imam, M.D.T.; Khan, N.; Khan, T.A.; Rahman, M.M.; Abdullah, A.T.M. Spatial distribution and source identification of heavy metal pollution in roadside surface soil: A study of Dhaka Aricha highway, Bangladesh. Ecol. Process. 2016, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Aryal, R.; Beecham, S.; Sarkar, B.; Chong, M.N.; Kinsela, A.; Kandasamy, J.; Vigneswaran, S. Readily wash-off road dust and associated heavy metals on motorways. Water Air Soil Pollut. 2017, 228, 1–12. [Google Scholar] [CrossRef]
- Kim, J.H.; Gibb, H.J.; Howe, P.D. Cobalt and Inorganic Cobalt Compounds. In Concise International Chemical Assessment Document, No. 69; World Health Organization: Geneva, Switzerland, 2006; pp. 1–82. [Google Scholar]
- Gad, N. Role and importance of cobalt nutrition on groundnut (Arachis hypogaea) production. World Appl. Sci. J. 2012, 20, 359–367. [Google Scholar]
- Witte, C.P.; Tiller, S.A.; Taylor, M.A.; Davies, H.V. Addition of Nickel to Murashiga and Skoog medium in plant tissue culture activates urease and may reduce metabolic stress. Plant Cell Tiss. Org. Cult. 2002, 86, 103–104. [Google Scholar] [CrossRef]
- Nagpal, N.K. Water Quality Guidelines for Cobalt; Ministry of Water, Land and Air Protection, Water Protection Section, Water, Air and Climate Change Branch: Victoria, TX, USA, 2004.
- Caselles, J.M.; Pérez-Espinosa, A.; Pérez Murcia, M.D.; Moral, R.; Gomez, I. Effect of Increased Cobalt Treatments on Cobalt Concentration and Growth of Tomato Plants. J. Plant Nutr. 1997, 20, 805–811. [Google Scholar] [CrossRef]
- Jayakumar, K.; Jaleel, C.A. Uptake and accumulation of cobalt in plants: A study based on exogenous cobalt in soybean. Bot. Res. Int. 2009, 2, 310–314. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity nad the Environment. Mol. Clin. Environ. Toxicol. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Alloway, B.J. Heavy Metals in Soils; Blackie Academic and Professional: London, UK, 1990; pp. 1–330. [Google Scholar]
- Nadian, H. Cd and Mn uptake and bioaccumulation in Trifolium alexandrinum L.: Interaction with mycorrhizal colonization. In Proceedings of the Fourth International Iran and Russia Conference, Shahrekord, Iran, 8–10 September 2004; pp. 595–601. [Google Scholar]
- McDermott, S.; Wu, J.; Cai, B.; Lawson, A.; Marjorie Aelion, C. Probability of intellectual disability is associated with soil concentrations of arsenic and lead. Chemosphere 2011, 84, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naureen, A.; Irshad, M.; Hussain, F.; Mahmood, Q. Comparing heavy metals accumulation potential in natural vegetation and soil adjoining wastewater canal. J. Chem. Soc. Pak. 2011, 33, 661–665. [Google Scholar]
- Chunilall, V.; Kindness, A.; Johnalagada, S.B. Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium and nickel. J. Environ. Sci. Health 2005, 40, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Muchuweti, M.; Birkett, J.W.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.D.; Lester, J.N. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agric. Ecosyst. Environ. 2006, 112, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Lokeshwari, H.; Chandrappa, G. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Curr. Sci. 2006, 91, 622–627. [Google Scholar]
- Zango, M.S.; Anim-Gyampo, M.; Ampadu, B. Health risks of heavy metals in selected food crops cultivated in small-scale gold-mining areas in Wassa-Amenfi-West district of Ghana. J. Nat. Sci. 2013, 3, 96–105. [Google Scholar]
- Collins, R.N.; Kinsela, A. The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 2010, 79, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Nasar, H.M.; Sultan, S.; Gomes, R.; Noor, S. Heavy metal pollution of soil and vegetable grown near roadside at Gazipur. Bangladesh J. Agri. Res. 2012, 37, 9–17. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.D.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Kim, H.; Song, B.; Kim, H.; Park, J. Distribution of trace metals at two abandoned mine sites in Korea and arsenic-associated health risk for the residents. Toxicol. Environ. Health Sci. 2009, 1, 83–90. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Bi, X.; Feng, X.; Yang, Y.; Li, X.; Shin, G.P.Y.; Li, F. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environ. Pollut. 2009, 157, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.U.; Goni, M.A. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 2010, 166, 347–357. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, T.; Wang, X.; Zhou, F.; Yang, Y.; Yin, Y. Effects of soil type and genotype on lead concentration in rootstalk vegetables and the selection of cultivars for food safety. J. Environ. Manag. 2013, 122, 8–14. [Google Scholar] [CrossRef]
- Hu, J.; Wu, F.; Wu, S.; Sun, X.; Lin, X.; Wong, M.H. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China. Ecotoxicol. Environ. Saf. 2013, 91, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.J. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Bashir, M.; Khalid, S.; Rashid, U.; Adrees, M.; Ibrahim, M.; Islam, M.S. Assessment of selected heavy metals uptake from soil by vegetation of two areas of district Attock, Pakistan. Asian J. Chem. 2014, 26, 1063–1068. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Freitas, H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 2009, 75, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, T.; Kumar, A. Phytoaccumulation and tolerance of Ricinus communis L. to nickel. Int. J. Phytoremediation 2012, 14, 481–492. [Google Scholar] [CrossRef]
- Faucon, M.P.; Shutcha, M.N.; Meerts, P. Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: Influence of washing and metal concentrations in soil. Plant Soil 2007, 301, 29–36. [Google Scholar] [CrossRef]
- Oven, M.; Grill, E.; Golan-Goldhirsh, A.; Kutchan, T.M.; Zenk, M.H. Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 2002, 60, 467–474. [Google Scholar] [CrossRef]
- Wong, S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Min, Y.S. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Tamoutsidis, E.; Lazaridou, M.; Papadopoulos, I.; Spanos, T.; Papathanasiou, F.; Tamoutsidou, M.; Mitlianga, P.; Vasiliou, G. The effect of treated urban wastewater on soil properties, plant tissue composition and biomass productivity in berseem clover and corn. J. Food Agric. Environ. 2009, 7, 782–786. [Google Scholar]
- Jadhav, S.; Phugare, S.; Patil, P.S.; Jadhav, J.P. Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. Int. Biodeterior. Biodegrad. 2011, 65, 733–743. [Google Scholar] [CrossRef]
- Carita, R.; Marin-Morales, M.A. Induction of chromosome aberrations in the Allium cepa test system caused by exposure of seeds to industrial effluents in contaminated with azo dyes. Chemosphere 2008, 72, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Panneerselman, N.; Palanikumar, L.; Gopinathan, S. Chromosomal aberration by Glycidol in Allium cepa L. root meristem cell. Int. J. Pharm. Sci. Res. 2012, 3, 300–304. [Google Scholar]
- Kaur, J.; Kaur, V.; Pakade, Y.B.; Katnoria, J.K. A study on water quality monitoring of Buddha Nullah, Ludhiana, Punjab (India). Environ. Geochem. Health 2020, 43, 2699–2722. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.S.; Cabral, T.M.; Ferreira, D.N.; Agnez-Lima, L.F.; Batistuzzo de Medeiros, S.R. Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicol. Environ. Saf. 2010, 73, 320–325. [Google Scholar] [CrossRef]
- Hemachandra, C.K.; Pathiratne, A. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay. Bull. Environ. Contam. Toxicol. 2015, 94, 199–203. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Yang, X.L. The toxic effects of cadmium on cell division and chromosomal morphology of Hordeum vulgare. Mutat. Res. 1994, 312, 121–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, H. Antagonistic effect of calcium, zinc and selenium against cadmium induced chromosomal aberrations and micro-nuclei in root cells of Hordeum vulgare. Mutat. Res. 1998, 420, 1–6. [Google Scholar] [CrossRef]
- Fojtova, M.; Kovarik, A. Genotoxic effect of cadmium is associated with apoptotic changes in tobacco cells. Plant Cell Environ. 2000, 23, 531–537. [Google Scholar] [CrossRef]
- Unyayar, S.; Celik, A.; Cekic, F.O.; Gozel, A. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 2006, 21, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, I.S.; Kaur, S. Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium root anaphase aberration and micronucleus assays. Mutat. Res. Fund. Mol. Mech. Mut. 1999, 426, 183–188. [Google Scholar] [CrossRef]
- Vijayalakshmidevi, S.R.; Muthukumar, K. Improved biodegradation of textile dye effluent by coculture. Ecotoxicol. Environ. Saf. 2015, 114, 23–30. [Google Scholar] [CrossRef]
- Sudhakar, R.; Gowda, K.N.; Venu, G. Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 2001, 66, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Anas, M.; Malik, A. Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicol. Rep. 2019, 6, 193–201. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. J. Geol. 1969, 2, 108–118. [Google Scholar]
S. No. | Sample Code | Description of Sample |
---|---|---|
1. | AU | Untreated effluent sample collected from textile industry A |
2. | AT | Treated effluent sample collected from textile industry A |
3. | BU | Untreated effluent sample collected from textile industry B |
4. | BT | Treated effluent sample collected from textile industry B |
5. | SA | Soil sample collected from an agricultural field in the vicinity of industries A and B |
Parameter | NC | AU | AT | BU | BT |
---|---|---|---|---|---|
Average TDC | 494 | 431 | 608 | 500 | 668 |
MI (%) | 44.37 ± 1.01 | 13.83 ± 0.13 # | 22.17 ± 0.40 #,* | 17.46 ± 0.21 # | 24.32 ± 0.26 #,* |
PA (%) | 3.43 ± 0.19 | 26.67 ± 0.30 # | 17.50 ± 0.22 #,* | 26.08 ± 0.48 # | 15.13 ± 0.55 #,* |
CA (%) | 0.41 ± 0.01 | 2.70 ± 0.17 # | 2.19 ± 0.15 # | 1.40 ± 0.20 # | 1.40 ± 0.06 # |
TA (%) | 3.84 ± 0.19 | 29.37 ± 0.40 # | 19.69 ± 0.36 #,* | 27.48 ± 0.44 # | 16.52 ± 0.59 #,* |
Metal | Igeo | CF | Cdeg | mCdeg | PI | PLI | ERi | RI |
---|---|---|---|---|---|---|---|---|
Cd | 3.18 | 13.57 | 40.22 | 6.70 | 15.90 | 26.41 | 407.14 | 533.74 |
Cr | −1.68 | 0.47 | 0.94 | |||||
Co | 3.84 | 21.46 | 107.3 | |||||
Cu | −1.46 | 0.55 | 2.73 | |||||
Pb | 0.93 | 2.87 | 14.33 | |||||
Zn | −0.203 | 1.30 | 1.30 |
Receptor | Exposure Pathway | Cd | Cr | Co | Cu | Pb | Zn |
---|---|---|---|---|---|---|---|
Adult | ADI ingestion | 1.9 × 10−6 | 2.347 × 10−5 | 3.066 × 10−4 | 1.947 × 10−5 | 8.19 × 10−5 | 1.322 × 10−4 |
ADI dermal | 5.786 × 10−8 | 7.147 × 10−7 | 9.335 × 10−6 | 5.929 × 10−7 | 2.494 × 10−6 | 4.0246 × 10−6 | |
AID inhalation | 1.788 × 10−10 | 2.209 × 10−9 | 2.885 × 10−8 | 1.833 × 10−9 | 7.708 × 10−9 | 1.244 × 10−8 | |
Total | 1.958 × 10−6 | 2.42 × 10−5 | 3.159 × 10−4 | 2.01× 10−5 | 8.440 × 10−5 | 1.36 × 10−4 | |
HQ ingestion | 1.9 × 10−3 | 7.824 × 10−3 | 1.533 × 10−2 | 4.868 × 10−4 | 5.85 × 10−2 | 4.406 × 10−4 | |
HQ dermal | 5.786 × 10−3 | 2.382 × 10−4 | 5.834 × 10−4 | 4.941 × 10−5 | 4.759 × 10−3 | 6.708 × 10−5 | |
HQ inhalation | 1.788 × 10−7 | 7.724 × 10−5 | 5.053 × 10−3 | 4.582 × 10−8 | 2.190 × 10−6 | 4.147 × 10−8 | |
HI | 7.686 × 10−3 | 8.139 × 10−3 | 2.097 × 10−2 | 5.362 × 10−4 | 6.326 × 10−2 | 5.077 × 10−4 | |
Children | ADI ingestion | 1.33 × 10−5 | 1.643 × 10−4 | 2.146 × 10−3 | 1.363 × 10−4 | 5.733 × 10−4 | 9.252 × 10−4 |
ADI dermal | 2.128 × 10−8 | 2.629 × 10−7 | 3.434 × 10−6 | 2.181 × 10−7 | 9.173 × 10−7 | 1.480 × 10−6 | |
ADI inhalation | 3.731 × 10−10 | 4.609 × 10−9 | 6.020 × 10−8 | 3.823 × 10−9 | 1.608 × 10−8 | 2.595 × 10−8 | |
Total | 1.332 × 10−5 | 1.64567 × 10−4 | 2.149 × 10−3 | 1.365 × 10−4 | 5.742 × 10−4 | 9.267 × 10−4 | |
HQ ingestion | 1.33 × 10−2 | 5.477 × 10−2 | 0.1073 | 3.408 × 10−3 | 0.410 | 3.084 × 10−3 | |
HQ dermal | 2.128 × 10−3 | 8.763 × 10−5 | 2.146 × 10−4 | 1.817 × 10−5 | 1.751 × 10−3 | 2.467 × 10−5 | |
HQ inhalation | 3.731 × 10−7 | 1.611 × 10−4 | 1.054 × 10−2 | 9.559 × 10−8 | 4.569 × 10−6 | 8.651 × 10−8 | |
HI | 1.543 × 10−2 | 5.502 × 10−2 | 0.118 | 3.426 × 10−3 | 0.411 | 3.109 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, J.; Bhatti, S.S.; Bhat, S.A.; Nagpal, A.K.; Kaur, V.; Katnoria, J.K. Evaluating Potential Ecological Risks of Heavy Metals of Textile Effluents and Soil Samples in Vicinity of Textile Industries. Soil Syst. 2021, 5, 63. https://doi.org/10.3390/soilsystems5040063
Kaur J, Bhatti SS, Bhat SA, Nagpal AK, Kaur V, Katnoria JK. Evaluating Potential Ecological Risks of Heavy Metals of Textile Effluents and Soil Samples in Vicinity of Textile Industries. Soil Systems. 2021; 5(4):63. https://doi.org/10.3390/soilsystems5040063
Chicago/Turabian StyleKaur, Jaskaran, Sandip Singh Bhatti, Sartaj Ahmad Bhat, Avinash Kaur Nagpal, Varinder Kaur, and Jatinder Kaur Katnoria. 2021. "Evaluating Potential Ecological Risks of Heavy Metals of Textile Effluents and Soil Samples in Vicinity of Textile Industries" Soil Systems 5, no. 4: 63. https://doi.org/10.3390/soilsystems5040063
APA StyleKaur, J., Bhatti, S. S., Bhat, S. A., Nagpal, A. K., Kaur, V., & Katnoria, J. K. (2021). Evaluating Potential Ecological Risks of Heavy Metals of Textile Effluents and Soil Samples in Vicinity of Textile Industries. Soil Systems, 5(4), 63. https://doi.org/10.3390/soilsystems5040063