Seeding System Configuration Effects on Sunflower Seedling Emergence and Yield under No-Tillage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Soil Description and Soil Measurements
2.3. Description of Farm Equipment
2.4. Experimental Treatments and Crop Measurements
2.5. Statistical Analyses
3. Results and Discussion
3.1. Soil Characterization
3.2. Residue Cover
3.3. Seedling Emergence
3.4. Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godwin, R.J. Agricultural Engineering in Development: Tillage for Crop Production in Areas of Low Rainfall. In FAO Agricultural Services Bulletin No.: 83; Food and Agricultural Organization of the United Nations: Rome, Italy, 1990; p. 124. ISBN 92-5-102542-8. [Google Scholar]
- Botta, G.F.; Becerra, A.T.; Melcon, F.B. Seedbed compaction produced by traffic on four tillage regimes in the rolling Pampas of Argentina. Soil Tillage Res. 2009, 105, 128–134. [Google Scholar] [CrossRef]
- Lekavičienė, K.; Šarauskis, E.; Naujokienė, V.; Kriaučiūnienė, Z. Effect of Row Cleaner Operational Settings on Crop Residue Translocation in Strip-Tillage. Agronomy 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Aikins, K.A.; Barr, J.B.; Ucgul, M.; Jensen, T.A.; Antille, D.L.; Desbiolles, J.M.A. No-tillage furrow opener performance: A review of tool geometry, settings and interactions with soil and crop residue. Soil Res. 2020, 58, 603. [Google Scholar] [CrossRef]
- Aikins, K.A.; Antille, D.L.; Jensen, T.A.; Blackwell, J. Performance comparison of residue management units of no-tillage sowing systems: A review. Eng. Agric. Environ. Food 2019, 12, 181–190. [Google Scholar] [CrossRef]
- Ashworth, M.; Desbiolles, J.M.A.; Tola, E. Disc Seeding in Zero-Till Farming Systems: A Review of Technology and Paddock Issues; Western Australian No-Tillage Farmers Association: Northam, WA, Australia, 2010; p. 224. ISBN 9780646528762. [Google Scholar]
- ASAE. ASAE Standard EP291.2: Terminology and Definitions for Soils Tillage and Soil Tool Relationships Engineering Practice; American Society of Agricultural Engineering: St. Joseph, MI, USA, 1992; pp. 106–108. [Google Scholar]
- Botta, G.F.; Jorajuria, D.; Rosatto, H.; Ferrero, C. Light tractor traffic frequency on soil compaction in the Rolling Pampa region of Argentina. Soil Tillage Res. 2006, 86, 9–14. [Google Scholar] [CrossRef]
- Bluett, C.; Tullberg, J.N.; McPhee, J.E.; Antille, D.L. Soil and Tillage Research: Why still focus on soil compaction? Soil Tillage Res. 2019, 194, 104282. [Google Scholar] [CrossRef]
- Botta, G.F.; Antille, D.L.; Nardon, G.F.; Rivero, D.; Bienvenido, F.; Contessotto, E.E.; Ezquerra-Canalejo, A.; Ressia, J.M. Zero and controlled traffic improved soil physical conditions and soybean yield under no-tillage. Soil Tillage Res. 2021, 215, 105235. [Google Scholar] [CrossRef]
- Botta, G.F.; Rivero, D.; Tourn, M.; Melcon, F.; Pozzolo, O.; Nardon, G.; Balbuena, R.; Becerra, A.; Rosatto, H.; Stadler, S. Soil compaction produced by tractor with radial and cross-ply tyres in two tillage regimes. Soil Tillage Res. 2008, 101, 44–51. [Google Scholar] [CrossRef]
- Klocke, N.L. No-Till Drill for Fall Seeding Small Grains; ASAE Paper No.: 79-1023; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1979. [Google Scholar]
- Tourn, M.; Soza, E.; Botta, G.; Mete, A. Direct corn seedling. Effects of residue clearance on implant efficiency. Span. J. Agric. Res. 2003, 1, 99. [Google Scholar] [CrossRef] [Green Version]
- Raoufat, M.; Mahmoodieh, R. Stand establishment response of maize to seedbed residue, seed drill counters and primary tillage systems. Biosyst. Eng. 2005, 90, 261–269. [Google Scholar] [CrossRef]
- Papendick, R.I.; Lindstrom, M.J.; Cochran, V.L. Soil Mulch Effects on Seedbed Temperature and Water During Fallow in Eastern Washington. Soil Sci. Soc. Am. Proc. 1973, 37, 307–314. [Google Scholar] [CrossRef]
- Abrecht, D.G.; Bristow, K.L. Maize seedling response to the soil environment at varying distances from a mulched soil-bare soil boundary. Soil Tillage Res. 1990, 15, 205–216. [Google Scholar] [CrossRef]
- Erbach, D.C.; Kaspar, T.C. Reducing Stand Establishment Risk in Conservation Tillage; ASAE Paper No.: 931559; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1993. [Google Scholar]
- Bragachini, M.; Bianchini, M.; Magalhães, P.S.G.; von Martin, A.; Ruiz, S. Ensayo comparativo de diferentes trenes de siembra. In Proyecto Agricultura de Precisión; Manfredi INTA: Córdoba, Argentina, 2000; p. 8. [Google Scholar]
- Morrison, J.E.; Allen, J.R.R.; Wilkins, D.E.; Powell, G.M.; Grisso, R.D.; Erbach, D.C.; Herndon, L.P.; Murray, D.L.; Formanek, G.E.; Pfost, D.L.; et al. Conservation Planter, Drill and Air-Type Seeder Selection Guideline. Appl. Eng. Agric. 1988, 4, 300–309. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Erbach, D.C.; Cruse, R.M. Corn Response to Seed-Row Residue Removal. Soil Sci. Soc. Am. J. 1990, 54, 1112–1117. [Google Scholar] [CrossRef]
- Poncet, A.M.; Fulton, J.P.; McDonald, T.P.; Knappenberger, T.; Shaw, J.N.; Bridges, R.W. Effect of Heterogeneous Field Conditions on Corn Seeding Depth Accuracy and Uniformity. Appl. Eng. Agric. 2018, 34, 819–830. [Google Scholar] [CrossRef]
- Murray, J.R.; Tullberg, J.N.; Antille, D.L. Selecting and Managing No-Till Planters and Controlled Traffic Farming in Extensive Grain Production Systems. In No-till Farming Systems for Sustainable Agriculture; Springer: Cham, Switzerland, 2020; pp. 83–105. [Google Scholar] [CrossRef]
- Aikins, K.A.; Antille, D.L.; Ucgul, M.; Barr, J.B.; Jensen, T.A.; Desbiolles, J.M. Analysis of effects of operating speed and depth on bentleg opener performance in cohesive soil using the discrete element method. Comput. Electron. Agric. 2021, 187, 106236. [Google Scholar] [CrossRef]
- Heredia, O.S.; Mengoni, H.; Márquez, J.J.; Sainato, C. Caracterización de Suelos Bajo Feedlot y su Evaluación Para la Protección de Agua Subterránea. In Avances en Ingeniería Rural 2007–2009, 1st ed.; Di Leo, N., Montico, S., Nardón, G., Eds.; Universidad Nacional de Rosario: Rosario, Argentina, 2009; pp. 552–557. ISBN 978-950-673-752-8. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Villalobos, F.; Ritchie, J. The effect of temperature on leaf emergence rates of sunflower genotypes. Field Crop. Res. 1992, 29, 37–46. [Google Scholar] [CrossRef]
- Marc, J.; Palmer, J.H. Determination of the Length of the Vegetative and Pre-floral Stages in the Day-Neutral PlantHelianthus annuusby Chilling Pulses. J. Exp. Bot. 1978, 29, 367–373. [Google Scholar] [CrossRef]
- Marc, J.; Palmer, J. Photoperiodic sensitivity of inflorescence initiation and development in sunflower. Field Crop. Res. 1981, 4, 155–164. [Google Scholar] [CrossRef]
- Sadras, V.O.; Ferreiro, M.; Gutheim, F.; Kantolic, A.G. Desarrollo fenológico y su respuesta a temperatura y fotoperíodo. In Bases para el Manejo del Maíz, el Girasol y la Soja. Ediciones Instituto Nacional de Tecnología Agropecuaria; Andrade, F.H., Sadras, V.O., Eds.; INTA: Balcarce, Argentina, 2009; ISBN 987-521-047-1. [Google Scholar]
- Villalobos, F.J.; Hall, A.J.; Ritchie, J.T.; Orgaz, F. OILCROP-SUN: A Development, Growth, and Yield Model of the Sunflower Crop. Agron. J. 1996, 88, 403–415. [Google Scholar] [CrossRef]
- INTA. Carta de suelos de la Provincia de Buenos Aires. Buenos Aires, Instituto Nacional de Tecnología Agropecuaria, Argentina. 2015. Available online: https://inta.gob.ar/documentos/carta-desuelos-de-la-provincia-de-buenos-aires (accessed on 25 November 2021).
- MAFF. The Analysis of Agricultural Materials, 3rd ed.; Reference Book 427; Ministry of Agriculture, Fisheries, and Food: London, UK, 1986. [Google Scholar]
- Erbach, D.C. Measurement of Soil Bulk Density and Moisture. Trans. ASAE 1987, 30, 0922–0931. [Google Scholar] [CrossRef]
- ASABE. ASAE Standard EP542.1-NOV2019: Procedures for Using and Reporting Data Obtained with the Soil Cone Penetrometer; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 6. [Google Scholar]
- Ayers, P.D.; Perumpral, J.V. Moisture and Density Effect on Cone Index. Trans. ASAE 1982, 25, 1169–1172. [Google Scholar] [CrossRef]
- Cassel, D.K. Tillage effects on soil bulk density and mechanical impedance. In Predicting Tillage Effects on Soil Physical Properties and Processes; Unger, P.W., Van Doren, D.M., Jr., Whisler, F.D., Skidmore, E.L., Eds.; ASA-SSSA Inc.: Madison, WI, USA, 1982; Chapter 4; Volume 44, pp. 45–67. [Google Scholar] [CrossRef]
- Gargicevich, A. Sembradoras de siembra directa y su efecto sobre la cobertura. In Proyecto Agricultura Conservacionista II. Serie Experiencias; Instituto Nacional de Tecnología Agropecuaria: Oliveros, Argentina, 1995; p. 4. [Google Scholar]
- Ray, P.N.; Chapman, T.G. The British Standard Compaction Test for Soils: A Study of Some Factors Affecting the Test Results. Geotechnique 1954, 4, 169–177. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Firestone. Data Book Version 2; Firestone, A.G: Akron, OH, USA, 2018; p. 275. Available online: https://commercial.firestone.com/content/dam/bcs-sites/firestone/AG/Databook/2018%20FIRESTONE%20AG%20DATA%20BOOK%20-%20FIRESTONE%20AGRICULTURE.pdf (accessed on 28 October 2021).
- Villalobos, F.; Sadras, V.; Soriano, A.; Fereres, E. Planting density effects on dry matter partitioning and productivity of sunflower hybrids. Field Crop. Res. 1994, 36, 1–11. [Google Scholar] [CrossRef]
- Nardón, G.F. Siembra de Precisión: Modelización de la Distancia Entre Semillas. Master’s Thesis, Universidad Nacional de La Plata, Facultad de Ciencias Agrarias y Forestales, La Plata, Argentina, 2003; p. 158. [Google Scholar]
- Tolon-Becerra, A.; Tourn, M.; Botta, G.; Lastra-Bravo, X. Effects of different tillage regimes on soil compaction, maize (Zea mays L.) seedling emergence and yields in the eastern Argentinean Pampas region. Soil Tillage Res. 2011, 117, 184–190. [Google Scholar] [CrossRef]
- VSN International. GenStat Release®. Reference Manual, 19th ed.; VSN International: Hemel Hempstead, UK, 2020. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Daddow, R.L.; Warrington, G.E. Growth-limiting bulk densities as influenced by soil texture. In WSDG Report No.: WSDG-TN-00005 (January 1983); Watershed Systems Development Group: Fort Collins, CO, USA, 1983; p. 17. [Google Scholar]
- Pilatti, M.A.; de Orellana, J.A.; Imhoff, S.C.; Da Silva, A.P. Actualización de los límites críticos del intervalo hídrico óptimo. Ciencia del Suelo 2012, 30, 9–21. [Google Scholar]
- Ngo-Cong, D.; Antille, D.L.; van Genuchten, M.T.; Nguyen, H.Q.; Tekeste, M.Z.; Baillie, C.P.; Godwin, R.J. A modeling framework to quantify the effects of compaction on soil water retention and infiltration. Soil Sci. Soc. Am. J. 2021, 85, 1931–1945. [Google Scholar] [CrossRef]
- McKyes, E.; Negi, S.; Douglas, E.; Taylor, F.; Raghavan, V. The effect of machinery traffic and tillage operations on the physical properties of a clay and on yield of silage corn. J. Agric. Eng. Res. 1979, 24, 143–148. [Google Scholar] [CrossRef]
- Hussein, M.A.; Antille, D.L.; Kodur, S.; Chen, G.; Tullberg, J.N. Controlled traffic farming effects on productivity of grain sorghum, rainfall and fertiliser nitrogen use efficiency. J. Agric. Food Res. 2021, 3, 100111. [Google Scholar] [CrossRef]
- Taylor, H.M.; Ratliff, L.F. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci. 1969, 108, 113–119. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Xia, J.; Miller, G.A.; Cai, C.; Guo, Z.; Hassanikhah, A. The effect of water content on the shear strength characteristics of granitic soils in South China. Soil Tillage Res. 2018, 187, 50–59. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González-Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crop. Res. 2012, 132, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Godwin, D. Principles of reduced tillage. J. R. Agric. Soc. Engl. 2011, 172, 1–9. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84868024314&origin=resultslist&sort=plf-f (accessed on 28 October 2021).
- INTA. Guía Práctica Para el Cultivo de Girasol: Información Actualizada y Compaginada de la Biblioteca del Productor de Cambio Rural; Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina, 1997; p. 187. Available online: https://inta.gob.ar/sites/default/files/script-tmp-guia_prctica_para_el_cultivo_de_girasol.pdf (accessed on 28 October 2021).
- McCalla, T.; Norstard, F.A. Toxicity problems in mulch tillage. Agric. Environ. 1974, 1, 153–174. [Google Scholar] [CrossRef]
- Chung, S.-O.; Horton, R. Soil heat and water flow with a partial surface mulch. Water Resour. Res. 1987, 23, 2175–2186. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.R.C.; Andrade, F.H. Densidad de plantas y espaciamiento entre hileras. In Bases para el Manejo del Maíz, el Girasol y la Soja. Ediciones Instituto Nacional de Tecnología Agropecuaria; Andrade, F.H., Sadras, V.O., Eds.; INTA: Balcarce, Argentina, 2009; Chapter 4; pp. 69–97. ISBN 987-521-047-1. [Google Scholar]
- Miller, J.F.; Roath, W.W. Compensatory response of sunflower to stand reduction applied at different plant growth stages. Agron. J. 1982, 74, 119–121. [Google Scholar] [CrossRef]
- Botta, G.F.; Antille, D.L.; Bienvenido, F.; Rivero, D.; Contessotto, E.E. Energy requirements for alleviation of subsoil compaction and the effect of deep tillage on sunflower (Helianthus annus L.) yield in the western region of Argentina’s Rolling Pampa. Eng. Rural. Dev. 2019, 18, 174–178. [Google Scholar] [CrossRef]
- Aikins, K.A.; Antille, D.L.; Jensen, T.A.; Blackwell, J. Advances in residue management mechanisms of zero-tillage planters. In ASABE Paper No.: 1700449; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017. [Google Scholar] [CrossRef]
Month | - | Rainfall (mm) | Mean Maximum Temperature (°C) | ||||
---|---|---|---|---|---|---|---|
Season | Period | 2012–2013 | 2013–2014 | 2014–2015 | 2012–2013 | 2013–2014 | 2014–2015 |
September | 20–30 | 24 | 12 | 1 | 21.0 | 18.3 | 22.2 |
October | 1–10 | 19 | 0 | 49 | 19.7 | 22.7 | 23.5 |
11–20 | 61 | 0 | 7 | 23.0 | 25.0 | 24.3 | |
21–31 | 119 | 22 | 14 | 26.3 | 24.1 | 23.5 | |
November | 1–10 | 31 | 108 | 10 | 29.5 | 28.1 | 25.5 |
11–20 | 1 | 0 | 0 | 26.8 | 29.9 | 32.1 | |
21–30 | 67 | 42 | 64 | 26.9 | 30.0 | 30.1 | |
December | 1–10 | 88 | 6 | 36 | 29.0 | 31.0 | 33.3 |
11–20 | 9 | 21 | 5 | 28.8 | 33.1 | 32.2 | |
21–31 | 61 | 7 | 15 | 33.2 | 34.2 | 31.2 | |
January | 1–10 | 11 | 9 | 17 | 29.8 | 32.7 | 30.0 |
11–20 | 4 | 3 | 2 | 30.1 | 35.2 | 31.1 | |
21–31 | 14 | 7 | 10 | 34.0 | 32.3 | 33.2 | |
February | 1–10. | 6 | 127 | 0 | 31.2 | 30.1 | 33.5 |
11–20 | 2 | 40 | 2 | 29.4 | 28.3 | 32.1 | |
21–28 | 19 | 1 | 16 | 27.1 | 27.1 | 28.5 | |
March | 1–10 | 40 | 28 | 0 | 25.2 | 22.1 | 34.2 |
11–20 | 7 | 58 | 24 | 19.7 | 20.7 | 32.1 | |
21–31 | 59 | 6 | 16 | 30.7 | 26.7 | 27.7 | |
April | 1–10 | 11 | 158 | 0 | 23.1 | 22.2 | 27.3 |
11–20 | 15 | 4 | 44 | 26.7 | 24.6 | 25.5 | |
21–30 | 5 | 3 | 25 | 27.4 | 22.2 | 23.3 |
Determination | Analytical Method | Depth Interval (mm) | |||
---|---|---|---|---|---|
- | - | 0–150 | 150–300 | 300–650 | 650–1200 |
Soil organic carbon (g·kg−1) | Walkley and Black [25] | 12.30 ± 5.2 | 6.70 ± 1.2 | 5.20 ± 1.4 | N/A |
Particle size analysis | Bouyoucos [39] | - | - | - | - |
Clay (g·kg−1), fraction <2 μm | - | 173 ± 3.21 | 304 ± 2.50 | 190 ± 2.40 | 67 ± 2.31 |
Silt (g·kg−1), fraction 2–50 μm | - | 318 ± 3.02 | 280 ± 2.31 | 210 ± 2.33 | 305 ± 1.61 |
Sand (g·kg−1), fraction >50 μm | - | 509 ± 2.16 | 416 ± 2.11 | 600 ± 2.27 | 628 ± 2.01 |
pH1:2.5 (soil-to-water ratio) | MAFF [32] | 6.2 ± 0.04 | 6.3 ± 0.02 | 6.4 ± 0.02 | 6.7 ± 0.01 |
Description | Specifications |
---|---|
Model | SW650 |
Total weight fully loaded, kN | 69.6 |
Operating width, mm | 7000 |
Number of rows | 10 |
Row spacing, mm | 700 |
Metering system | Seed plate |
Tires | 400/60–15.5 |
Tire inflation pressure, kPa | 175 |
Tire–soil contact area, m2 | 0.19 |
Ground pressure, kPa | 91.5 |
Unit | Turbo Coulter Blade | Row Cleaner | Double-Disc Opener |
---|---|---|---|
Diameter, mm | 431.8 | 330.2 | 381 |
Thickness, mm | 5 | 4 | 35 |
Hole type, mm | 101.6 | - | - |
Number of teeth | - | 15 | - |
Treatment | Residue Cover (%) |
---|---|
Before planting | 97.3 ± 5.2 a |
T1 (after planting) | 72.1 ± 3.7 b |
T2 (after planting) | 47.2 ± 2.8 c |
T3 (after planting) | 93.0 ± 4.9 a |
Season | Crop Yield (Mg·ha−1) | Gross Income (USD·ha−1) | ||||
---|---|---|---|---|---|---|
Treatment | T1 | T2 | T3 | T1 | T2 | T3 |
2013 | 2.20 b | 2.70 a | 1.80 c | 628 b | 771 a | 514 c |
2014 | 2.40 b | 3.30 a | 1.68 c | 685 b | 942 a | 480 c |
2015 | 2.54 b | 3.50 a | 1.60 c | 725 b | 999 a | 457 c |
Average ± SD | 2.38 ± 0.17 | 3.16 ± 0.42 | 1.69 ± 0.11 | 680 ± 48.8 | 903 ± 118.9 | 483 ± 28.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardón, G.F.; Botta, G.F.; Aikins, K.A.; Rivero, D.; Bienvenido, F.; Antille, D.L. Seeding System Configuration Effects on Sunflower Seedling Emergence and Yield under No-Tillage. Soil Syst. 2021, 5, 72. https://doi.org/10.3390/soilsystems5040072
Nardón GF, Botta GF, Aikins KA, Rivero D, Bienvenido F, Antille DL. Seeding System Configuration Effects on Sunflower Seedling Emergence and Yield under No-Tillage. Soil Systems. 2021; 5(4):72. https://doi.org/10.3390/soilsystems5040072
Chicago/Turabian StyleNardón, Gustavo F., Guido F. Botta, Kojo A. Aikins, David Rivero, Fernando Bienvenido, and Diogenes L. Antille. 2021. "Seeding System Configuration Effects on Sunflower Seedling Emergence and Yield under No-Tillage" Soil Systems 5, no. 4: 72. https://doi.org/10.3390/soilsystems5040072
APA StyleNardón, G. F., Botta, G. F., Aikins, K. A., Rivero, D., Bienvenido, F., & Antille, D. L. (2021). Seeding System Configuration Effects on Sunflower Seedling Emergence and Yield under No-Tillage. Soil Systems, 5(4), 72. https://doi.org/10.3390/soilsystems5040072