Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Objects
2.2. Adsorption Experiments
3. Results
4. Discussion
4.1. FA Adsorption on Bentonite
4.2. FA Adsorption on Kaolinite
4.3. Adsorption Processes in the Systems FA–Pb–Kaolinite and FA–Pb–Bentonite
4.4. Adsorption Processes in the Systems FA–Zn–Kaolinite and FA–Zn–Bentonite
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perelomov, L.V.; Sizova, O.I.; Atroshchenko, Y.M. Adsorption of trace elements by bentonite in the presence of bacteria. Geochem. Int. 2019, 57, 290–297. [Google Scholar] [CrossRef]
- Perelomov, L.; Sarkar, B.; Pinsky, D.; Atroshchenko, Y.; Perelomova, I.; Mukhtorov, L.; Mazur, A. Trace elements adsorption by natural and chemically modified humic acids. Environ. Geochem. Health 2021, 43, 127–138. [Google Scholar] [CrossRef]
- Kloster, N.; Avena, M. Interaction of humic acids with soil minerals: Adsorption and surface aggregation induced by Ca2+. Environ. Chem. 2015, 12, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Lingfa, P. Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Mater. Today Proc. 2020, 22, 737–742. [Google Scholar] [CrossRef]
- Osipov, V.I.; Sokolov, V.N.; Rumyantseva, N.A. Microstructure of Clay Rocks; Nedra: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Pokidko, B.V.; Bukanova, E.F.; Tutorsky, I.A.; Il’ina, M.B. Influence of Ca2+ on the adsorption of different surfactants in the bentonite-water interface. Fine Chem. Technol. 2009, 4, 77–83. (In Russian) [Google Scholar]
- Ammann, L.; Bergaya, F.; Lagaly, G. Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Miner. 2005, 40, 441–453. [Google Scholar] [CrossRef]
- Perelomov, L.; Mandzhieva, S.; Minkina, T.; Atroshchenko, Y.; Perelomova, I.; Bauer, T.; Barakhov, A. The synthesis of organoclays based on clay minerals with different structural expansion capacities. Minerals 2021, 11, 707. [Google Scholar] [CrossRef]
- Liu, A.; Gonzalez, R.D. Adsorption/desorption in a system consisting of humic acid, heavy metals, and clay minerals. J. Colloid. Interface Sci. 1999, 218, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.M.; Violante, A. Influence of organic acids on crystallization and surface properties of precipitation products of aluminum. In Interactions of Soil Minerals with Natural Organics and Microbes; Huang, P.M., Schnitzer, M., Eds.; SSSA: Madison, WI, USA, 1986; pp. 159–221. [Google Scholar]
- Kurochkina, G.N.; Pinskii, D.L. Development of a mineralogical matrix at the adsorption of polyelectrolytes on soil minerals and soils. Eurasian Soil Sci. 2012, 45, 1057–1067. [Google Scholar] [CrossRef]
- Groenenberg, J.E.; Koopmans, G.F.; Comans, R.N.J. Uncertainty analysis of the nonideal competitive adsorption-Donnan model: Effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environ. Sci. Technol. 2010, 44, 1340–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.-L.; Tella, M.; Bravin, M.N.; Comans, R.N.J.; Dai, J.; Garnier, J.-M.; Sivry, Y.; Doelsch, E.; Straathof, A.; Benedetti, M.F. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem. Geol. 2015, 398, 61–69. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Ghabbour, E.A.; Davies, G. Spectrophotometric analysis of fulvic acid solutions—A second look. Ann. Environ. Sci. 2009, 3, 131–138. [Google Scholar]
- Violante, A.; Krishnamurti, G.S.R.; Pigna, M. Factors affecting the sorption–desorption of trace elements in soil environments. In Biophysico Chemical Processes of Heavy Metals and Metalloids in Soil Environments; Violante, A., Huang, P.M., Gadd, G.M., Eds.; Wiley–IUPAC: New York, NY, USA, 2007; pp. 169–214. [Google Scholar]
- Perelomov, L.V.; Pinskiy, D.L.; Violante, A. Effect of organic acids on the adsorption of copper, lead, and zinc by goethite. Eurasian Soil Sci. 2011, 44, 22–28. [Google Scholar] [CrossRef]
- Elliot, H.A.; Huang, C.P. Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Res. 1981, 15, 849–855. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Li, G.; Jiang, T. Effects of metal cations on the fulvic acid (FA) adsorption onto natural iron oxide in iron ore pelletizing process. Powder Technol. 2016, 302, 90–99. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, Z.; Montavon, G.; Jin, Q.; Guo, Z.; Wu, W. Surface complexation modeling of Eu(III) adsorption on silica in the presence of fulvic acid. Sci. China Chem. 2014, 57, 1276–1282. [Google Scholar] [CrossRef]
- Schnitzer, M.; Kodama, H. Reactions between fulvic acid and Cu2+-montmorillonite. Clays Clay Miner. 1972, 20, 359–367. [Google Scholar] [CrossRef]
- Lowe, L.E. Studies on the nature of sulphur in peat humic acids from the Fraser river delta British Columbia. Sci. Total Environ. 1992, 113, 133–145. [Google Scholar] [CrossRef]
- Jarukas, L.; Ivanauskas, L.; Kasparaviciene, G.; Baranauskaite, J.; Marksa, M.; Bernatoniene, J. Determination of organic compounds, fulvic acid, humic acid, and humin in peat and sapropel alkaline extracts. Molecules 2021, 26, 2995. [Google Scholar] [CrossRef]
- Orlov, D.S. Soil Chemistry; Russian Translation Series 92; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Byler, D.M.; Gerasimowicz, W.V.; Susi, H.; Schnitzer, M. FT-IR Spectra of soil constituents: Fulvic acid and fulvic acid complex with ferric ions. Appl. Spectrosc. 1987, 41, 1428–1430. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Lipatov, Y.S.; Sergeeva, L.M. Adsorption of Polymers; Naukova Dumka: Kiev, Russia, 1972. (In Russian) [Google Scholar]
- Sokolova, T.A.; Trofimov, S.Y. Sorption Properties of Soils. Adsorption. Cation Exchange: A Textbook on Some Chapters of Soil Chemistry; Grif and K: Tula, Russia, 2009. (In Russian) [Google Scholar]
- Balnois, E.; Wilkinson, K.J.; Lead, J.R.; Buffle, J. Atomic force microscopy of humic substances: Effects of pH and ionic strength. Environ. Sci. Technol. 1999, 33, 3911–3917. [Google Scholar] [CrossRef]
- Sokolowska, Z.; Sokolowski, S. Influence of humic acid on surface fractal dimension of kaolin: Analysis of mercury porosimetry and water vapour adsorption data. Geoderma 1999, 88, 233–249. [Google Scholar] [CrossRef]
- Christl, I.; Milne, C.J.; Kinniburgh, D.G.; Kretzschmar, R. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. Metal binding. Environ. Sci. Technol. 2001, 35, 2512–2517. [Google Scholar] [CrossRef]
- Rey-Castro, C.; Mongin, S.; Huidobro, C.; David, C.; Salvador, J.; Garcés, J.L.; Galceran, J.; Mas, F.; Puy, J. Effective affinity distribution for the binding of metal ions to a generic fulvic acid in natural waters. Environ. Sci. Technol. 2009, 43, 7184–7191. [Google Scholar] [CrossRef]
- Wang, J.; Lü, C.; He, J.; Zhao, B. Binding characteristics of Pb2+ to natural fulvic acid extracted from the sediments in Lake Wuliangsuhai, Inner Mongolia plateau, P.R. China. Environ. Earth Sci. 2016, 75, 768. [Google Scholar] [CrossRef]
- Chu, W.; Sun, Z.-G.; Jiao, C.-Q.; Zhu, Y.-Y.; Sun, S.-H.; Tian, H.; Zheng, M.J. Two novel lead (ii) carboxyphosphonates with a layered and a 3D framework structure: Syntheses, crystal structures, reversible dehydration/hydration, and luminescence properties. Dalton Trans. 2013, 42, 8009–8017. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-X.; Xiang, J.; Li, C.-H.; Leung, C.-F.; Xiang, J. Recent advances on the applications of luminescent Pb2+-containing metal–organic frameworks in white-light emission and sensing. Front. Chem. 2021, 9, 636431. [Google Scholar] [CrossRef]
- Vega, F.A.; Weng, L. Speciation of heavy metals in River Rhine. Water Res. 2013, 47, 363–372. [Google Scholar] [CrossRef]
C=O (220–185 ppm) | COOH, COOR (185–165 ppm) | Car-O (160–140 ppm) | Car-H, Car-C (140–90 ppm) | Calk-O, Cαβ-O4 (90–65 ppm) | CH3O (65–55 ppm) | Calk (55–10 ppm) |
---|---|---|---|---|---|---|
1.13 | 4.60 | 1.05 | 14.82 | 47.70 | 11.73 | 18.97 |
Total Aromaticity far (far = (PCarO + PCarH,C)) | Ratio of Aromatic and Aliphatic Parts in FA Car/Calk (Car/Calk = (PCarO + PCarH,C)/(Calk-O + CH3O + Calk)) | Proportion of Oxygen-Containing C Fragments in FA O/C (O/C = (PC=O + 2PCOOH + PCar-O + 1.25PCalk-O + 0.5PCH3O) | Degree of Oxidation of the Aromatic Core of FA O/Car (O/Car = PCar-O/(PCarO + PCarH,C)) | Degree of Oxidation of Aliphatic Component of FA O/Calk (O/Calk = (PCalk-O + PCH3O)/(PCalk-O + PCH3O + PCalk)) | Content of Cydrophilic Components HL, % (PC=O + PCOOH + PCalk-O) (PC=O + PCOOH + PCalk-O) | Content of Hydrophobic Components HB, % (PCar-H + PCar-C + PCalk) |
---|---|---|---|---|---|---|
15.87 | 0.20 | 0.77 | 0.07 | 0.76 | 53.43 | 33.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikishina, M.; Perelomov, L.; Atroshchenko, Y.; Ivanova, E.; Mukhtorov, L.; Tolstoy, P. Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals. Soil Syst. 2022, 6, 2. https://doi.org/10.3390/soilsystems6010002
Nikishina M, Perelomov L, Atroshchenko Y, Ivanova E, Mukhtorov L, Tolstoy P. Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals. Soil Systems. 2022; 6(1):2. https://doi.org/10.3390/soilsystems6010002
Chicago/Turabian StyleNikishina, Maria, Leonid Perelomov, Yury Atroshchenko, Evgenia Ivanova, Loik Mukhtorov, and Peter Tolstoy. 2022. "Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals" Soil Systems 6, no. 1: 2. https://doi.org/10.3390/soilsystems6010002
APA StyleNikishina, M., Perelomov, L., Atroshchenko, Y., Ivanova, E., Mukhtorov, L., & Tolstoy, P. (2022). Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals. Soil Systems, 6(1), 2. https://doi.org/10.3390/soilsystems6010002