Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing
Abstract
:1. Introduction
2. Behaviour of Cadmium in the Soil and Uptake by Plants
3. Toxic Effects of Cd on Plants
4. Phytoremediation of Cadmium from Polluted Soils
Plant Species | Cd Concentration in the Plant (mg/kg) | Plant Part Where Cd Is Accumulated | Recommended for |
---|---|---|---|
Aerva sanguinolenta [95] | 186 | roots | phytostabilisation |
Amaranthus hybridus [96] | 242 | shoots | phytoextraction |
Amaranthus hypochondriacus [87] | 217 | leaf | phytoextraction |
Amaranthus mangostanus [97] | 102–604 | shoots, roots, leaf | phytoextraction phytostabilisation |
Arabidopsis halleri [98,99] | 228–5722 | shoots, roots | phytoextraction phytostabilisation |
Arabis gemmifera [100] | 1810 | leaf | phytoextraction |
Arabis paniculate [101] | 1662–8670 | leaves, roots | phytoextraction, phytostabilisation |
Arabis yokoscense [100] | 685 | leaves | phytoextraction |
Atriplex halimus [102] | 217–606 | shoot, roots | phytoextraction phytostabilisation |
Azolla pinnata [103] | 740 | whole plant | phytoextraction |
Beta vulgaris [104] | 314.17–4547.9 | shoots, roots | phytoextractin phytostabilisation |
Bidens pilosa [105] | 400 | leaf | phytoextraction |
Brachiaria mutica [106] | 186 | shoots | phytoextaction |
Brachiaria sp. [95] | 137.3–647 | shoot, roots | phytoextraction phytostabilisation |
Cosmos. bipinnata [107] | 112.62 | shoots | phytoextrction |
Chromolaena. odorata [108] | >100 | shoots | phytoextraction |
Calendula calypso [109] | 165 | roots | phytostabilisation |
Callisia fragrans [110] | >101 | shoots | phytoextraction |
Carthamus tinctorius [111] | 148.1–236.6 | leaves | phytoextraction |
Cassia alata [85] | 159 | roots | phytostabilisation |
Celosia Argentea [87,112] | 121–236 | leaves, roots | phytoextraction phytostabilisation |
Chlorophytum comosum [110] | >100 | shoots | phytoextraction |
Chromolaena odorata [49] | 102–1440 | leaves, roots | phytoextraction phytostabilisation |
Desmostachya bipinnata [106] | 312 | shoots | phytoextaction |
Eucalyptus camaldulensis [113] | 10.5 | roots | phytostabilisation |
Eleusine indica [95] | 150 | roots | phytostabilisation |
Eucalyptus camaldulensis [113] | leaves | phytostabilisation | |
Eucalyptus globulus [114] | 5.11 | roots | phytostabilisation |
Glycine max [115] | 74.8–290 | leaves | phytoextraction |
Gynura pseudochina [95,116] | 457.7 | shoots | phytoextraction |
Helianthus annuus [117] | 65.7 | shoots, roots | phytoextraction, phytostabilisation |
Helianthus tuberosus [118] | 328.77–2167.9 | leaves, roots | phytoextraction phytostabilisation |
Hydrocotyle sibthorpioides [119] | 128.5 | shoots | phytoextraction |
Impatiens violaeflora [95] | 212,3 | shoots | phytoextraction |
Imperata cylindrica [95] | 133,2 | roots | phytostabilisation |
Iris lacteal | 121 | shoots | phytoextraction |
Iris tectorum | 171 | shoots | phytoextraction |
Justicia procumbens [95] | 548 | shoots | phytoextraction |
Lantana camara [16] | >100 | shoots | phytoextraction |
Leptochloa fusca [106] | 245 | shoots | phytoextaction |
Lolium multiforum [115] | 106.83 | leaves | phytoextraction |
Lonicera japonica [120] | 402.96 | shoots | phytoextraction |
Lycopersicon esculentum [121] | 130–174 | shoots | phytoextraction |
Microsorum pteropus [122] | >400 mg/kg | root, stem, leaves | phytoextraction |
Macleaya cordata [123] | 163.39 | roots | phytostabilisation |
Malva rotundifolia [124] | 900 | shoots | phytoextraction |
Nicotiana sp. [125] | 271.5 | leaves | phytoextraction |
Nicotiana tabacum [90] | 314.6 | shoots | phytoextraction |
Phytolacca acinosa [87] | 110 | leaves | phytoextraction |
Phytolacca americana [126] | 188.4 | shoots | phytoextraction |
Picris divaricata [127] | 585 | shoots | phytoextraction |
Pistia stratiotesfe [128] | 248 | shoots | phytoextraction |
Populus nigra [129] | 2070 | shoots | phytoextraction |
Potamogeton pectinatus [130] | 422 | shoots | phytoextraction |
Prosopis laevigata [131] | 8176 | shoots | phytoextraction |
Pteris vittate [132] | 216.5 | shoots | phytoextraction |
Pterocypsela laciniata [133] | 207.97 | shoots | phytoextraction |
Rorippa globosa [134] | 150 | shoots | phytoextraction |
Sedum plumbizincicola [135] | 152.93 | shoots | phytoextaction |
Sida rhombifolia [124] | 225.31 | roots | phytostabilisation |
Sedum alfredii [136] | 9000 | leaves | phytoextraction |
Sedum plumbizincicola [124] | 139 | shots | phytoextraction |
Siegesbeckia orientalis [137] | 193 | shots | phytoextraction |
Silene sendtneri [45] | 2156 | shots | phytoextraction |
Silene vulgaris [138] | 203–750 | Roots | Phytostabilisation |
Solanum lycopersicum [115] | 133.45 | leaves | phytoextraction |
Solanum nigrum [104] | 100.6–2021.7 | shoots, roots | phytoextraction phytostabilisation |
Sphagneticola calendulacea [139] | >100 | shoots | phytoextaction |
Sporobolus arabicus [106] | 171 | shoots | phytoextaction |
Tagetes. erecta [140] | 166.07 | shoots | phytoextraction |
Tagetes. patula [141] | 231.72–601.45 | shoots | phytoextraction |
Taraxacum ohwianum [142] | 181.39 | shoots | phytoextraction |
Turnip landraces [143] | 139.7 | leaves | phytoextraction |
Vettiveria zizanioides [144,145] | 263–2232 | Roots | phytostabilisation |
Viola baoshanensis [132] | 2310 | shoot | phytoextraction |
5. Approaches for Enhancing Cadmium Phytoremediation
5.1. Enhancement of Phytoremediation by Soil Amelioration
5.2. Enhanced Phytoremediation by Increasing Plant Capacities
Method | Used Enhancer | Plant Species | Result | |
---|---|---|---|---|
Soil supplementation | Chemical chelators | ethylenegluatarotriacetic acid (EDTA); sodium dodecyl sulfate (SDS) [112] | Calendula officinalis; Althea rosea | Significant increase of Cd accumulation in A. rosea |
SDS EDTA [182] | Calendula officinalis | Efficient chemical enhancement of Cd phytoremediation | ||
Citric acid, ethylenediamine disuccinic acid (EDDS), EDTA [149] | Ricinus communis | Low effectiveness great risks due to toxicology and environmental persistence | ||
[N, N]-bis glutamic acid (GLDA), nitrilotriacetic acid (NTA), [S, S]- EDDS, and citric acid (CA) [183] | Amaranthus hypochondriacus | Combination of chelators effective for enhancement of Cd phytoremediation | ||
EDTA [149] | Lolium perenne | Increased heavy metal absorption | ||
Biochar and EDTA [147] | Brassica juncea | Enhanced heavy metal tolerance | ||
EDTA [184] | Pelargonium hortoum | Increased biomass, increased accumulation of heavy metals | ||
EDTA [185] | Sedum aizoon Suaeda salsa | Enhanced efficiency of Cd removal | ||
EDTA [186] | bamboo | Increased absorption of heavy metals | ||
EDTA [187] | Datura stamonium | Enhanced phytoremediation of Cd | ||
EDTA, EDDS [183] | Amaranthus hypochondriacus | Enhanced accumulation of heavy metals | ||
Electro-phytoremediation | Application of low voltage direct current to electrodes in the soil [188] | Solanum tuberosum. Var. Kuras | Increase of Cd accumulation in plant roots | |
DC electric fields [189] | Eucalyptus globulus | Increase of phytoremediation capacity | ||
DC electric fields [190] | Eucalyptus globulus | Increased uptake of heavy metals | ||
Bioagumentation | Micrococcus sp., Pseudomonas sp. Arthrobacter sp. [191] | Glycine max | Increased Cd uptake | |
Lactococcus, Raoultella, Bacillus, Acinetobacter, Gluconacetobacter, Dyella [192] | Phragmites australis | Enhanced phytoremediation | ||
Cyanobacteria [193] | Portulacea oleracea | Enhanced phytoremediation of heavy metals | ||
Rhizobacteria [194] | Scirpus grossus | Enhanced phytoremediation of pollutants | ||
Vibrio alginolyticus [195] | Scirpus grossusThypha angustifolia | Enhanced removal of heavy metals from soil | ||
Enterobacter sp. FM-1 [196] | Polygonum hydropiper Polygonum lapathifolium | Enhanced Cd phytoextraction | ||
Kluyvera intermedia, Klebsiella oxytoca, Citrobacter murliniae [197] | Sorghum bicolor | Enhanced phytoremediation | ||
Simplicillium chinense QD10 [150] | Phragmites communis | Significant removal of acid-extractable and reducible metals in soils and the increase of Cd accumulation in P. communis | ||
Funneliformis mosseae and Rhizophagus intraradices, β-cyclodextrin [198] | Solanum nigrum | Combination of fungi and surfactant effective enhancement of phytoremediation | ||
Plant enhancement | Plant growth regulators | Indole-3-acetic acid (IAA), gibberellin A3 (GA3) and 6-Benzylaminopurine (6-BA) [189] | Brassica juncea | Significant increase of shoot uptake of Cd after IAA treatment |
IAA, GA3, 6-BA, 24-epibrassinolide (EBL) [199] | Brassica juncea | Enhanced phytoremediation of Cd | ||
GA3 [200] | Luffa acutangular | Improved phytoremediation of pollutants | ||
GA3, IAA, [201] | Dysphania ambrosioides | Improved Cd phytoextraction | ||
Salicylic acid [199] | Impatiens balsamina | Enhanced phytoremediation of pollutants | ||
Seed priming | Sound waves of frequency 200, 300, 400, 500, and 1000 Hz [202] | Festuca arundinacea | Increase od Cd extraction ability in positive correlation with sound frequency | |
Proline [66] | Zea mais | Increased tolerance of Cd | ||
Proline, salicylic and silicic acid [45] | Silene sendtneri | Increased tolerance and accumulation of Cd in shoots (enhanced phytoremediation) | ||
Putrescin [203] | Coriandrum sativum | Enhanced phytoextraction of Cd |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.J.; Smolders, E.; Zhao, F.J.; Grant, C.; Montalvo, D. Managing cadmium in agricultural systems. Adv. Agron. 2021, 166, 1–129. [Google Scholar]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Alfred Bernard, A.; Diamond, G.L.; Duffus, J.H.; Illing, P.; Nordberg, M.; Bergdahl, I.A.; Jin, T.; Skerfving, S. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure Appl. Chem. 2018, 90, 755–808. [Google Scholar] [CrossRef] [Green Version]
- Makino, T.; Sugahara, K.; Sakura, Y.; Takano, H.; Kamiya, T.; Sasaki, K.; Itou, T.; Sekiya, N. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals. Environ. Pollut. 2006, 144, 2–10. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, J.; Xu, Y.; Fang, Z.; Zheng, L.; Cheng, W.; Zhao, D. Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol. Eng. 2017, 106, 515–522. [Google Scholar] [CrossRef]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere 2018, 194, 579–587. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Hossain, K.; Ismail, N.; Tajarudin, H.A.; Abdul Khalil, H.P.S. A review on mechanism and future perspectives of cadmium-resistant bacteria. Int. J. Environ. Sci. Technol. 2017, 15, 243–262. [Google Scholar] [CrossRef]
- Riaz, U.; Aslam, A.; Zaman, Q.; Javeid, S.; Gul, R.; Iqbal, S.; Javid, S.; Murtaza, G.; Jamil, M. Cadmium contamination, bioavailability, uptake mechanism and remediation strategies in soil-plant-environment system: A critical review. Curr. Anal. Chem. 2021, 17, 49–60. [Google Scholar] [CrossRef]
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.M.S.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Yu, Z.G. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2021, 268, 128855. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.S.; Zhang, Z. Mechanisms of cadmium phytoremediation and detoxification in plants. Crop J. 2021, 9, 521–529. [Google Scholar] [CrossRef]
- Takahashi, R.; Ito, M.; Kawamoto, T. The road to practical application of cadmium phytoremediation using rice. Plants 2021, 10, 1926. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.; Hashempour, Y. Phytoremediation of Cd and Pb in polluted soil: A systematic review. Int. J. Environ. Anal. Chem. 2021, in press. [Google Scholar] [CrossRef]
- Liu, S.; Ali, S.; Yang, R.; Tao, J.; Ren, B. A newly discovered Cd-hyperaccumulator Lantana camara L. J. Hazard. Mater. 2019, 371, 233–242. [Google Scholar] [CrossRef]
- Ali, U.; Zhong, M.; Shar, T.; Fiaz, S.; Xie, L.; Jiao, G.; Ahmad, S.; Sheng, Z.; Tang, S.; Wei, X.; et al. The influence of pH on cadmium accumulation in seedlings of rice (Oryza sativa L.). J. Plant. Growth Regul. 2020, 39, 930–940. [Google Scholar] [CrossRef]
- Shiyu, Q.I.N.; Hongen, L.I.U.; Zhaojun, N.I.E.; Rengel, Z.; Wei, G.A.O.; Chang, L.I.; Peng, Z.H.A.O. Toxicity of cadmium and Shiyuits competition with mineral nutrients for uptake by plants: A review. Pedosphere 2020, 30, 168–180. [Google Scholar]
- Chen, H.S.; Huang, Q.Y.; Liu, L.N.; Cai, P.; Liang, W.; Li, M. Poultry manure compost alleviates the phytotoxicity of soil cadmium: Influence on growth of pakchoi (Brassica chinensis L.). Pedosphere 2010, 20, 63–70. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Naidu, R. Role of phosphorus in mobilization and bioavailability of heavy metals in the soil-plant system. Rev. Environ. Contam. Toxicol. 2003, 177, 1–44. [Google Scholar]
- Krishnamurti, G.S.R.; Cieslinski, G.; Huang, P.M.; Van Rees, K.C.J. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Environ. Qual. 1997, 26, 271–277. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, X.; Yu, X.; Zhang, H.; Li, Z.; Jin, D. Adsorption behaviors of Cd2+ on Fe2O3/MnO2 and the effects of coexisting ions under alkaline conditions. Chin. J. Geochem. 2010, 29, 197–203. [Google Scholar] [CrossRef]
- Sipos, P.; Tóth, A.; Kis, V.K.; Balázs, R.; Kovács, I.; Németh, T. Partition of Cd, Cu, Pb and Zn among mineral particles during their sorption in soils. J. Soils Sediments 2019, 19, 1775–1787. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef]
- Smolders, E.; McLaughlin, M.J. Chloride increases cadmium uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci. Soc. Am. J. 1996, 60, 1443–1447. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Takahashi, R.; Bashir, K.; Shimo, H.; Senoura, T.; Sugimoto, K.; Ono, K.; Yano, M.; Ishikawa, S.; Arao, T. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci. Rep. 2012, 2, 286. [Google Scholar] [CrossRef]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Calcium channels in higher plants. Biochim. Biophys. Acta. Biomembr. 2000, 1465, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jin, L.; Wang, X. Cadmium absorption and transportation pathways in plants. Int. J. Phytoremediat. 2017, 19, 133–141. [Google Scholar] [CrossRef]
- Curie, C.; Cassin, G.; Couch, D.; Divol, F.; Higuchi, K.; Le Jean, M.; Mari, S. Metal movement within the plant: Contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 2009, 103, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viehweger, K. How plants cope with heavy metals. Bot. Stud. 2014, 55, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Mendoza-Cózatl, D.G.; Jobe, T.O.; Hauser, F.; Schroeder, J.I. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr. Opin. Plant Biol. 2011, 14, 554–562. [Google Scholar] [CrossRef] [Green Version]
- DalCorso, G.; Farinati, S.; Maistri, S.; Furini, A. How plants cope with cadmium: Staking all on metabolism and gene expression. J. Integr. Plant Biol. 2008, 50, 126S8–1280. [Google Scholar] [CrossRef]
- Sigel, A.; Sigel, H.; Sigel, R. Metallothioneins and Related Chelators, Metal Ions in Life Sciences; Royal Society of Chemistry Publishing: Cambridge, UK, 2009; Volume 5. [Google Scholar]
- Mendoza-Cózatl, D.G.; Butko, E.; Springer, F.; Torpey, J.W.; Komives, E.A.; Kehr, J.; Schroeder, J.I. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptide in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 2008, 54, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel-Mikuš, K.; Arčon, I.; Kodre, A. Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil. 2010, 331, 439–451. [Google Scholar] [CrossRef]
- Küpper, H.; Mijovilovich, A.; Meyer-Klaucke and Kroneck, W.P.M. Tissue-and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol. 2004, 134, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.K.E.; Cobbett, C.S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol. 2009, 181, 71–78. [Google Scholar] [CrossRef]
- Rochayati, S.; Du Laing, G.; Rinklebe, J.; Meissner, R.; Verloo, M. Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: Accumulation of cadmium and zinc in soils and shoots of maize plants. J. Plant Nutr. Soil Sci. 2011, 174, 186–194. [Google Scholar] [CrossRef]
- Keunen, E.; Remans, T.; Bohler, S.; Vangronsveld, J.; Cuypers, A. Metal-induced oxidative stress and plant mitochondria. Int. J. Mol. Sci. 2011, 12, 6894–6918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irfan, M.; Hayat, S.; Ahmad, A.; Alyemeni, M.N. Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi J. Biol. Sci. 2013, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks, and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Clemens, S.; Schroeder, J.I.; Degenkolb, T. Caenorhabdites elegans expresses a functional phytochelatin synthase. Eur. J. Biochem. 2001, 268, 3640–3643. [Google Scholar] [CrossRef]
- Karalija, E.; Selović, A.; Dahija, S.; Demir, A.; Samardžić, J.; Vrobel, O.; Zeljković, S.Ć.; Parić, A. Use of seed priming to improve Cd accumulation and tolerance in Silene sendtneri, novel Cd hyper-accumulator. Ecotoxicol. Environ. Saf. 2021, 210, 111882. [Google Scholar] [CrossRef]
- He, S.; He, Z.; Yang, X.; Stoffella, P.J.; Baligar, V.C. Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 134, pp. 135–225. [Google Scholar]
- McGrath, S.P.; Zhao, F.J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef]
- Krämer, U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Tanhan, P.; Kruatrachue, M.; Pokethitiyook, P.; Chaiyarat, R. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 2007, 68, 323–329. [Google Scholar]
- Sooksawat, N.; Meetam, M.; Kruatrachue, M.; Pokethitiyook, P.; Nathalang, K. Phytoremediation potential of charophytes: Bioaccumulation and toxicity studies of cadmium, lead and zinc. J. Environ. Sci. 2013, 25, 596–604. [Google Scholar] [CrossRef]
- Xue, Z.C.; Gao, H.Y.; Zhang, L.T. Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biol. Plant. 2013, 57, 587–590. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Q.; Wang, X.; Zhang, K.; Guo, G.; Ma, L.Q. A newly-discovered Cd-hyperaccumulator Solatium nigrum L. Chin. Sci. Bull. 2005, 50, 33–38. [Google Scholar] [CrossRef]
- Solís-Domínguez, F.; González-Chávez, M.; Carrillo-González, R.; Rodríguez-Vázquez, R. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J. Hazard. Mater. 2007, 141, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Küpper, H.; Parameswaran, A.; Leitenmaier, B.; Trtílek, M.; Šetlík, I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol. 2007, 175, 655–674. [Google Scholar] [CrossRef] [PubMed]
- Pagliano, C.; Raviolo, M.; Dalla Vecchia, F.; Gabbrielli, R.; Gonnelli, C.; Rascio, N.; La Rocca, N. Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J. Photochem. Photobiol. B 2006, 84, 70–78. [Google Scholar] [CrossRef]
- Jinadasa, N.; Collins, D.; Holford, P.; Milham, P.J.; Conroy, J.P. Reactions to cadmium stress in a cadmiumtolerant variety of cabbage (Brassica oleracea L.): Is cadmium tolerance necessarily desirable in food crops? Environ. Sci. Pollut. Res. 2016, 23, 5296–5306. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, A.C.; Cannata, M.G.; Carvalho, R.; Bastos, A.R.R.; Freitas, M.P.; dos Santos, A.A. Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: Nutrient contents and translocation. Ecotoxicol. Environ. Saf. 2012, 86, 176–181. [Google Scholar] [CrossRef]
- Fodor, F.; Gáspár, L.; Morales, F.; Gogorcena, Y.; Lucena, J.J.; Cseh, E.; Kröpfl, K.; Abadía, J.; Sárvári, E. Effects of two iron sources on iron and cadmium allocation in poplar (Populus alba) plants exposed to cadmium. Tree Physiol. 2005, 25, 1173–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, H.; Fukuoka, H.; Arao, T.; Ohyama, A.; Nunome, T.; Miyatake, K.; Negoro, S. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J. Exp. Bot. 2009, 61, 423–437. [Google Scholar] [CrossRef] [Green Version]
- Heyno, E.; Klose, C.; Krieger-Liszkay, A. Origin of cadmium-induced reactive oxygen species production: Mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol. 2008, 179, 687–699. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, J.; Leonard, S.S.; Rao, K.M. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic. Biol. Med. 2004, 36, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siripornadulsil, S.; Traina, S.; Verma, D.P.S.; Sayre, R.T. Of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 2002, 14, 2837–2847. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002, 5, 218–223. [Google Scholar] [CrossRef]
- Karalija, E.; Selović, A. The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress. Environ. Sci. Pollut. Res. 2018, 25, 33370–33380. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Ramanjaneyulu, A.V.; Neelima, T.L.; Madhavi, A.; Ramprakash, T. Phytoremediation: An overview. In Applied Botany; Humberto, R.M., Ashok, G.R., Thakur, K., Sarkar, N.C., Eds.; American Academic Press: Cambridge, MA, USA, 2017; pp. 42–84. [Google Scholar]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.S.; Chali, B.; Azam, T. Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Res. Plant Sci. 2013, 1, 68–73. [Google Scholar]
- De Mello-Farias, P.C.; Chaves, A.L.S.; Lencina, C.L. Transgenic plants for enhanced phytoremediation–physiological studies. In Genetic Transformation; Alvarez, M., Ed.; IntechOpen: London, UK, 2011; pp. 305–328. [Google Scholar]
- Andrade Júnior, W.V.; de Oliveira Neto, C.F.; Santos Filho, B.G.D.; do Amarante, C.B.; Cruz, E.D.; Okumura, R.S.; Barbosa, A.V.C.; de Sousa, D.J.P.; Teixeira, J.S.S.; Botelho, A.D.S. Effect of cadmium on young plants of Virola surinamensis. AoB Plants 2019, 11, plz022. [Google Scholar] [CrossRef]
- Zgorelec, Z.; Bilandzija, N.; Knez, K.; Galic, M.; Zuzul, S. Cadmium and Mercury phytostabilization from soil using Miscanthus x giganteus. Sci. Rep. 2020, 10, 1–10. [Google Scholar]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Application of whitemustard and oats in the phytostabilisation of soil contaminated with cadmium with the addition of cellulose and urea. J. Soil Sediment. 2020, 20, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, J.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K. Phytoremediation of metal enriched mine waste: A review. Glob. J. Environ. Res. 2010, 4, 135–150. [Google Scholar]
- Kumar, V.; Shahi, S.K.; Singh, S. Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In Microbial Bioprospecting for Sustainable Development; Singh, J., Sharma, D., Kumar, G., Sharma, N.R., Eds.; Springer: Singapore, 2018; pp. 115–136. [Google Scholar]
- Kumar, P.S.; Gunasundari, E. Bioremediation of heavy metals. In Bioremediation: Applications for Environmental Protection and Management; Springer: Singapore, 2018; pp. 165–195. [Google Scholar]
- Javed, M.T.; Tanwir, K.; Akram, M.S.; Shahid, M.; Niazi, N.K.; Lindberg, S. Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: Role of plant-induced pH changes. In Cadmium Toxicity and Tolerance in Plants; Academic Press: Cambridge, MA, USA, 2019; pp. 495–529. [Google Scholar]
- Abhilash, P.; Pandey, V.C.; Srivastava, P.; Rakesh, P.; Chandran, S.; Singh, N.; Thomas, A. Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J. Hazard. Mater. 2009, 170, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Dürešová, Z.; Šúnovská, A.; Horník, M.; Pipíška, M.; Gubišová, M.; Gubiš, J.; Hostin, S. Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater. Chem. Pap. 2014, 68, 1452–1462. [Google Scholar] [CrossRef]
- Pajević, S.; Borišev, M.; Nikolić, N.; Arsenov, D.D.; Orlović, S.; Župunski, M. Phytoextraction of heavy metals by fast-growing trees: A review. Phytoremediation 2016, 11, 29–64. [Google Scholar]
- Jadia, C.D.; Fulekar, H.M. Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ. Eng. Manag. J. 2008, 7, 547–558. [Google Scholar]
- Singh, V.; Bhargava, M. Phytomining: Principles and Applications. In Biotechnology: Recent Trends and Emerging Dimensions; Bhargava, A., Srivastava, S., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 141–159. [Google Scholar]
- Van der Ent, A.; Baker, A.J.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Yu, G.; Liu, J.; Long, Y.; Chen, Z.; Sunahara, G.I.; Jiang, P.; You, S.; Lin, H.; Xiao, H. Phytoextraction of cadmium-contaminated soils: Comparison of plant species and low molecular weight organic acids. Int. J. Phytoremediat. 2019, 22, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Fernandes, A.; Junior, M.S.; Santos, C.; Lobato, A. Tolerance mechanisms in Cassia alata exposed to cadmium toxicity–potential use for phytoremediation. Photosynthetica 2018, 56, 495–504. [Google Scholar] [CrossRef]
- Ali, S.Y.; Banerjee, S.N.; Chaudhury, S. Phytoextraction of cadmium and lead by three vegetable-crop plants. Plant Sci. Today 2016, 3, 298–303. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Tang, J.; Hu, L.; Chen, X. Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil. J. Environ. Sci. 2011, 23, 453–460. [Google Scholar] [CrossRef]
- Fan, K.C.; His, H.C.; Chen, C.W.; Lee, H.L.; Hseu, Z.Y. Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J. Environ. Manag. 2011, 92, 2818–2822. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Brooks, R.; Stewart, R.; Simcock, R.; Robinson, B. The phytoremediation and phytomining of heavy metals. In Proceedings of the Pacrim International Congress on Earth Science, Exploration and Mining Around Pacific Rim, Bali, Indonesia, 10–13 October 1999; pp. 127–135. [Google Scholar]
- Ranieri, E.; Moustakas, K.; Barbafieri, M.; Ranieri, A.C.; Herrera-Melián, J.A.; Petrella, A.; Tommasi, F. Phytoextraction technologies for mercury-and chromium-contaminated soil: A review. J. Chem. Technol. Biotechnol. 2020, 95, 317–327. [Google Scholar] [CrossRef]
- Ernst, W.H. Phytoextraction of mine wastes—Options and impossibilities. Geochemistry 2005, 65, 29–42. [Google Scholar] [CrossRef]
- Phaenark, C.; Pokethitiyook, P.; Kruatrachue, M. Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int. J. Phytoremediat. 2014, 11, 37–41. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Xu, X.; Li, T.; Gong, G.; Jia, Y. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. J. Hazard. Mater. 2010, 180, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Hong-li, F.A.N.; Wei, Z. Screening of Amaranth Cultivars (Amaranthus mangostanus L.) for Cadmium Hyperaccumulation. Agric. Sci. China 2009, 8, 342–351. [Google Scholar]
- Küpper, H.; Lombi, E.; Zhao, F.J.; McGrath, S.P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 2000, 212, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Jiang, R.F.; Dunham, S.J.; McGrath, S.P. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. 2006, 172, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Kubota, H.; Takenaka, C. Field Note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int. J. Phytoremediat. 2003, 5, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Qju, R.L.; Zhao, X.; Tang, Y.T.; Yu, F.M.; Hu, P. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator. Chemosphere 2008, 74, 6–12. [Google Scholar]
- Nedjimi, B.; Daoud, Y. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora: Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 316–324. [Google Scholar]
- Rai, P.K. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytoremediat. 2008, 10, 430–439. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Song, X.; Hou, Y.; Sun, L. Phytoextraction Potential of Solanum nigrum L. and Beta Vulgaris L. Var. cicla L. in Cd-Contaminated Water. Pol. J. Environ. Stud. 2015, 24, 1683–1687. [Google Scholar]
- Dai, H.; Wei, S.; Twardowska, I.; Han, R.; Xu, L. Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability. Environ. Sci. Pollut. Res. 2017, 24, 23161–23167. [Google Scholar] [CrossRef]
- Ullah, S.; Mahmood, T.; Iqbal, Z.; Naeem, A.; Ali, R.; Mahmood, S. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. Int. J. Phytoremediat. 2019, 21, 1012–1018. [Google Scholar] [CrossRef]
- Huang, J.; Yang, Z.; Li, J.; Liao, M.A.; Lin, L.; Wang, J.; Yang, Y.; Liang, D.; Xia, H.; Wang, X.; et al. Cadmium accumulation characteristics of floricultural plant Cosmos bipinnata. Chem. Ecol. 2017, 33, 807–816. [Google Scholar] [CrossRef]
- Wei, T.; Lv, X.; Jia, H.; Hua, L.; Xu, H.; Zhou, R.; Zhao, J.; Ren, X.; Guo, J. Effects of salicylic acid, Fe (II) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes. J. Environ. Manag. 2018, 214, 164–171. [Google Scholar] [CrossRef]
- Farooq, A.; Nadeem, M.; Abbas, G.; Shabbir, A.; Khalid, M.S.; Javeed, H.M.R.; Saeed, M.F.; Akram, A.; Younis, A.; Akhtar, G. Cadmium partitioning, physiological and oxidative stress responses in Marigold (Calendula calypso) grown on contaminated soil: Implications for phytoremediation. Bull. Environ. Contam. Toxicol. 2020, 105, 270–276. [Google Scholar] [CrossRef]
- Simek, J.; Kovalikova, Z.; Dohnal, V.; Tuma, J. Accumulation of cadmium in potential hyperaccumulators Chlorophytum comosum and Callisia fragrans and role of organic acids under stress conditions. Environ. Sci. Pollut. Res. 2018, 25, 28129–28139. [Google Scholar] [CrossRef] [PubMed]
- Angelova, V.R.; Perifanova-Nemska, M.N.; Uzunova, G.P.; Kolentsova, E.N. Accumulation of heavy metals in safflower (Carthamus tinctorius L.). Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2016, 10, 410–415. [Google Scholar]
- Liu, J.N.; Zhou, Q.X.; Sun, T.; Ma, L.Q.; Wang, S. Identification and chemical enhancement of two ornamental plants for phytoremediation. Bull. Environ. Contam. Toxicol. 2008, 80, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Madejon, P.; Maranon, T.; Navarro-Fernandez, C.M.; Dominguez, M.T.; Alegre, J.M.; Robinson, B.; Murillo, J.M. Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS ONE 2017, 12, e0180240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Qi, S.; Peng, L.; Wang, J. Phytoremediation efficiency of Cd by Eucalyptus globulus transplanted from polluted and unpolluted sites. Int. J. Phytoremediat. 2016, 18, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.K.; Zhao, J.; Ren, X.H.; Jia, H.L.; Muhammad, H.; Lv, X.; Wei, T.; Hua, L. Effects of Burkholderia sp. D54 on growth and cadmium uptake of tomato, ryegrass and soybean plants. Int. J. Environ. Sci. Technol. 2020, 17, 1149–1158. [Google Scholar] [CrossRef]
- Murakami, M.; Ae, N.; Ishikawa, S. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ. Pollut. 2007, 145, 96–103. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Chen, L.; Long, X.H.; Zhang, Z.H.; Zheng, X.T.; Rengel, Z.; Liu, Z.P. Cadmium accumulation and translocation in two Jerusalem artichoke (Helianthus tuberosus L.) cultivars. Pedosphere 2011, 21, 573–580. [Google Scholar] [CrossRef]
- Pan, P.; Lei, M.; Qiao, P.; Zhou, G.; Wan, X.; Chen, T. Potential of indigenous plant species for phytoremediation of metal (loid)-contaminated soil in the Baoshan mining area, China. Environ. Sci. Pollut. Res. 2019, 26, 23583–23592. [Google Scholar] [CrossRef]
- Liu, Z.; He, X.; Chen, W.; Yuan, F.; Yan, K.; Tao, D. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J. Hazard. Mater. 2009, 169, 170–175. [Google Scholar] [CrossRef]
- He, L.Y.; Chen, Z.J.; Ren, G.D.; Zhang, Y.F.; Qian, M.; Sheng, X.F. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol. Environ. Saf. 2009, 72, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.Y.; Yan, Y.Y.; Yang, B.; Li, X.Y.; Xu, F.L. Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator–Microsorum pteropus. Environ. Pollut. 2019, 248, 1020–1027. [Google Scholar] [CrossRef]
- Nie, J.; Liu, Y.; Zeng, G.; Zheng, B.; Tan, X. Cadmium accumulation and tolerance of Macleaya cordata: A newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 10189–10199. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Luo, Q.; Liu, S.; Zhao, Y.; Long, Y.; Pan, Y. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicol. Environ. Saf. 2018, 162, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ge, Y.; Zeng, H.; Zhou, X.; Peng, L.; Zeng, Q. Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Peng, K.; Wang, A.; Lian, C.; Shen, Z. Chemosphere Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 2010, 78, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Qiu, R.; Zeng, X.; Fang, X.; Yu, F.; Zhou, X.; Wu, Y. Zn and Cd hyperaccumulating characteristics of Picris divaricata Vant. Int. J. Environ. Pollut. 2009, 38, 26–38. [Google Scholar] [CrossRef]
- Das, S.; Goswami, S.; Talukdar, A.D. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bull. Environ. Contam. Toxicol. 2014, 92, 169–174. [Google Scholar] [CrossRef]
- Akkus Ozen, S.; Yaman, M. Examination of correlation between histidine, sulphur, cadmium, and cobalt absorption by Morus L., Robinia pseudoacacia L., and Populus nigra L. Commun. Soil Sci. Plant Anal. 2017, 48, 1212–1220. [Google Scholar] [CrossRef]
- Lu, G.; Wang, B.; Zhang, C.; Li, S.; Wen, J.; Lu, G.; Zhu, C.; Zhou, Y. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int. J. Phytoremediat. 2018, 20, 839–846. [Google Scholar] [CrossRef]
- Buendía-González, L.; Orozco-Villafuerte, J.; Cruz-Sosa, F.; Barrera-Díaz, C.E.; Vernon-Carter, E.J. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour. Technol. 2010, 101, 5862–5867. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Yang, J. Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. Catena 2017, 148, 67–73. [Google Scholar] [CrossRef]
- Zhong, L.; Lin, L.; Liao, M.A.; Wang, J.; Tang, Y.; Sun, G.; Liang, D.; Xia, H.; Wang, X.; Zhang, H.; et al. Phytoremediation potential of Pterocypsela laciniata as a cadmium hyperaccumulator. Environ. Sci. Pollut. Res. 2019, 26, 13311–13319. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Q.X. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting (5 pp). Environ. Sci. Pollut. Res. 2006, 13, 151–155. [Google Scholar] [CrossRef]
- Huang, R.; Dong, M.; Mao, P.; Zhuang, P.; Paz-Ferreiro, J.; Li, Y.; Li, Y.; Hu, X.; Netherway, P.; Li, Z. Evaluation of phytoremediation potential of five Cd (hyper) accumulators in two Cd contaminated soils. Sci. Total Environ. 2020, 721, 137581. [Google Scholar] [CrossRef]
- Yang, X.E.; Long, X.X.; Ye, H.B.; He, Z.L.; Calvert, D.V.; Stoffella, P.J. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 2004, 259, 181–189. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, H.; Deng, L.; Gong, G.; Jia, Y.; Xu, X.; Li, T.; Li, Y.; Chen, H. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecol. Eng. 2013, 51, 133–139. [Google Scholar] [CrossRef]
- Miras-Moreno, B.; Almagro, L.; Pedreño, M.A.; Ferrer, M.Á. Accumulation and tolerance of cadmium in a non-metallicolous ecotype of Silene vulgaris Garcke (Moench). Anales de Biología 2014, 36, 55–60. [Google Scholar] [CrossRef]
- Lu, R.R.; Hu, Z.H.; Zhang, Q.L.; Li, Y.Q.; Lin, M.; Wang, X.L.; Wu, X.N.; Yang, J.T.; Zhang, L.Q.; Jing, Y.X.; et al. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicol. Environ. Saf. 2020, 203, 110988. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, W.; He, X. Evaluation of hyperaccumulation potentials to cadmium (Cd) in six ornamental species (Compositae). Int. J. Phytoremediat. 2018, 20, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Qin, X.; Liang, X.; Huang, Q.; Peng, Y. Effects of EDDS on the Cd uptake and growth of Tagetes patula L. and Phytolacca americana L. in Cd-contaminated alkaline soil in northern China. Environ. Sci. Pollut. Res. 2020, 27, 25248–25260. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Q.; Ma, M.; Liu, Y.; Wang, W.; Ning, W. Cadmium tolerance, distribution, and accumulation in Taraxacum ohwianum Kitam. As a potential Cd-hyperaccumulator. Int. J. Phytoremediat. 2019, 21, 541–549. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Yang, Y.; Li, B.; Wu, Y.; Sun, H.; Yang, Y. Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils. Front. Plant Sci. 2016, 7, 1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aibibu, N.; Liu, Y.; Zeng, G.; Wang, X.; Chen, B.; Song, H.; Xu, L. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour. Technol. 2010, 101, 6297–6303. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.Y.; Chen, Z.S. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 2004, 55, 421–430. [Google Scholar] [CrossRef]
- Turgut, C.; Pepe, M.K.; Cutright, T.J. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut. 2004, 131, 147–154. [Google Scholar] [CrossRef]
- Rathika, R.; Srinivasan, P.; Alkahtani, J.; Al-Humaid, L.A.; Alwahibi, M.S.; Mythili, R.; Selvankumar, T. Influence of biochar and EDTA on enhanced phytoremediation of lead contaminated soil by Brassica juncea. Chemosphere 2021, 271, 129513. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Qiu, Y.; Xu, X.; Yang, F.; Wang, Z.; Feng, J.; Wang, J. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.). Ecotoxicol. Environ. Saf. 2020, 191, 110185. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Q.; Yang, J.; Ma, J.; Chen, G.; Chen, T.; Shao, C. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicol. Environ. Saf. 2016, 133, 57–62. [Google Scholar] [CrossRef]
- Jin, Z.; Deng, S.; Wen, Y.; Jin, Y.; Pan, L.; Zhang, Y.; Zhang, D. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils. Sci. Total Environ. Environ. 2019, 697, 134148. [Google Scholar] [CrossRef] [PubMed]
- Beiyuan, J.; Awad, Y.M.; Beckers, F.; Tsang, D.C.; Ok, Y.S.; Rinklebe, J. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 2017, 178, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Singh, A. Reduction in metal toxicity by applying different soil amendments in agricultural field and its consequent effects on characteristics of radish plants (Raphanus sativus L.). J. Agric. Sci. Technol. 2018, 15, 1553–1564. [Google Scholar]
- Wu, L.H.; Luo, Y.M.; Xing, X.R.; Christie, P. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric. Ecosyst. Environ. 2004, 102, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Postigo, C.; Martinez, D.E.; Grondona, S.; Miglioranza, K.S.B. Groundwater Pollution: Sources, Mechanisms, and Prevention; Reference Module in Earth Systems and Environmental Sciences; Elsevier: New York, NY, USA, 2017; pp. 143–162. [Google Scholar]
- Sinhal, V.K.; Srivastava, A.; Singh, V.P. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J. Environ. Biol. 2010, 31, 255–259. [Google Scholar]
- Lagier, T.; Feuillade, G.; Matejka, G. Interactions between copper and organic macromolecules: Determination of conditional complexation constants. Agronomie 2000, 20, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, S. Phytoextraction of Lead and Cadmium by Grasses from Contaminated Soil Amended with Acidulated Cow Dung Slurry/Extract and Bioaugmented with Sulphur Oxidizing Bacteria. Ph.D. Thesis, University of Agriculture Faisalabad, Faisalabad, Pakistan, 2017. [Google Scholar]
- Khonsue, N.; Kittisuwan, K.; Kumsopa, A.; Tawinteung, N.; Prapagdee, B. Inoculation of soil with cadmium-resistant bacteria enhances cadmium phytoextraction by Vetiveria nemoralis and Ocimum gratissimum. Water Air Soil Pollut. 2013, 224, 1696. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Jing, Y.X.; Yan, J.L.; He, H.D.; Yang, D.J.; Xiao, L.; Zhong, T.; Yuan, M.; Cai, X.D.; Li, S.B. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int. J. Phytoremediat. 2014, 16, 321–333. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef]
- Prapagdee, B.; Chanprasert, M.; Mongkolsuk, S. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 2013, 92, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, K.; Wang, Y.; Zhou, Z.; Chen, C.; Ye, P.; Yu, F. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1. Chemosphere 2018, 202, 280–288. [Google Scholar] [CrossRef]
- Sangthong, C.; Setkit, K.; Prapagdee, B. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environ. Sci. Pollut. Res. 2016, 23, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, K.R.; Krishnan, K.; Megharaj, M.; Naidu, R. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere 2016, 144, 330–337. [Google Scholar] [CrossRef]
- Chirakkara, R.A.; Reddy, K.R. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol. Eng. 2015, 85, 265–274. [Google Scholar] [CrossRef]
- Antoniou, C.; Rafaella, X.; Giannis, C.; Anastasis, C.; Khosrow, K.; Vasileios, F. Exploring the potential of nitric oxide and hydrogen sulfide (NOSH)-releasing synthetic compounds as novel priming agents against drought stress in Medicago sativa plants. Biomolecules 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Heydari, M.; Zanfardino, A.; Taleei, A.; Shahnejat Bushehri, A.A.; Hadian, J.; Maresca, V.; Sorbo, S.; Di Napoli, M.; Varcamonti, M.; Basile, A.; et al. Effect of heat stress on yield, monoterpene content and antibacterial activity of essential oils of Mentha x piperita var. mitcham and Mentha arvensis var. piperascens. Molecules 2018, 23, 1903. [Google Scholar]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The role of salicylic acid in plants exposed to heavy metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, S.; Zehra, A.; Mukarram, M.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components. Chemosphere 2021, 276, 130153. [Google Scholar] [CrossRef]
- Hediji, H.; Kharbech, O.; Massoud, M.B.; Boukari, N.; Debez, A.; Chaibi, W.; Chaoui, A.; Djebali, W. Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status. Environ. Exp. Bot. 2021, 186, 104432. [Google Scholar]
- Khan, N.; Bano, A. Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. Int. J. Phytoremediat. 2018, 20, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Marín Velázquez, J.A.; Andreu Puyal, P.; Carrasco, A.; Arbeloa Matute, A. Determination of Proline Concentration, an Abiotic Stress Marker, in Root Exudates of Excised Root Cultures of Fruit Tree Rootstocks under Salt Stress; Actes du 3ème Meeting International: Jerba, Tunisie, 2010. [Google Scholar]
- Mladenov, V.; Fotopoulos, V.; Kaiserli, E.; Karalija, E.; Maury, S.; Baranek, M.; Segal, N.; Testillano, P.S.; Vassileva, V.; Pinto, G.; et al. Deciphering the epigenetic alphabet involved in transgenerational stress memory in crops. Int. J. Mol. Sci. 2021, 22, 7118. [Google Scholar] [CrossRef]
- Fulekar, M.H.; Singh, A.; Bhaduri, A.M. Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr. J. Biotechnol. 2008, 8, 529–535. [Google Scholar]
- Koźmińska, A.; Wiszniewska, A.; Hanus-Fajerska, E.; Muszyńska, E. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol. Rep. 2018, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.S.; Liu, L.Q.; Zhao, Y.H.; Deng, Y.M.; Zhu, X.D.; Huang, S.Z. Overexpression of Iris lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. Ecotoxicol. Environ. Saf. 2014, 105, 22–28. [Google Scholar]
- Chen, Y.; Liu, Y.; Ding, Y.; Wang, X.; Xu, J. Overexpression of PtPCS enhances cadmium tolerance and cadmium accumulation in tobacco. Plant Cell Tissue Organ Cult. 2015, 121, 389–396. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Metallothionein-assisted phytoremediation of inorganic pollutants. In Handbook of Bioremediation; Academic Press: Cambridge, MA, USA, 2021; pp. 81–90. [Google Scholar]
- Saurabh, S.; Vidyarthi, A.S.; Prasad, D. RNA interference: Concept to reality in crop improvement. Planta 2014, 239, 543–564. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Ishimaru, Y.; Shimo, H.; Bashir, K.; Senoura, T.; Sugimoto, K.; Ono, K.; Suzui, N.; Kawachi, N.; Ishii, S.; et al. From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE 2014, 9, e98816. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Q.; Wang, S. Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. Int. J. Phytoremediat. 2010, 12, 503–515. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Song, Z.; Wang, D.; Qiu, W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 2019, 237, 124480. [Google Scholar] [CrossRef]
- Gul, I.; Manzoor, M.; Kallerhoff, J.; Arshad, M. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere 2020, 258, 127405. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, D.; Jiang, Z.; Nie, W.; Zhang, J. Phytoremediation of the soil contaminated by Pb, Cd and secondary salinization with the enhancement of EDTA. J. Agro-Environ. Sci. 2018, 37, 1866–1874. [Google Scholar]
- Jiang, M.; Liu, S.; Li, Y.; Li, X.; Luo, Z.; Song, H.; Chen, Q. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicol. Environ. Saf. 2019, 170, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Shirkhani, Z.; Rad, A.C.; Gholami, M.; Mohsenzadeh, F. Phytoremediation of Cd-contaminated Soils by Datura stramonium L. J. Toxicol. Environ. 2018, 10, 168–178. [Google Scholar] [CrossRef]
- Aboughalma, H.; Bi, R.; Schlaak, M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J. Environ. Sci. Health A 2008, 43, 926–933. [Google Scholar] [CrossRef]
- Luo, J.; Cai, L.; Qi, S.; Wu, J.; Gu, X.S. The interactive effects between chelator and electric fields on the leaching risk of metals and the phytoremediation efficiency of Eucalyptus globulus. J. Clean. Prod. 2018, 202, 830–837. [Google Scholar] [CrossRef]
- Cameselle, C.; Gouveia, S.; Urréjola, S. Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere 2019, 229, 481–488. [Google Scholar] [CrossRef]
- Rojjanateeranaj, P.; Sangthong, C.; Prapagdee, B. Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation. Chemosphere 2017, 185, 764–771. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Oliveira, T.; Reis, I.; Gomes, C.R.; Mucha, A.P. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments. Mar. Environ. Res. 2017, 132, 68–78. [Google Scholar] [CrossRef]
- Zanganeh, F.; Heidari, A.; Sepehr, A.; Rohani, A. Bioaugmentation and bioaugmentation–assisted phytoremediation of heavy metals contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Purtolaca Oleracea L.). Environ. Sci. Pollut. Res. 2021, in press. [Google Scholar] [CrossRef]
- Al-Baldawi, I.A.; Abdullah, S.S.; Anuar, N.; Mushrifah, I. Bioaugmentation for the enhancement of hydrocarbon phytoremediation by rhizobacteria consortium in pilot horizontal subsurface flow constructed wetlands. Int. J. Environ. Sci. Technol. 2017, 14, 75–84. [Google Scholar] [CrossRef]
- Purwanti, I.F.; Obenu, A.; Tangahu, B.V.; Kurniawan, S.B.; Imron, M.F.; Abdullah, S.R.S. Bioaugmentation of Vibrio alginolyticus in phytoremediation of aluminium-contaminated soil using Scirpus grossus and Thypa angustifolia. Heliyon 2020, 6, e05004. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Huang, Y.; Yao, Y.; Wang, X.; Liu, C.; Liang, Y.; Liu, K.; Yu, F. Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant Soil 2020, 448, 439–453. [Google Scholar] [CrossRef]
- Boechat, C.L.; Carlos, F.S.; Nascimento, C.W.A.D.; Quadros, P.D.D.; Sá, E.L.S.D.; Camargo, F.A.D.O. Bioaugmentation-assisted phytoremediation of As, Cd, and Pb using Sorghum bicolor in a contaminated soil of an abandoned gold ore processing plant. Rev. Bras. Cienc. Solo 2020, 44, e0200081. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Xiang, L.; Zhao, H.M.; Li, Y.W.; Cai, Q.Y.; Zhu, L.; Mo, C.H.; Wong, M.H. Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Sci. Total Environ. 2018, 613, 447–455. [Google Scholar] [CrossRef]
- Chen, L.; Long, C.; Wang, D.; Yang, J. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere 2020, 242, 125112. [Google Scholar] [CrossRef] [PubMed]
- Somtrakoon, K.; Chouychai, W. Gibberellic acid treatment improved pyrene phytoremediation efficiency of ridge gourd (Luffa acutangula (L.) Roxb.) in soil. Soil Sediment Contam. Int. J. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Jan, A.U.; Hadi, F.; Shah, A.; Ditta, A.; Nawaz, M.A.; Tariq, M. Plant growth regulators and EDTA improve phytoremediation potential and antioxidant response of Dysphania ambrosioides (L.) Mosyakin & Clemants in a Cd-spiked soil. Environ. Sci. Pollut. Res. 2021, 28, 43417–43430. [Google Scholar]
- Gu, X.; Zhang, Q.; Jia, Y.; Cao, M.; Zhang, W.; Luo, J. Enhancement of the Cd phytoremediation efficiency of Festuca arundinacea by sonic seed treatment. Chemosphere 2021, 287, 132158. [Google Scholar] [CrossRef] [PubMed]
- Sardar, R.; Ahmed, S.; Yasin, N.A. Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. Int. J. Phytoremediat. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Wei, H.; Huang, M.; Quan, G.; Zhang, J.; Liu, Z.; Ma, R. Turn bane into a boon: Application of invasive plant species to remedy soil cadmium contamination. Chemosphere 2018, 210, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subašić, M.; Šamec, D.; Selović, A.; Karalija, E. Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. Soil Syst. 2022, 6, 3. https://doi.org/10.3390/soilsystems6010003
Subašić M, Šamec D, Selović A, Karalija E. Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. Soil Systems. 2022; 6(1):3. https://doi.org/10.3390/soilsystems6010003
Chicago/Turabian StyleSubašić, Mirel, Dunja Šamec, Alisa Selović, and Erna Karalija. 2022. "Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing" Soil Systems 6, no. 1: 3. https://doi.org/10.3390/soilsystems6010003
APA StyleSubašić, M., Šamec, D., Selović, A., & Karalija, E. (2022). Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. Soil Systems, 6(1), 3. https://doi.org/10.3390/soilsystems6010003