How Much Margin Is Left for Degrading Agricultural Soils? The Coming Soil Crises
Abstract
:1. Introduction
2. Soils in Crisis
3. Research Foci
3.1. Enhancing Soil Health—The New Paradigm
3.2. Understanding Soil Organic Carbon—Its Loss, Protection, and Accretion
3.3. Climate Change—Temperature, Water, and Water Extraction
3.4. Training and Preparing the New Agricultural Work Force
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Synthesis Report; Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- IPBES. The IPBES Assessment Report on Land Degradation and Restoration; Montanarella, L., Scholes, R., Brainich, A., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018; p. 744. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’d degarded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- GSP. Global Soil Partnership Endorses Guidelines on Sustainable Soil Management. 2017. Available online: http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/ (accessed on 3 January 2022).
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amundson, R.L.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 6235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, W.E.H.; Nortcliff, S. Soils and Food Security. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 299–321. [Google Scholar]
- Nkonya, E.; Anderson, E.; Kato, J.; Mirzabaev, A.; Braun, J.; Meyer, S. Global cost of land degradation. In Economics of Land Degradation and Improvement—A Global Assessemnt for Sustanable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 117–165. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: London, UK, 2011. [Google Scholar]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Koch, A.; Field, D.; McBratney, A.B.; Adams, M.; Hill, R.; Crawford, J.; Minasny, B.; Lal, R.; Abbott, L.; O’Donnel, A.; et al. Soil security: Solving the global soil crisis. Glob. Policy J. 2013, 4, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Epule, E.T.; Peng, C.; Lepage, L.; Chen, Z. The causes, effects and challenges of Sahelian droughts: A critical review. Reg. Environ. Chang. 2014, 14, 145–156. [Google Scholar] [CrossRef]
- McLeman, R.A.; Dupre, J.; Ford, L.B.; Ford, J.; Gajewski, K.; Marchildon, G. What we learned from the Dust Bowl: Lessons in science, policy, and adaptaion. Popul. Environ. 2014, 35, 417–440. [Google Scholar] [CrossRef] [Green Version]
- Baveye, P.C.; Rangel, D.; Jacobson, A.R.; Laba, M.; Darnault, C.; Otten, W.; Radulovich, R.; Camarg, F.A.O. From dust bowl to dust bowl: Soils are still very much a frontier of science. Soil Sci. Soc. Am. J. 2011, 75, 2037–2048. [Google Scholar] [CrossRef] [Green Version]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s soils are under threat. SOIL 2016, 2, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reays, D.; Robertson, P.; Smith, P. Climate-Smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janzen, H.H.; Fixen, P.E.; Franzluebbers, A.J.; Hattey, J.; Izaurralde, E.C.; Ketterings, Q.M.; Lobb, D.A.; Schlesinger, W.H. Global prospects rooted in soil science. Soil. Sci. Soc. Am. J. 2011, 75, 1–8. [Google Scholar] [CrossRef]
- Baveye, P.C. Grand challenges in the research on soil processes. Front. Environ. Sci. 2015, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Hornbeck, R. The Enduring Impact of the American Dust Bowl: Short-and Long-Run Adjustments to Environmental Catastrophe. Am. Econ. Rev. 2012, 102, 1477–1507. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Seager, R.; Smerdon, J.E. The worst North American drought year of the last millennium: 1934. Geophys. Res. Lett. 2014, 41, 7298–7305. [Google Scholar] [CrossRef] [Green Version]
- Adewopo, J.B.; Van Zomeren, C.; Bhomia, R.K.; Almaraz, M.; Bacon, A.R.; Eggleston, E. Top-Ranked priority research questions for soil science in the 21st century. Soil. Sci. Soc. Am. J. 2014, 78, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Kibblewhite, M.G.; Chambers, B.G.; Keith, W.T.; Goulding, K.W.T. How good is the evidence to support investment in soil protection? Soil Use Manag. 2016, 32, 172–182. [Google Scholar] [CrossRef]
- Bouma, J.; McBratney, A. Framing soils as an actor when dealing with wicked environmental problems. Geoderma 2013, 200, 130–139. [Google Scholar] [CrossRef]
- McBratney, A.; Field, D.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.A.; Swaminathan, M.S. Hunger in Africa: The link between unhealthy people and unhealthy soils. Lancet 2005, 365, 442–444. [Google Scholar] [CrossRef]
- Rickson, R.J.; Deeks, L.K.; Graves, A.; Harris, J.A.H.; Kibblewhite, M.G.; Sakrabani, R. Input constraints to food production: The impact of soil degradation. Food Secur. 2015, 7, 351–364. [Google Scholar] [CrossRef]
- FAO. Healthy Soils Are the Basis for Healthy Food Production; Food and Agriculture Organization: Rome, Italy, 2015; pp. 1–4. [Google Scholar]
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; FAO: Rome, Italy, 2018; p. 224. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.; Breddington, J.R.; Crute, I.R.; Haddad, L.; Lawerence, D.; Muier, J.F.; Pretty, J.; Robinson, S.; Thomas, A.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larbodière, L.; Davies, J.; Schmidt, R.; Magero, C.; Vidal, A.; Schnell, A.; Bucher, P.; Maginnis, S.; Cox, N.; Hasinger, O.; et al. Common Ground: Restoring Land Health for Sustainable Agriculture; International Union for Conservation of Nature: Gland, Switzerland, 2020. [Google Scholar]
- van Meijl, H.; Havlik, P.; Lotze-Campen, H.; Stehfest, E.; Witzke, P.; Domínguez, I.; Bodirsky, B.P.; van Dijk, M.; Doelman, J.; Fellmann, T.; et al. Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50); JRC Science for Policy Report; EUR 28649 EN; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Oliver, M.A.; Gregory, P.J. Soil, food security and human health: A review. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- Thaler, E.A.; Larsen, I.J.; Yu, Q. The extent of soil loss across the US Corn Belt. Proc. Natl. Acad. Sci. USA 2021, 118, e1922375118. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, J.; Liautaud, P. A Call to Action to Save One of America’s Most Important Natural Resources. Blog, White House Office of Science and Technology Policy. 2016. Available online: https://obamawhitehouse.archives.gov/blog/2016/08/01/call-action-save-one-americas-most-important-natural-resources (accessed on 4 February 2022).
- Nearing, M.A.; Pruski, F.F.; O’Neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- De Longe, M.; Stillerman, K.P. Eroding the Future. How Soil Loss Threatens Framing and Our Food Supply. 2020. Available online: www.ucsusa.org/resources/eroding-future (accessed on 12 February 2022).
- Kopittke, P.M.; Menzies, N.W.; Dalal, R.C.; McKenna, B.A.; Husted, S.; Wang, P.; Lombi, E. The role of soil in defining planetary boundaries and the safe operating space for humanity. Environ. Int. 2021, 146, 106245. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soils and world food security. Soil Tillage Res. 2009, 102, 1–4. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Climate and conflict. Annu. Rev. Econ. 2015, 7, 577–617. [Google Scholar] [CrossRef]
- World Bank. Agriculture for Development. World Development Report; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Richter, D.D.; Markewitz, D. Understanding Soil Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Harris, R.; Bezdicek, D. Descriptive aspects of soil quality health. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America Special Publication: Madison, WI, USA, 1994; pp. 23–25. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Soils: The Foundation of Life: Proceedings of a Workshop in Brief; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Karlen, D.L.; Rice, C.W. Soil Degradation: Will Humankind Ever Learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Ditzer, G.A.; Andrews, S.S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. B 2008, 363, 685–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palm, C.; Sanchez, P.; Ahamed, S.; Awiti, A. Soils: A contemporary perpsective. Annu. Rev. Environ. Resour. 2007, 32, 99–129. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Soil Health Institute (NIH). Economics of Soil Health Systems. Available online: https://soilhealthinstitute.org/economics/ (accessed on 12 February 2022).
- Lal, R.; Solorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar]
- Lal, R. Soil health and carbon management. Food Energy and Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- FAO. Soil Organic Carbon: The Hidden Potential; Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Patton, N.R.; Lohse, K.A.; Seyfried, M.S.; Godsey, S.E.; Parsons, S.B. Topographic controls of soil organic carbon on soil-mantled landscapes. Sci. Rep. 2019, 9, 6390. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, U.; Adams, M.; Crawford, J.W.; Field, D.J.; HenakaarchchI, N.; Jenkins, M.; Minasny, B.; de Courcelles, V.; Singh, K.; Wheeler, I.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–89. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.-A.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Glob. Chang. Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 2019, 26, 219–241. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Shapiro, C.A.; Wortmann, C.S.; Drijber, R.A.; Mamo, M.; Shaver, T.M.; Ferguson, R.B. Soil organic carbon: The value to soil properties. J. Soil Water Conserv. 2013, 68, 129A–134A. [Google Scholar] [CrossRef]
- Lal, R. Societal value of soil carbon. J. Soil Water Conserv. 2014, 69, 186A–192A. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil organic matter and water retention. Agronomy 2020, 5, 3265–3277. [Google Scholar] [CrossRef]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The role of soil in regulation of climate. Philos. Trans. R. Soc. B 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Jastrow, J.D.; Amonette, J.E.; Bailey, V.L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Chang. 2007, 80, 5–23. [Google Scholar] [CrossRef]
- Lal, R. Potential and challenges of conservation agriculture in sequestration of atmospheric CO2 for enhancing climate-resilience and improving productivity of soil of small landholder farms. CAB Rev. 2016, 11, 1–16. [Google Scholar]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.E.; Holtman, J.B.; Connor, J.L. Soil Carbon Dynamics and Cropping Practices. In Agriculture and Energy; Lockeretz, W., Ed.; Academic Press: New York, NY, USA, 1977; pp. 333–451. [Google Scholar]
- Strickling, E. Crop sequences and tillage in efficient crop production. In Abstracts of the 1975 Northeast Branch American Society Agronomy Meetings; American Society of Agronomy: Madison, WI, USA, 1975; pp. 20–29. [Google Scholar]
- FAO; ITPS. Recarbonizing Global Soils—A Technical Manual of Recommended Management Practices. Vol 1. Introduction and Methodology; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Chenu, C.; Cardenas, M.G.; Kaonga, M.; Koutika, L.S.; Ladha, J.; Madari, B.; Shirato, Y.; Smith, P.; et al. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio J. EnvironW. Soc. 2019, 49, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.-H.; Lauk, C.; Harper, R.; Tubiello, F.N.; Pinto, A.; Jafari, M.; Sohi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Chang. Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Canqui, H.; Lal, R. No-Till Farming. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010; pp. 195–221. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Land Use, Land-Use Change, and Forestry; Special Report; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- FAO; ITPS. Cropland, Grassland, Integrated Systems and Farming Approaches–Practices Overview. In Recarbonizing Global Soils: A Technical Manual of Recommended Management Practices; Food and Agriculture Organization: Rome, Italy, 2021; Volume 3. [Google Scholar]
- Ogle, S.M.; Swan, A.; Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 2012, 149, 37–49. [Google Scholar] [CrossRef]
- Claassen, R.; Bowman, M.; McFadden, J.; Smith, D.; Wallander, S. Tillage Intensity and Conservation Cropping in the United States; EIB-197; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2018.
- Wallander, S.; Smith, D.; Maria Bowman, M.; Claassen, R. Cover Crop Trends, Programs, and Practices in the United States; EIB 222; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2021. Available online: http://www.ers.usda.gov/ (accessed on 10 January 2022).
- Marland, G.; West, T.O.; Schlamadinger, B.; Canella, L. Managing soil organic carbon in agriculture: The net effect on greenhouse gas emissions. Tellus Ser. B Chem. Phys. Meteorol. 2003, 55, 613–621. [Google Scholar] [CrossRef]
- Liu, T.; Bruins, R.J.F.; Heberling, M.T. Factors influencing farmers’ adoption of best management practices: A review and synthesis. Sustainability 2018, 10, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Sarr, S.; Gebremedhin, M.; Coyne, M.; Tope, A.; Sistani, K.R. Do Conservation Practices Bring Quick Changes to Key Soil Properties for Resource-Limited Farmers? J. Ky. Acad. Sci. 2019, 80, 6–16. [Google Scholar] [CrossRef]
- Gebremedhin, M.; Sarr, S.; Coyne, M.; Freytag, A.; Sistani, R.K. Does potentially mineralizable nitrogen predict maize yield in newly cropped soil? Agrosyst. Geosci. Environ. 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlik, P.; Richards, M.; Chotte, J.-L.; Torquebiau, E.; Ciais, P.; et al. Matching policy and science: Rationale for the ‘4 per 1000—Soils for food security and climate’ initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, J.A.; Groffman, P.M.; Nearing, M.A.; Goddard, T.; Reicosky, D.; Lal, R.; Kitchen, N.R.; Rice, C.W.; Towery, D.; Salon, P. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 118A–129A. [Google Scholar] [CrossRef] [Green Version]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Kassam, A.; Derpsch, R.T.; Friedrich, T. Global achievements in soil and water conservation: The case of Conservation Agriculture. Int. Soil Water Conserv. Res. 2014, 2, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- United Nations Convention to Combat Desertification. The Global Land Outlook, 1st ed.; United Nations Convention to Combat Desertification: Bonn, Germany, 2017. [Google Scholar]
- Basso, B.; Dumont, B.; Maestrini, B.; Shcherbak, I.; Robertson, G.P.; Porter, J.R.; Smith, P.; Paustian, K.; Grace, P.R.; Asseng, S.; et al. Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agric. Environ. Lett. 2018, 3, 180026. [Google Scholar] [CrossRef] [Green Version]
- West, T.O.; Post, W.M. Soil organic sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Mubiru, S.; Namakula, J.; Lwasa, J.; Otim, G.A.; Kashagama, J.; Nakafeero, M.; Nanyeenya, W.; Coyne, M.S. Conservation farming and changing climate: More beneficial than conventional methods for degraded Ugandan soils. Sustainability 2017, 9, 1084. [Google Scholar] [CrossRef] [Green Version]
- Charlton, D.; Edward, T.J. A declining farm workforce: Analysis of panel data from rural Mexico. Am. J. Agirc. Econ. Adv. Access AJAE 2016, 98, 158–1180. [Google Scholar] [CrossRef]
- Fan, M.; Gabbard, S.; Pena, A.A.; Perloff, J.M. Why do fewer agricultural workers migrate now? Am. J. Agirc. Econ. Adv. Access AJAE 2015, 97, 665–679. [Google Scholar] [CrossRef] [Green Version]
- World Resources Institute. Creating a Sustainable Food Future; Report 2013–2014: Interim Findings; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Whittinghill, L.; Sarr, S. Practices and Barriers to Sustainable Urban Agriculture: A Case Study of Louisville, Kentucky. Urban Sci. 2021, 5, 92. [Google Scholar] [CrossRef]
- Artmann, M.; Sartison, K. The role of urban agriculture as a nature-based solution: A review for developing a systemic assessment framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 4. [Google Scholar] [CrossRef] [Green Version]
- Carey, E.E.; Jett, L.; Lamont, W.J.; Nennich, T.T.; Orzolek, M.D.; Williams, K.A. Horticultural Crop Production in High Tunnels in the United States: A Snapshot. HortTechnology 2019, 19, 37. [Google Scholar] [CrossRef]
- USDA-NRCS. Conservation Program and Practices for High Tunnels. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_013810.pdf (accessed on 10 January 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremedhin, M.; Coyne, M.S.; Sistani, K.R. How Much Margin Is Left for Degrading Agricultural Soils? The Coming Soil Crises. Soil Syst. 2022, 6, 22. https://doi.org/10.3390/soilsystems6010022
Gebremedhin M, Coyne MS, Sistani KR. How Much Margin Is Left for Degrading Agricultural Soils? The Coming Soil Crises. Soil Systems. 2022; 6(1):22. https://doi.org/10.3390/soilsystems6010022
Chicago/Turabian StyleGebremedhin, Maheteme, Mark S. Coyne, and Karamat R. Sistani. 2022. "How Much Margin Is Left for Degrading Agricultural Soils? The Coming Soil Crises" Soil Systems 6, no. 1: 22. https://doi.org/10.3390/soilsystems6010022
APA StyleGebremedhin, M., Coyne, M. S., & Sistani, K. R. (2022). How Much Margin Is Left for Degrading Agricultural Soils? The Coming Soil Crises. Soil Systems, 6(1), 22. https://doi.org/10.3390/soilsystems6010022