Physical, Chemical, and Microbiological Characterization of Kettara Mine Tailings, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study and Sampling
2.2. Multi-Element Analysis
2.3. Enumeration of Indigenous Acidophilic Bacteria of Mine Tailings
2.4. Isolation and Identification of Acidophilic Bacteria
2.4.1. Isolation
2.4.2. DNA Extraction
2.4.3. Amplification of the 16S rRNA Gene and Sequencing
2.5. Metal Tolerance of Bacterial Isolates
3. Results
3.1. Physical and Chemical Characterization of Mine Tailings
3.2. Enumeration of IOB, SOB and HAB
3.3. Isolation and Identification of Acidophilic Bacteria
3.4. Metal Tolerance
4. Discussion
4.1. Physical and Chemical Properties of Mine Tailings and Runoff Water
4.2. Microbiological Properties of Mine Tailings and Runoff Water
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Kihara, J.; Bolo, P.; Kinyua, M.; Nyawira, S.S.; Sommer, R. Soil health and ecosystem services: Lessons from sub-Sahara Africa (SSA). Geoderma 2020, 370, 114342. [Google Scholar] [CrossRef]
- FAO. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018; p. 142. [Google Scholar]
- Babi, K.; Asselin, H.; Benzaazoua, M. Stakeholders’ perceptions of sustainable mining in Morocco: A case study of the abandoned Kettara mine. Extr. Ind. Soc. 2016, 3, 185–192. [Google Scholar] [CrossRef]
- Sonter, L.J.; Ali, S.H.; Watson, J.E.M. Mining and biodiversity: Key issues and research needs in conservation science. Proc. R. Soc. B 2018, 285, 20181926. [Google Scholar] [CrossRef]
- Sonter, L.J.; Dade, M.C.; Watson, J.E.M.; Valenta, R.K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Clapcott, J.E.; Goodwin, E.O.; Harding, J.S. Identifying catchment-scale predictors of coal mining impacts on New Zealand stream communities. Environ. Manag. 2016, 57, 711–721. [Google Scholar] [CrossRef]
- Boularbah, A.; Schwartz, C.; Bitton, G.; Morel, J.L. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 2006, 63, 802–810. [Google Scholar] [CrossRef]
- Boularbah, A.; Schwartz, C.; Bitton, G.; Aboudrar, W.; Ouhammou, A.; Morel, J.L. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 2006, 63, 811–817. [Google Scholar] [CrossRef]
- El Khalil, H.E.; Hamiani, O.E.; Bitton, G.; Ouazzani, N.; Boularbah, A. Heavy metal contamination from mining sites in South Morocco: Monitoring metal content and toxicity of soil runoff and groundwater. Environ. Monit. Assess. 2008, 136, 147–160. [Google Scholar] [CrossRef]
- El Hamiani, O.; El Khalil, H.; Lounate, K.; Sirguey, C.; Hafidi, M.; Bitton, G.; Schwartz, C.; Boularbah, A. Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. J. Hazard. Mater. 2010, 177, 755–761. [Google Scholar] [CrossRef]
- Benidire, L.; Benidire, L.; Boularbah, A. Impacts of mining activities on soil properties: Case studies from Morocco mine sites. Soil Sci. Annu. 2021, 71, 395–407. [Google Scholar]
- Yadollahi, A.; Abdollahi, H.; Ardejani, F.D.; Mirmohammadi, M.; Magdouli, S. Bio-oxidation behavior of pyrite, marcasite, pyrrhotite, and arsenopyrite by sulfur-and iron-oxidizing acidophiles. Bioresour. Technol. Rep. 2021, 15, 100699. [Google Scholar] [CrossRef]
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2019, 6, 241–249. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.-H.; Ren, N.-Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Technol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Bruneel, O.; Mghazli, N.; Hakkou, R.; Dahmani, I.; Maltouf, A.F.; Sbabou, L. In-depth characterization of bacterial and archaeal communities present in the abandoned Kettara pyrrhotite mine tailings (Morocco). Extremophiles 2017, 21, 671–685. [Google Scholar] [CrossRef]
- Panda, S.; Mishra, S.; Akcil, A. Bioremediation of acidic mine effluents and the role of sulfidogenic biosystems: A mini-review. Euro-Mediterr. J. Environ. Integr. 2016, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, M.; Devarajan, N.; He, Z.; Kandasamy, S.; Ashokkumar, V.; Raja, R.; Carvalho, I.S. Assessment of microbial diversity and enumeration of metal tolerant autochthonous bacteria from tailings of magnesite and bauxite mines. Mater. Today Proc. 2020, 33, 4391–4401. [Google Scholar] [CrossRef]
- Gupta, A.; Sar, P. Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil. J. Environ. Sci. Health 2020, 55, 464–482. [Google Scholar] [CrossRef]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health. 2016, 13, 1047. [Google Scholar] [CrossRef] [Green Version]
- Hakkou, R.; Benzaazoua, M.; Bussière, B. Acid mine drainage at the abandoned Kettara Mine (Morocco): 1. Environmental Characterization. Mine Water Environ. 2008, 27, 145–159. [Google Scholar] [CrossRef]
- Midhat, L.; Ouazzani, N.; Esshaimi, M.; Ouhammou, A.; Mandi, L. Assessment of heavy metals accumulation by spontaneous vegetation: Screening for new accumulator plant species grown in Kettara mine-Marrakech, Southern Morocco. Int. J. Phytorem. 2017, 19, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils New Zealand Soil Bureau Report 10A; Government printer; Department of Scientific and Industrial Research: Wellington, New Zealand, 1972.
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Potts, P.J. A Handbook of Silicate Rock Analysis; B1ackie & Sons, Ltd.: London, UK, 1987. [Google Scholar]
- Alexander, M. Most probable number method for microbial populations. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1467–1472. [Google Scholar]
- Tuovinen, O.H.; Kelly, D.P. Studies on the growth of Thiobacillus ferrooxidans. Arch. Microbiol. 1973, 88, 285–298. [Google Scholar] [CrossRef]
- Silverman, M.P.; Lundgren, D.G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 1959, 77, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Panda, S.; Mishra, S.; Pradhan, N.; Mohanty, R.C.; Sukla, L.B. Evaluation of microbial population and attachment study during bio-heap leaching at Malanjkhand copper project. Int. J. Environ. Waste Manag. 2013, 11, 75–86. [Google Scholar] [CrossRef]
- Johnson, D.B.; Macvicar, J.H.; Rolfe, S. A new solid medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria. J. Microbiol. Methods. 1987, 7, 9–18. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Hakkou, R.; Benzaazoua, M.; Bussière, B. Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage. Mine Water Environ. 2009, 28, 206. [Google Scholar] [CrossRef]
- Dave, S.R.; Tipre, D.R. Coal mine drainage pollution and its remediation. In Microorganisms in Environmental Management; Satyanarayana, T., Johri, B.D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 719–743. [Google Scholar]
- Pozo-Antonio, S.; Puente-Luna, I.; Lagüela-López, S.; Veiga-Ríos, M. Techniques to correct and prevent acid mine drainage: A review. Dyna 2014, 81, 73–80. [Google Scholar] [CrossRef]
- Ferguson, K.D.; Erickson, P.M. Pre-mine prediction of acid mine drainage. In Environmental Management of Solid Waste; Salomons, W., Förstner, U., Eds.; Springer: Berlin, Germany, 1988; pp. 24–43. [Google Scholar]
- Lottermoser, B.G. Mine Wastes; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- El Faiz, A.; Duponnois, R.; Winterton, P.; Ouhammou, A.; Meddich, A.; Boularbah, A.; Hafidi, M. Effect of different amendments on growing of Canna indica L. inoculated with AMF on mining substrate. Int. J. Phytorem. 2015, 17, 503–513. [Google Scholar] [CrossRef]
- Ouaryi, A.; Boularbah, A.; Sanguin, H.; Hafidi, M.; Baudoin, E.; Ouahmane, L.; Le Roux, C.; Galiana, A.; Prin, Y.; Duponnois, R. High potential of symbiotic interactions between native mycorrhizal fungi and the exotic tree Eucalyptus camaldulensis for phytostabilization of metal-contaminated arid soils. Int. J. Phytorem. 2016, 18, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Gil-Loaiza, J.; White, S.A.; Root, R.A.; Solís-Dominguez, F.A.; Hammond, C.M.; Chorover, J.; Maier, R.M. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci. Total Environ. 2016, 565, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benidire, L.; Pereira, S.I.A.; Aboudrar, W.; Hafidi, M.; Castro, P.M.L.; Boularbah, A. Remediation of metal-contaminated mine tailings by the application of organic and mineral amendments. J. Soils Sediments 2022, 22, 482–495. [Google Scholar] [CrossRef]
- Benidire, L.; Madline, A.; Pereira, S.I.A.; Castro, P.M.L.; Boularbah, A. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Chemosphere 2021, 262, 127803. [Google Scholar] [CrossRef]
- Gomes, A.R.; Antão, A.; Santos, A.G.P.; Lacerda, T.J.; Mirelli, B.M.; Isla, A.S.; Alvarenga, S.; Santos, C.H.; Rigobelo, E.C.; Scotti, M.R. Rehabilitation of a riparian site contaminated by tailings from the Fundão Dam, Brazil, using different remediation. Environ. Toxicol. Chem. 2021, 40, 2359–2373. [Google Scholar] [CrossRef]
- El Hachimi, M.L.; Bouabdli, A.; Fekhaoui, M. Les rejets miniers de traitement: Caractérisation, capacité polluante et impacts environnementaux, mine Zeïda, mine Mibladen, Haute Moulouya (Maroc). Environ. Sci. 2013, 323, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Burger, F.; Celkova, A. Salinity and sodicity hazard in water flow processes in the soil. Plant Soil Environ. 2003, 49, 314–320. [Google Scholar] [CrossRef] [Green Version]
- FAO. Water Quality for Agriculture. Paper No. 29 (Rev. 1); UNESCO Publication: Rome, Italy, 1985; p. 96. [Google Scholar]
- Johnson, D.B. Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol. Ecol. 2012, 81, 2–12. [Google Scholar] [CrossRef]
- Kock, D.; Schippers, A. Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy 2006, 83, 167–175. [Google Scholar] [CrossRef]
- Kock, D.; Schippers, A. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl. Environ. Microbiol. 2008, 74, 5211–5219. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.O.; Neilson, J.W.; Maier, R.M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 2008, 74, 3899–3907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korehi, H.; Blothe, M.; Sitnikova, M.A.; Dold, B.; Schippers, A. Metal mobilization by iron-and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Environ. Sci. Technol. 2013, 47, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Schippers, A.; Breuker, A.; Blazejak, A.; Bosecker, K.; Kock, D.; Wright, T.L. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacteria. Hydrometallurgy 2010, 104, 342–350. [Google Scholar] [CrossRef]
- Joe, S.J.; Suto, K.; Inoie, C.; Chida, T. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant. J. Biosci. Bioeng. 2007, 104, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Megharaj, M.; Beer, M.; Ming, H.; Rahman, M.M.; Wu, W.; Naidu, R. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresour. Technol. 2009, 100, 3831–3836. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, S.; Bousquet, J.; Boissinot, M.; Guay, R. Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. Int. J. Syst. Evol. Microbiol. 1996, 46, 1056–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanova, T.I.; Tsaplina, I.A.; Kondrat’eva, T.F.; Duda, V.I.; Suzina, N.E.; Melamud, V.S.; Tourova, T.P.; Karavaiko, G.I. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int. J. Syst. Evol. Microbiol. 2006, 56, 1039–1042. [Google Scholar] [CrossRef]
- Baker, B.J.; Banfield, J.F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Okibe, N.; Johnson, D.B. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: Significance of microbial interactions. Biotechnol. Bioeng. 2004, 87, 574–583. [Google Scholar] [CrossRef]
- Hao, C.; Wang, L.; Dong, H.; Zhang, H. Succession of acidophilic bacterial community during bio-oxidation of refractory gold-containing sulfides. Geomicrobiol. J. 2010, 27, 683–691. [Google Scholar] [CrossRef]
- Watling, H.R.; Perrot, F.A.; Shiers, D.W. Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments. Hydrometallurgy 2008, 93, 57–65. [Google Scholar] [CrossRef]
- Johnson, D.B.; Joulian, C.; d’Hugues, P.; Hallberg, K.B. Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extremophiles 2008, 12, 789–798. [Google Scholar] [CrossRef]
- Jeremic, S.; Beškoski, V.P.; Djokic, L.; Vasiljevic, B.; Vrvić, M.M.; Avdalović, J.; Gojgić, C.G.; Beškoski, L.S.; Nikodinovic-Runic, J. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. J. Environ. Manag. 2016, 172, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Benidire, L.; Pereira, S.I.A.; Castro, P.M.L.; Boularbah, A. Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. Environ. Sci. Pollut. Res. 2016, 23, 21751–21765. [Google Scholar] [CrossRef] [PubMed]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Physicochemical properties, heavy metals, and metal-tolerant bacteria profiles of abandoned gold mine tailings in Krugersdorp, South Africa. Can. J. Soil Sci. 2020, 100, 217–233. [Google Scholar] [CrossRef]
Fine Residues | Coarse Residues | |||
---|---|---|---|---|
OF | NOF | OC | NOC | |
pH | 3.51 | 2.06 | 2.80 | 2.40 |
EC (mS cm−1) | 2.45 | 1.93 | 3.01 | 2.30 |
TOC (mg g−1) | 1.90 | 1.40 | 2.00 | 1.30 |
TN (mg g−1) | 0.40 | <dL | <dL | <dL |
C/N | 8.25 | nd | nd | nd |
P Olsen (mg g−1) | 0.05 | 0.06 | 0.01 | 0.01 |
Fine Residues | Coarse Residues | ||||
---|---|---|---|---|---|
OF | NOF | OC | NOC | ||
Major Elements (mg g−1) | |||||
Mg | 13.8 | 49.8 | 20.7 | 12.6 | |
Al | 11.2 | 77.2 | 40.1 | 27.5 | |
Stotal | 37.9 | 34.9 | 20.8 | 21.7 | |
Ca | 10.1 | 4.5 | 5.9 | 6.4 | |
Fe | 405.0 | 197.0 | 296.0 | 339.0 | |
Ti | 1.1 | 2.0 | 2.8 | 3.1 | |
Ba | <dL | <dl | <dl | <dl | |
Trace Metals (mg g−1) | Earth’s Crust * | ||||
Cr | 0.03 | 0.10 | 0.06 | 0.07 | 0.1260 |
Mn | 0.13 | 1.12 | 0.58 | 0.35 | 0.7160 |
Co | 0.01 | 0.06 | 0.03 | 0.02 | 0.0240 |
Ni | <dL | 0.03 | 0.01 | 0.01 | 0.056 |
Cu | 0.94 | 1.89 | 1.10 | 0.65 | 0.0250 |
Zn | 0.05 | 0.57 | 0.13 | 0.08 | 0.0650 |
As | 0.04 | <dL | 0.16 | 0.14 | 0.0017 |
Pb | 0.11 | 0.11 | 0.070 | 0.22 | 0.0004 |
pH | EC (mS cm−1) | Trace Metals (mg L−1) | |||
---|---|---|---|---|---|
Zn | Cu | Pb | |||
RW1 | 2.23 | 7.32 | 45.81 | 97.04 | 2.12 |
RW2 | 2.19 | 6.81 | 25.42 | 68.02 | 1.63 |
Samples | Fine Residues | Coarse Residues | Runoff Water | |||
---|---|---|---|---|---|---|
OF | NOF | OC | NOC | RW1 | RW2 | |
IOB | 6.5 × 105 | 4.8 × 105 | 4.3 × 105 | 8.9 × 104 | 9.9 × 105 | 8.6 × 105 |
SOB | 5.9 × 105 | 7.3 × 104 | 4.6 × 104 | 5.5 × 104 | 6.1 × 103 | 8.3 × 103 |
HAB | 3.1 × 102 | 1.2 × 102 | 2.3 × 102 | 1.0 × 102 | 1.0 × 102 | 1.3 × 102 |
Strain | Origin | Gram | Mobility | Morphology of Colonies | |||
---|---|---|---|---|---|---|---|
Color | Shape | Border | Trophic Level | ||||
AMK1 | RW | + | Not mobile | Rusty appearance | Circular | Regular | Mixotrophic |
AMK2 | OF | + | Not mobile | Orange | Circular | Regular | Heterotrophic |
AMK3 | OC | + | Not mobile | Orange | Stringy | Regular | Heterotrophic |
AMK4 | NOF | + | Not mobile | Orange with colorless edges | Circular | Regular | Heterotrophic |
AMK5 | NOC | + | Not mobile | Rusty appearance | Circular | Regular | Mixotrophic |
Strains | Nearest Neighbor | MIC (mg L−1) | ||
---|---|---|---|---|
Cu | Zn | Co | ||
AKM1 | Sulfobacillus sp. | 3177.30 | 39,228 | 2357.33 |
AKM2 | Not identified | 1588.65 | 6538 | 2357.33 |
AKM3 | Alicyclobacillus sp. | 3177.30 | 26,152 | 1178.66 |
AKM4 | Sulfobacillus sp. | 1588.65 | 39,228 | 2357.33 |
AKM5 | Alicyclobacillus sp. | 635.46 | 13,076 | 1178.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benidire, L.; Pereira, S.I.A.; Loqman, S.; Castro, P.M.L.; Boularbah, A. Physical, Chemical, and Microbiological Characterization of Kettara Mine Tailings, Morocco. Soil Syst. 2022, 6, 23. https://doi.org/10.3390/soilsystems6010023
Benidire L, Pereira SIA, Loqman S, Castro PML, Boularbah A. Physical, Chemical, and Microbiological Characterization of Kettara Mine Tailings, Morocco. Soil Systems. 2022; 6(1):23. https://doi.org/10.3390/soilsystems6010023
Chicago/Turabian StyleBenidire, Leila, Sofia I. A. Pereira, Souad Loqman, Paula M. L. Castro, and Ali Boularbah. 2022. "Physical, Chemical, and Microbiological Characterization of Kettara Mine Tailings, Morocco" Soil Systems 6, no. 1: 23. https://doi.org/10.3390/soilsystems6010023
APA StyleBenidire, L., Pereira, S. I. A., Loqman, S., Castro, P. M. L., & Boularbah, A. (2022). Physical, Chemical, and Microbiological Characterization of Kettara Mine Tailings, Morocco. Soil Systems, 6(1), 23. https://doi.org/10.3390/soilsystems6010023