Coupling X-ray Absorption and Raman Spectroscopies to Characterize Iron Species in a Karst Pedosedimentary Record
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sediment Collection
2.2. X-ray Absorption Spectroscopy Data Collection, and Linear Combination Fitting of EXAFS and XANES Spectra
2.3. Raman Micro-Spectroscopy
2.4. Thermal Analysis
3. Results and Discussion
3.1. XAS Data Analysis: Fe XANES
3.2. XAS Data Analysis: Fe EXAFS
3.3. Micro-Raman Spectra of Sediment Samples
3.4. Which Techniques Are Better Suited to Reveal Ferrihydrite Occurrence?
3.5. Further ‘Tips’ from Thermal Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yaalon, D.H. Soils in the Mediterranean region: What makes them different? Catena 1997, 28, 157–169. [Google Scholar] [CrossRef]
- Colombo, C.; Torrent, J. Relationships between aggregation and iron oxides in Terra Rossa soils from Southern Italy. Catena 1991, 18, 51–59. [Google Scholar] [CrossRef]
- Atalay, I. Red Mediterranean soils in some karstic regions of Taurus mountains, Turkey. Catena 1997, 28, 247–260. [Google Scholar] [CrossRef]
- Cabadas-Báez, H.; Solleiro-Rebolledo, E.; Sedov, S.; Pi-Puig, T.; Gama-Castro, J. Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of Late Quaternary soil development, geomorphic processes and landscape stability. Geomorphology 2010, 122, 323–337. [Google Scholar] [CrossRef]
- Priori, S.; Costantini, E.A.C.; Capezzuoli, E.; Protano, G.; Hilgers, A.; Sauer, D.; Sandrelli, F. Pedostratigraphy of Terra Rossa and Quaternary geological evolution of a lacustrine limestone plateau in central Italy. J. Plant Nutr. Soil Sci. 2008, 171, 509–523. [Google Scholar] [CrossRef]
- Canfield, D.E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 2005, 33, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Lyons, T.W.; Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 2006, 70, 5698–5722. [Google Scholar] [CrossRef]
- Eze, P.; Meadows, M. Mineralogy and micromorphology of a late Neogene paleosol sequence at Langebaanweg, South Africa: Inference of paleoclimates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 409, 205–216. [Google Scholar] [CrossRef]
- Sheldon, N.D.; Tabor, N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 2009, 95, 1–52. [Google Scholar] [CrossRef]
- Zaccone, C.; Quideau, S.; Sauer, D. Soils and paleosols as archives of natural and anthropogenic environmental changes. Eur. J. Soil Sci. 2014, 65, 403–405. [Google Scholar] [CrossRef]
- Nukazawa, K.; Itakiyo, T.; Ito, K.; Sato, S.; Oishi, H.; Suzuki, Y. Mineralogical fingerprint to characterize spatial distribution of coastal and riverine sediments in southern Japan. Catena 2021, 203, 105823. [Google Scholar] [CrossRef]
- Puglisi, E.; Squartini, A.; Terribile, F.; Zaccone, C. Pedosedimentary and microbial investigation of a karst sequence record. Sci. Total Environ. 2022, 810, 151297. [Google Scholar] [CrossRef] [PubMed]
- Schwertmann, U.; Taylor, R.M. Iron oxides. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; SSSA Book Series; Wiley: Hoboken, NJ, USA, 1989; pp. 379–438. [Google Scholar]
- Slotznick, S.P.; Sperling, E.A.; Tosca, N.J.; Miller, A.J.; Clayton, K.E.; van Helmond, N.A.G.M.; Slomp, C.P.; Swanson-Hysell, N.L. Unraveling the mineralogical complexity of sediment iron speciation using sequential extractions. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008666. [Google Scholar] [CrossRef]
- de Faria, D.L.A.; Venâncio Silva, S.; De Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- de Faria, D.L.A.; Lopes, F.N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 2007, 45, 117–121. [Google Scholar] [CrossRef]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Bastians, S.; Crump, G.; Griffith, W.P.; Withnall, R. Raspite and studtite: Raman spectra of two unique minerals. J. Raman Spectrosc. 2004, 35, 726–731. [Google Scholar] [CrossRef]
- Martens, W.; Frost, R.L.; Williams, P.A. Molecular structure of the adelite group of minerals—A Raman spectroscopic study. J. Raman Spectrosc. 2003, 34, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Giannetta, B.; Oliveira de Souza, D.; Aquilanti, G.; Celi, L.; Said-Pullicino, D. Redox-driven changes in organic C stabilization and Fe mineral transformations in temperate hydromorphic soils. Geoderma 2022, 406, 115532. [Google Scholar] [CrossRef]
- O’Day, P.A.; Rivera, N.; Root, R.; Carroll, S.A. X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. Am. Miner. 2004, 89, 572–585. [Google Scholar] [CrossRef]
- Root, R.A.; Vlassopoulos, D.; Rivera, N.A.; Rafferty, M.T.; Andrews, C.; O’Day, P.A. Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer. Geochim. Cosmochim. Acta 2009, 73, 5528–5553. [Google Scholar] [CrossRef]
- Noel, V.; Marchand, C.; Juillot, F.; Ona-Nguema, G.; Viollier, E.; Marakovic, G.; Olivi, L.; Delbes, L.; Gelebart, F.; Moring, G. EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, New Caledonia). Geochim. Cosmochim. Acta 2014, 136, 211–228. [Google Scholar] [CrossRef]
- Bletsa, E.; Zaccone, C.; Miano, T.; Terzano, R.; Deligiannakis, Y. Natural Mn-todorokite as an efficient and green azo dye-degradation catalyst. Environ. Sci. Poll. Res. 2020, 27, 9835–9842. [Google Scholar] [CrossRef]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift (SE Italy): An anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- De Santis, V.; Caldara, M.; de Torres, T.; Ortiz, J.E. Stratigraphic units of the Apulian Tavoliere plain (Southern Italy): Chronology, correlation with marine isotope stages and implications regarding vertical movements. Sediment. Geol. 2010, 228, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Aquilanti, G.; Giorgetti, M.; Dominko, R.; Stievano, L.; Arčon, I.; Novello, N.; Olivi, L. Operando characterization of batteries using X-ray absorption spectroscopy: Advances at the beamline XAFS at synchrotron Elettra. J. Phys. D Appl. Phys. 2017, 50, 074001. [Google Scholar] [CrossRef]
- Di Cicco, A.; Aquilanti, G.; Minicucci, M.; Principi, E.; Novello, N.; Cognigni, A.; Olivi, L. Novel XAFS capabilities at ELETTRA synchrotron light source. J. Phys. Conf. Ser. 2009, 190, 012043. [Google Scholar] [CrossRef]
- Giannetta, B.; Plaza, C.; Siebecker, M.G.; Aquilanti, G.; Vischetti, C.; Plaisier, J.R.; Juanco, M.; Sparks, D.L.; Zaccone, C. Iron speciation in organic matter fractions isolated from soils amended with biochar and organic fertilizers. Environ. Sci. Technol. 2020, 54, 5093–5101. [Google Scholar] [CrossRef]
- Giannetta, B.; Siebecker, M.G.; Zaccone, C.; Plaza, C.; Rovira, P.; Vischetti, C.; Sparks, D.L. Iron(III) fate after complexation with soil organic matter in fine silt and clay fractions: An EXAFS spectroscopic approach. Soil Tillage Res. 2020, 200, 104617. [Google Scholar] [CrossRef]
- Westre, T.E.; Kennepohl, P.; DeWitt, J.G.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314. [Google Scholar] [CrossRef]
- Wilke, M.; Farges, F.; Petit, P.E.; Brown, G.E.; Martin, F. Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. Am. Miner. 2001, 86, 714–730. [Google Scholar] [CrossRef]
- Farges, F.; Rossano, S.; Lefrère, Y.; Wilke, M.; Brown, G.E. Iron in silicate glasses: A systematic analysis of pre-edge, XANES and EXAFS features. Phys. Scr. 2005, T115, 957–959. [Google Scholar] [CrossRef]
- Galoisy, L.; Calas, G.; Arrio, M.A. High-resolution XANES spectra of iron in minerals and glasses: Structural information from the pre-edge region. Chem. Geol. 2001, 174, 307–319. [Google Scholar] [CrossRef]
- Prietzel, J.; Thieme, J.; Eusterhues, K.; Eichert, D. Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES, μ-XANES). Eur. J. Soil Sci. 2007, 58, 1027–1041. [Google Scholar] [CrossRef]
- Strawn, D.; Doner, H.; Zavarin, M.; McHugo, S. Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma 2002, 108, 237–257. [Google Scholar] [CrossRef]
- Giarola, M.; Sanson, A.; Monti, F.; Mariotto, G.; Bettinelli, M.; Speghini, A.; Salviulo, G. Vibrational dynamics of anatase TiO2: Polarized Raman spectroscopy and ab initio calculations. Phys. Rev. B-Condens. Matter Mater. Phys. 2010, 81, 174305. [Google Scholar] [CrossRef]
- Rutt, H.N.; Nicola, J.H. Raman spectra of carbonates of calcite structure. J. Phys. C Solid State Phys. 1974, 7, 4522–4528. [Google Scholar] [CrossRef]
- Abrashev, M.V.; Ivanov, G.V.; Stefanov, B.S.; Todorov, N.D.; Rosell, J.; Skumryev, V. Raman spectroscopy of alpha-FeOOH (goethite) near antiferromagnetic to paramagnetic phase transition. J. Appl. Phys. 2020, 127, 205108. [Google Scholar] [CrossRef]
- Marshall, C.P.; Dufresne, W.J.B.; Rufledt, C.J. Polarized Raman spectra of hematite and assignment of external modes. J. Raman Spectrosc. 2020, 51, 1522–1529. [Google Scholar] [CrossRef]
- Feng, X.H.; Tan, W.F.; Liu, F.; Wang, J.B.; Ruan, H.D. Synthesis of todorokite at atmospheric pressure. Chem. Mater. 2004, 16, 4330–4336. [Google Scholar] [CrossRef]
- Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J.P. Raman spectra of birnessite manganese dioxides. Solid State Ionics 2003, 159, 345–356. [Google Scholar] [CrossRef]
- Julien, C.M.; Massot, M.; Poinsignon, C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2004, 60, 689–700. [Google Scholar] [CrossRef]
- Post, J.E.; McKeown, D.A.; Heaney, P.J. Raman spectroscopy study of manganese oxides: Tunnel structures. Am. Miner. 2020, 105, 1175–1190. [Google Scholar] [CrossRef]
- Bernardini, S.; Bellatreccia, F.; Casanova Municchia, A.; Della Ventura, G.; Sodo, A. Raman spectra of natural manganese oxides. J. Raman Spectrosc. 2019, 50, 873–888. [Google Scholar] [CrossRef]
- Bernardini, S.; Bellatreccia, F.; Della Ventura, G.; Sodo, A. A reliable method for determining the oxidation state of manganese at the microscale in Mn oxides via Raman Spectroscopy. Geostand. Geoanal. Res. 2021, 45, 223–244. [Google Scholar] [CrossRef]
- Burlet, C.; Vanbrabant, Y. Study of the spectro-chemical signatures of cobalt-manganese layered oxides (asbolane-lithiophorite and their intermediates) by Raman spectroscopy. J. Raman Spectrosc. 2015, 46, 941–952. [Google Scholar] [CrossRef]
- Post, J.E.; McKeown, D.A.; Heaney, P.J. Raman spectroscopy study of manganese oxides: Layer structures. Am. Miner. 2021, 106, 351–366. [Google Scholar] [CrossRef]
- Mulè, G.; Burlet, C.; Vanbrabant, Y. Automated curve fitting and unsupervised clustering of manganese oxide Raman responses. J. Raman Spectrosc. 2017, 48, 1665–1675. [Google Scholar] [CrossRef]
- Dillon, R.O.; Woollam, J.A.; Katkanant, V. Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 1984, 29, 3482–3489. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem. Geol. 2011, 290, 101–108. [Google Scholar] [CrossRef]
- Mazzetti, L.; Thistlethwaite, P.J. Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J. Raman Spectrosc. 2002, 33, 104–111. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, L.; Fang, Z.; Demopoulos, G.P. Observation of surface precipitation of arsenate on ferrihydrite. Environ. Sci. Technol. 2006, 40, 3248–3253. [Google Scholar] [CrossRef] [PubMed]
- Sklute, E.C.; Kashyap, S.; Dyar, M.D.; Holden, J.F.; Tague, T.; Wang, P.; Jaret, S.J. Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides. Phys. Chem. Miner. 2018, 45, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, G.M.; Novack, K.M.; Elias, M.M.C.; Da Cunha, C.C.R.F. Quantification of moisture contents in iron and manganese ores. ISIJ Int. 2013, 53, 1732–1738. [Google Scholar] [CrossRef] [Green Version]
- Bish, D.L.; Post, J.E. Thermal behavior of complex, tunnel-structure manganese oxides. Am. Miner. 1989, 74, 177–186. [Google Scholar]
- Shen, Y.F.; Zerger, R.P.; Deguzman, R.N.; Suib, S.L.; McCurby, L.; Potter, D.I.; O’Young, C.L. Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science 1993, 260, 511–515. [Google Scholar] [CrossRef]
#1 | #2 | #3 | #4 | #5 | ||
---|---|---|---|---|---|---|
C tot | (%) | 3.10 ± 0.01 | 0.27 ± 0.08 | 0.16 ± 0.08 | 0.17 ± 0.01 | 4.16 ± 0.38 |
C org | (%) | 0.12 ± 0.01 | 0.16 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.09 ± 0.01 |
C inorg | (%) | 2.98 | 0.11 | 0.04 | 0.06 | 4.07 |
N | (%) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.05 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.00 |
S | (%) | <0.015 | <0.015 | <0.015 | <0.015 | <0.015 |
Si | (%) | 23.9 | 2.9 | 0.8 | 0.8 | 6.8 |
Al | (%) | 15.5 ± 0.1 | 4.8 ± 0.0 | 2.8 ± 0.0 | 1.3 ± 0.0 | 7.2 ± 0.1 |
Fe | (%) | 3.3 ± 0.0 | 46.5 ± 0.4 | 6.3 ± 0.1 | 56.7 ± 0.7 | 5.7 ± 0.1 |
Mn | (%) | 0.01 ± 0.00 | 1.6 ± 0.0 | 42.3 ± 0.5 | 5.0 ± 0.1 | 4.7 ± 0.1 |
Ca | (%) | 7.7 ± 0.1 | 0.4 ± 0.0 | 1.2 ± 0.0 | 0.4 ± 0.0 | 11.9 ± 0.3 |
Mg | (%) | 0.81 ± 0.01 | 1.10 ± 0.01 | 3.23 ± 0.07 | 1.04 ± 0.2 | 1.13 ± 0.02 |
K | (%) | 0.48 ± 0.01 | 0.12 ± 0.00 | 0.72 ± 0.01 | 0.02 ± 0.00 | 0.20 ± 0.00 |
As | (mg/kg) | 76 ± 1 | 2202 ± 46 | 373 ± 1 | 3693 ± 89 | 162 ± 3 |
Co | (mg/kg) | 25 ± 0 | 356 ± 12 | 8111 ± 105 | 557 ± 18 | 1052 ± 16 |
Ni | (mg/kg) | 162 ± 1 | 857 ± 23 | 5771 ± 75 | 838 ± 20 | 1614 ± 21 |
Ti | (mg/kg) | 10,282 ± 452 | 2253 ± 23 | 1074 ± 13 | 297 ± 16 | 5660 ± 113 |
V | (mg/kg) | 189 ± 2 | 814 ± 12 | 361 ± 4 | 926 ± 31 | 245 ± 2 |
Layer/ Sediment | Component 1 | % | Component 2 | % | Component 3 | % | Component 4 | % | |
---|---|---|---|---|---|---|---|---|---|
#1 | Smectite | 23 | Ferrihydrite | 2 | Goethite | 70 | Hematite | 5 | 100 |
#2 | Smectite | 5 | Ferrihydrite | 8 | Goethite | 79 | Hematite | 8 | 100 |
#3 | Smectite | 22 | Illite | 14 | Goethite | 32 | Hematite | 33 | 100 |
#4 | Smectite | 5 | Fe(III)-citrate | 3 | Goethite | 92 | 100 | ||
#5 | Smectite | 13 | Nontronite | 6 | Goethite | 41 | Hematite | 40 | 100 |
Layer/ Sediment | R-Factor | Component 1 | % | Component 2 | % | Component 3 | % | Component 4 | % | Component 5 | % | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | 0.006003 | Ferrihydrite | 10 | Goethite | 45 | Hematite | 9 | Fe(III)-citrate | 20 | Smectite | 16 | 100 |
#2 | 0.005305 | Ferrihydrite | 9 | Goethite | 56 | Hematite | 18 | Fe(III)-citrate | 17 | 100 | ||
#4 | 0.005558 | Ferrihydrite | 3 | Goethite | 71 | Hematite | 9 | Fe(III)-citrate | 17 | 100 | ||
#5 | 0.005855 | Ferrihydrite | 19 | Goethite | 17 | Hematite | 46 | Fe(III)-citrate | 18 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannetta, B.; Cassetta, M.; Oliveira de Souza, D.; Mariotto, G.; Aquilanti, G.; Zaccone, C. Coupling X-ray Absorption and Raman Spectroscopies to Characterize Iron Species in a Karst Pedosedimentary Record. Soil Syst. 2022, 6, 24. https://doi.org/10.3390/soilsystems6010024
Giannetta B, Cassetta M, Oliveira de Souza D, Mariotto G, Aquilanti G, Zaccone C. Coupling X-ray Absorption and Raman Spectroscopies to Characterize Iron Species in a Karst Pedosedimentary Record. Soil Systems. 2022; 6(1):24. https://doi.org/10.3390/soilsystems6010024
Chicago/Turabian StyleGiannetta, Beatrice, Michele Cassetta, Danilo Oliveira de Souza, Gino Mariotto, Giuliana Aquilanti, and Claudio Zaccone. 2022. "Coupling X-ray Absorption and Raman Spectroscopies to Characterize Iron Species in a Karst Pedosedimentary Record" Soil Systems 6, no. 1: 24. https://doi.org/10.3390/soilsystems6010024
APA StyleGiannetta, B., Cassetta, M., Oliveira de Souza, D., Mariotto, G., Aquilanti, G., & Zaccone, C. (2022). Coupling X-ray Absorption and Raman Spectroscopies to Characterize Iron Species in a Karst Pedosedimentary Record. Soil Systems, 6(1), 24. https://doi.org/10.3390/soilsystems6010024