Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sampling
2.2. Rice Grain Analyses
2.3. Soil Analyses
2.3.1. Analyses of Basic Soil Properties and Elemental Composition
2.3.2. Dry Soil Ascorbate-Citrate (AscCit) Extraction for As
2.3.3. Dry Soil CaCl2 Extraction for Cd
2.3.4. Anoxic Soil Incubation for As
2.3.5. Field-Moist Soil CaCl2 Extraction for Cd
2.4. Explorative Linear Regression
3. Results
3.1. Basic Soil Properties and Total Elemental Concentrations in Brown Rice and Soil
3.2. Dry Soil AscCit Extraction
3.3. Anoxic Soil Incubation
3.4. Dry Soil CaCl2 Extraction
3.5. Field-Moist Soil CaCl2 Extraction
3.6. Regression for Grain As
3.7. Regression for Grain Cd
4. Discussion
4.1. Importance of Soil Parameters Reflecting Redox Conditions during As/Cd Uptake
4.2. Key Soil Parameters for Grain As Estimation
4.3. Key Soil Parameters for Grain Cd Estimation
4.4. Role of Water Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fageria, N.K. Yield physiology of rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Williams, P.N.; Meharg, A.A. Exposure to inorganic arsenic from rice: A global health issue? Environ. Pollut. 2008, 154, 169–171. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.X.; Williams, P.N.; Nunes, L.; Zhu, Y.G. Inorganic arsenic in Chinese food and its cancer risk. Environ. Int. 2011, 37, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yang, X.; Wang, P.; Wang, Z.; Li, M.; Zhao, F. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Sci. Total. Environ. 2018, 639, 271–277. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection (MEP); Ministry of Land and Resources (MLR). Report on the National Soil Contamination Survey. Available online: http://english.mee.gov.cn/News_service/news_release/201404/t20140428_271088.shtml (accessed on 17 February 2022).
- Hu, Y.; Cheng, H.; Tao, S. The challenges and solutions for cadmium-contaminated rice in China: A Critical Review. Environ. Int. 2016, 92, 515–532. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Jaya, K.; Naidu, R. Cadmium sorption and desorption in soils: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 489–533. [Google Scholar] [CrossRef]
- Simmler, M.; Bommer, J.; Frischknecht, S.; Christl, I.; Kotsev, T.; Kretzschmar, R. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature. Environ. Pollut. 2017, 231, 722–731. [Google Scholar] [CrossRef]
- Weber, F.A.; Hofacker, A.F.; Voegelin, A.; Kretzschmar, R. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environ. Sci. Technol. 2010, 44, 116–122. [Google Scholar] [CrossRef]
- Bowell, R.J. Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl. Geochem. 1994, 9, 279–286. [Google Scholar] [CrossRef]
- Fulda, B.; Voegelin, A.; Kretzschmar, R. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ. Sci. Technol. 2013, 47, 12775–12783. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W.; Cao, Z.; Fiedler, S.; Frenzel, P.; Jahn, R.; Kalbitz, K.; Kölbl, A.; Schloter, M. Biogeochemistry of paddy soils. Geoderma 2010, 157, 1–14. [Google Scholar] [CrossRef]
- Maisch, M.; Lueder, U.; Kappler, A.; Schmidt, C. Iron Lung: How rice roots induce iron redox changes in the rhizosphere and create niches for microaerophilic Fe(II)-oxidizing bacteria. Environ. Sci. Technol. Lett. 2019, 6, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Maisch, M.; Lueder, U.; Kappler, A.; Schmidt, C. From plant to paddy—How rice root iron plaque can affect the paddy field iron cycling. Soil Syst. 2020, 4, 28. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Ohkura, T.; Takahashi, Y.; Maejima, Y.; Arao, T. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ. Sci. Technol. 2014, 48, 1549–1556. [Google Scholar] [CrossRef]
- Seyfferth, A.L.; Limmer, M.; Wu, W. Si and water management drives changes in Fe and Mn pools that affect ss cycling and uptake in rice. Soil Syst. 2019, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Chen, C.; Xu, C.; Zhu, Q.; Huang, D. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ. Pollut. 2016, 219, 99–106. [Google Scholar] [CrossRef]
- Sui, F.Q.; Chang, J.D.; Tang, Z.; Liu, W.J.; Huang, X.Y.; Zhao, F.J. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil 2018, 433, 377–389. [Google Scholar] [CrossRef]
- Su, Y.H.; McGrath, S.P.; Zhao, F.J. Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 2010, 328, 27–34. [Google Scholar] [CrossRef]
- Zhao, F.J.; Wang, P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 2020, 446, 1–21. [Google Scholar] [CrossRef]
- Ishikawa, S. Mechanisms of cadmium accumulation in rice grains and molecular breeding for its reduction. Soil Sci. Plant Nutr. 2020, 66, 28–33. [Google Scholar] [CrossRef]
- Fang, X.; Wang, J.; Chen, H.; Christl, I.; Wang, P.; Kretzschmar, R.; Zhao, F.J. Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain. Environ. Pollut. 2021, 289, 117918. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.; Wang, M.; Chen, W.; Dai, Y. Limestone dosage response of cadmium phytoavailability minimization in rice: A trade-off relationship between soil pH and amorphous manganese content. J. Hazard. Mater. 2021, 1403, 123664. [Google Scholar] [CrossRef]
- Mu, T.; Wu, T.; Zhou, T.; Li, Z.; Ouyang, Y.; Jiang, J.; Zhu, D.; Hou, J.; Wang, Z.; Luo, Y.; et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Sci. Total. Environ. 2019, 677, 373–381. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Song, J.; Zhang, H.; Xia, J.; Zhao, Q. Predicting As, Cd and Pb uptake by rice and vegetables using field data from China. J. Environ. Sci. 2011, 23, 70–78. [Google Scholar] [CrossRef]
- Wu, J.; Song, Q.; Zhou, J.; Wu, Y.; Liu, X.; Liu, J.; Zhou, L.; Wu, Z.; Wu, W. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. cadmium accumulation: Influential factors and prediction model. Ecotoxicol. Environ. Saf. 2021, 208, 111420. [Google Scholar] [CrossRef]
- Menzies, N.W.; Donn, M.J.; Kopittke, P.M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Niazi, N.K.; Singh, B.; Shah, P. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ. Sci. Technol. 2011, 45, 7135–7142. [Google Scholar] [CrossRef]
- Reyes, I.; Torrent, J. Citrate-ascorbate as a highly selective extractant for poorly crystalline iron oxides. Soil Sci. Soc. Am. J. 1997, 61, 1647. [Google Scholar] [CrossRef]
- Römkens, P.F.A.M.; Guo, H.Y.; Chu, C.L.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines. Environ. Pollut. 2009, 157, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.K.; Liu, Z.Y.; Wang, H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal. 2010, 41, 820–831. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Xu, Y.; Zhou, W.; Huang, K.; Tang, Z.; Zhao, F.J. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils. Environ. Sci. Technol. 2017, 51, 4377–4386. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-F.; Chai, C.-W.; Li, Y.-N.; Chen, J.; Yuan, Y.; Hu, G.; Rosen, B.P.; Zhang, J. Anaerobic As(III) oxidation coupled with nitrate reduction and attenuation of dissolved arsenic by Noviherbaspirillum species. ACS Earth Sp. Chem. 2021, 5, 2115–2123. [Google Scholar] [CrossRef]
- Burton, E.D.; Johnston, S.G.; Kocar, B.D. Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environ. Sci. Technol. 2014, 48, 13660–13667. [Google Scholar] [CrossRef]
- Seyfferth, A.L.; McCurdy, S.; Schaefer, M.V.; Fendorf, S. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia. Environ. Sci. Technol. 2014, 48, 4699–4706. [Google Scholar] [CrossRef]
- Simmons, R.W.; Noble, A.D.; Pongsakul, P.; Sukreeyapongse, O.; Chinabut, N. Analysis of field-moist Cd contaminated paddy soils during rice grain fill allows reliable prediction of grain Cd levels. Plant Soil 2008, 302, 125–137. [Google Scholar] [CrossRef]
- Ye, X.; Li, H.; Ma, Y.; Wu, L.; Sun, B. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. J. Soils Sediments 2014, 14, 1407–1416. [Google Scholar] [CrossRef]
- Huang, B.-Y.; Zhao, F.J.; Wang, P. The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy. Environ. Pollut. 2021, 293, 118497. [Google Scholar] [CrossRef]
- Simmler, M.; Suess, E.; Christl, I.; Kotsev, T.; Kretzschmar, R. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. Sci. Total. Environ. 2016, 572, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Novozamsky, I.; Lexmond, T.M.; Houba, V.J.G. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int. J. Environ. Anal. Chem. 1993, 51, 47–58. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Temminghoff, E.J.M.; Gaikhorst, G.A.; Van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Israeli, O. A Shapley-based decomposition of the R-square of a linear regression. J. Econ. Inequal. 2007, 5, 199–212. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment (MEE); State Administration for Market Regulation (SAMR). Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (for Trial Implementation). Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/t20180703_446029.shtml (accessed on 17 February 2022).
- Hu, P.; Huang, J.; Ouyang, Y.; Wu, L.; Song, J.; Wang, S.; Li, Z.; Han, C.; Zhou, L.; Huang, Y.; et al. Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ. Geochem. Health 2013, 35, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Arao, T.; Kawasaki, A.; Baba, K.; Mori, S.; Matsumoto, S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ. Sci. Technol. 2009, 43, 9361–9367. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, P.; Zhang, J.; Chen, C.; Wang, Z.; Kopittke, P.M.; Kretzschmar, R.; Zhao, F.J. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environ. Pollut. 2019, 251, 952–960. [Google Scholar] [CrossRef]
- Dixit, G.; Singh, A.P.; Kumar, A.; Mishra, S.; Dwivedi, S.; Kumar, S.; Trivedi, P.K.; Pandey, V.; Tripathi, R.D. Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol. Biochem. 2016, 99, 86–96. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhu, Y.G.; Li, M.; Zhang, L.G.; Cao, Z.H.; Smith, F.A. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ. Pollut. 2007, 147, 387–393. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.Y.; Su, Y.H.; McGrath, S.P.; Zhao, F.J. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef] [Green Version]
- Li, R.Y.; Ago, Y.; Liu, W.J.; Mitani, N.; Feldmann, J.; McGrath, S.P.; Ma, J.F.; Zhao, F.J. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 2009, 150, 2071–2080. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Tang, Z.; Wang, P.; Zhao, F. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environ. Pollut. 2018, 238, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, W.; Yang, X.; Wang, P.; McGrath, S.P.; Zhao, F.J. Effective methods to reduce cadmium accumulation in rice grain. Chemosphere 2018, 207, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xu, W.; Wang, M.; Chen, W.; Li, X.; Li, Y.; Cai, Y. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. Environ. Pollut. 2019, 253, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Green, C.E.; Chaney, R.L.; Bouwkamp, J. Increased zinc supply does not inhibit cadmium accumulation by rice (Oryza sativa L.). J. Plant Nutr. 2017, 40, 869–877. [Google Scholar] [CrossRef]
- Hassan, M.J.; Zhang, G.; Wu, F.; Wei, K.; Chen, Z. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J. Plant Nutr. Soil Sci. 2005, 168, 255–261. [Google Scholar] [CrossRef]
- Nakanishi, H.; Ogawa, I.; Ishimaru, Y.; Mori, S.; Nishizawa, N.K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 2006, 52, 464–469. [Google Scholar] [CrossRef]
- Shao, G.; Chen, M.; Wang, W.; Mou, R.; Zhang, G. Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regul. 2007, 53, 33–42. [Google Scholar] [CrossRef]
- Wisawapipat, W.; Chooaiem, N.; Aramrak, S.; Chittamart, N.; Nookabkaew, S.; Rangkadilok, N.; Satayavivad, J.; Christl, I. Sulfur amendments to soil decrease inorganic arsenic accumulation in rice grain under flooded and nonflooded conditions: Insights from temporal dynamics of porewater chemistry and solid-phase arsenic solubility. Sci. Total. Environ. 2021, 779, 146352. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuang, Z.; Yu, Y.; Wang, Q.; Wan, Y.; Li, H. Arsenic transfer and accumulation in the soil-rice system with sulfur application and different water managements. Chemosphere 2021, 269, 128772. [Google Scholar] [CrossRef]
pH_d | TOC | Clay | Silt | Sand | |
---|---|---|---|---|---|
% | % | % | % | ||
median | 5.09 | 2.12 | 30.3 | 43.7 | 25.5 |
min | 3.86 | 1.12 | 4.9 | 18.5 | 9.4 |
max | 7.71 | 6.09 | 46.6 | 63.5 | 74.8 |
Rice Total | Soil Total | AscCit Extractable | Incubation Dissolved | Dry Soil Exchangeable | Moist Soil Exchangeable | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(RT) | (ST) | (AscCit) | (Diss) | (DSE) | (SE) | ||||||||
Median | Min–Max | Median | Min–Max | Median | Min–Max | Median | Min–Max | Median | Min–Max | Median | Min–Max | ||
As | mg/kg | 0.19 | 0.045–0.32 | 19 | 5.04–235 | 3.4 | 0.96–22 | 0.27 | 0.018–1.8 | 0.022 | 0.0050–0.089 | 0.010 | 0.0017–0.16 |
% | 0.78 | 0.08–5 | – | – | 15 | 0.7–46 | 1.0 | 0.02–5 | 0.1 | 0.003–0.4 | 0.037 | 0.002–0.7 | |
Cd | mg/kg | 0.42 | 0.012–3.5 | 1.4 | 0.15–21 | 0.17 | ND–2.2 | ND | ND–8.4 × 10−4 | 0.10 | 6.5 × 10−4–1.6 | 0.038 | 1.4 × 10−4–0.78 |
% | 52 | 0.5–1478 | – | – | 18 | <1–40 | 0.01 | <5 × 10−4–0.1 | 13 | 0.1–44 | 4.4 | 0.02–36 | |
Fe | mg/kg | 11 | 7.1–27 | 3.5 × 104 | 0.9–19.5 × 104 | 1784 | 773–3697 | 50 | 3.9–300 | 0.10 | ND–7.1 | 0.51 | 0.042–214 |
% | 0.034 | 0.005–0.1 | – | – | 5.1 | 0.5–17 | 0.1 | 0.005–0.6 | 4 × 10−4 | <1 × 10−6–0.06 | 0.0018 | 1 × 10−4–0.6 | |
Mn | mg/kg | 24 | 11–45 | 312 | 92–1249 | 80 | 7.4–319 | 5.4 | 0.39–29 | 9.6 | 0.19–86 | 6.8 | 0.12–162 |
% | 6.8 | 2–32 | – | – | 27 | 3–50 | 2 | 0.2–5 | 4 | 0.06–17 | 2.1 | 0.05–26 | |
S | mg/kg | 1172 | 820–1566 | 372 | 191–1484 | 73 | 26–525 | 3.2 | 1.3–205 | 39 | 14–466 | 29 | 2.7–171 |
% | 322 | 106–583 | – | – | 22 | 8–59 | 0.9 | 0.4–22 | 11 | 4–37 | 6.2 | 1–28 | |
Si | mg/kg | 111 | 38–263 | – | – | – | – | 7.2 | 3.3–17 | – | – | 3.9 | 0.67–8.4 |
% | – | – | – | – | – | – | – | – | – | – | – | – | |
Zn | mg/kg | 22 | 12–56 | 138 | 48–5284 | 7.1 | ND-887 | 0.0042 | ND–2.3 | 0.99 | ND–366 | 1.1 | 0.071–218 |
% | 14 | 0.5–52 | – | – | 3.8 | <0.6–107 | 0.004 | <2 × 10−4–0.08 | 1.2 | <0.01–13 | 1.2 | 0.03–12 |
Variable Set 1 | Variable Set 2 | Variable Set 3 | Combined Set | |
---|---|---|---|---|
Grain As | Basic + ST | Basic + AscCit | Basic + Diss | Basic + ST + AscCit + Diss |
pH_d, TOC, clay%, sand%, Mg_ST, P_ST, S_ST, K_ST, Ca_ST, Mn_ST, Fe_ST, Co_ST, Ni_ST, Cu_ST, Zn_ST, As_ST | pH_d, TOC, clay%, sand%, Al_AscCit, P_AscCit, S_AscCit, Mn_AscCit, Fe_AscCit, Co_AscCit, Ni_AscCit, Cu_AscCit, As_AscCit | pH_d, TOC, clay%, sand%, OC_Diss, N_Diss, Al_Diss, Si_Diss, P_Diss, S_Diss, Mn_Diss, Fe_Diss, Co_Diss, Ni_Diss, As_Diss | all variables of sets1, 2, and 3 for grain As | |
Grain Cd | Basic + ST | Basic + DSE | Basic + SE | Basic + ST + DSE + SE |
pH_d, TOC, clay%, sand%, Mg_ST, P_ST, S_ST, K_ST, Ca_ST, Mn_ST, Fe_ST, Co_ST, Ni_ST, Cu_ST, Zn_ST, Cd_ST | pH_d, TOC, clay%, sand%, P_DSE, S_DSE, Mn_DSE, Co_DSE, Ni_DSE, Cu_DSE, Zn_DSE, Cd_DSE | pH_d, TOC, clay%, sand%, pH_m, WC, Mg_SE, Si_SE, S_SE, K_SE, Mn_SE, Fe_SE, Zn_SE, Cd_SE | all variables of sets 1, 2, and 3 for grain Cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Muntwyler, A.; Schneider, P.; Christl, I.; Wang, P.; Zhao, F.-J.; Kretzschmar, R. Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China. Soil Syst. 2022, 6, 36. https://doi.org/10.3390/soilsystems6020036
Fang X, Muntwyler A, Schneider P, Christl I, Wang P, Zhao F-J, Kretzschmar R. Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China. Soil Systems. 2022; 6(2):36. https://doi.org/10.3390/soilsystems6020036
Chicago/Turabian StyleFang, Xu, Anna Muntwyler, Pascal Schneider, Iso Christl, Peng Wang, Fang-Jie Zhao, and Ruben Kretzschmar. 2022. "Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China" Soil Systems 6, no. 2: 36. https://doi.org/10.3390/soilsystems6020036
APA StyleFang, X., Muntwyler, A., Schneider, P., Christl, I., Wang, P., Zhao, F. -J., & Kretzschmar, R. (2022). Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China. Soil Systems, 6(2), 36. https://doi.org/10.3390/soilsystems6020036