Multiple Linear and Polynomial Models for Studying the Dynamics of the Soil Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Study Material
2.3. Experiment Installation
2.4. Description of the Treatments
2.5. Sample Collection and Analysis
2.6. Data Analysis
2.6.1. Multiple Polynomial and Linear Regression Analysis
2.6.2. Leave-One-Out Cross-Validation
3. Results
3.1. Selection of Multiple Models Using Cross-Validation
3.2. Multiple Linear Models in the Study of the Soil Solution
Multiple Linear Model with Two Predictor Variables for pH
3.3. Multiple Polynomial Models in the Study of the Soil Solution
3.3.1. Multiple Polynomial Models of Second Order with Three Predictive Variables for Potassium, Calcium, and Sodium
3.3.2. Multiple Polynomial Models of Third Order with Three Predictive Variables for Electrical Conductivity, Nitrates, Sulfur, and Zinc
3.3.3. Multiple Polynomial Models of Fourth Order with Three Predictive Variables for the Oxide-Reduction Potential, Nitrogen, Magnesium, and Boron
4. Discussion
4.1. pH, Oxide-Reduction Potential, and Electrical Conductivity in Soil Solution
4.2. Concentrations of the Different Ions in the Soil Solution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 5th ed.; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Snakin, V.V.; Prisyazhnaya, A.A.; Kovács-Láng, E. Soil Liquid Phase Composition; Elsevier Science B.V.: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Hillel, D. Fundamentals of Soil Physics; Academic Press Inc.: New York, NY, USA, 1980. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: London, UK, 2012. [Google Scholar]
- Asher, C. Natural and Synthetic Culture Media for Spermatophytes. In Section G: Diets, Culture Media, Food Supplements; Rechigl, M., Ed.; CRC Handbook Series in Nutrition and Food; CRC Press: Cleveland, OH, USA, 1978; Volume 3, pp. 575–609. [Google Scholar]
- Ratsep, R.; Nihlgård, B.; Bashkin, V.; Blazka, P.; Emmet, B.; Harris, J.; Kruk, M. Agricultural Impacts in the Northern Temperate Zone. In Biogeochemistry of Small Catchmentes: A Tool for Research; Moldan, B., Cerney, J., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 1994; pp. 361–382. [Google Scholar]
- Sparks, D.L. Kinetics of Soil Chemical Processes; Academic Press, Inc.: San Diego, CA, USA, 1989; ISBN 0-12-656440-X. [Google Scholar]
- Aharoni, C.; Sparks, D.L.; Levinson, S.; Ravina, I. Kinetics of Soil Chemical Reactions: Relationships between Empirical Equations and Diffusion Models. Soil Sci. Soc. Am. J. 1991, 55, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Hernández Díaz, M.I.; Chailloux Laffta, M.; Moreno Placeres, V.; Igarza Sánchez, A.; Ojeda Veloz, A. Nutrient Levels of Reference in the Soil Solution to the Nutrition Diagnostic in the Tomato Protected Crop. Idesia (Arica) 2014, 32, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Yanai, J.; Araki, S.; Kyuma, K. Effects of Plant Growth on the Dynamics of the Soil Solution Composition in the Root Zone of Maize in Four Japanese Soils. Soil Sci. Plant Nutr. 1995, 41, 195–206. [Google Scholar] [CrossRef]
- Yanai, J.; Linehan, D.J.; Robinson, D.; Young, I.M.; Hackett, C.A.; Kyuma, K.; Kosaki, T. Effects of Inorganic Nitrogen Application on the Dynamics of the Soil Solution Composition in the Root Zone of Maize. Plant Soil 1996, 180, 1–9. [Google Scholar] [CrossRef]
- Yanai, J.; Kosaki, T.; Nakano, A.; Kyuma, K. Application Effects of Controlled-Availability Fertilizer on Dynamics of Soil Solution Composition. Soil Sci. Soc. Am. J. 1997, 61, 1781–1786. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R.; Springer Texts in Statistics; Springer: New York, NY, USA, 2013; ISBN 978-1-07-161418-1. [Google Scholar]
- Li, F.; Shan, X.; Zhang, T.; Zhang, S. Evaluation of Plant Availability of Rare Earth Elements in Soils by Chemical Fractionation and Multiple Regression Analysis. Environ. Pollut. 1998, 102, 269–277. [Google Scholar] [CrossRef]
- Genú, A.M.; Demattê, J.A.M. Prediction of Soil Chemical Attributes Using Optical Remote Sensing. Acta Sci. Agron. 2011, 33, 723–727. [Google Scholar] [CrossRef] [Green Version]
- van der Ploeg, R.R.; Beese, F. Model Calculations for the Extraction of Soil Water by Ceramic Cups and Plates. Soil Sci. Soc. Am. J. 1977, 41, 466–470. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; ISBN 978-92-5-108369-7. [Google Scholar]
- NOM-021-RECNAT-2000 Norma Mexicana NOM-021-RECNAT-2000. Norma Mexicana Que Establece Las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreos y Análisis. 2000. Available online: https://catalogonacional.gob.mx/FichaRegulacion?regulacionId=22947 (accessed on 17 April 2022).
- Steiner, A.A. A Universal Method for Preparing Nutrient Solutions of a Certain Desired Composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Oliva-Llaven, M.Á.; Rodríguez-Hernández, L.; Mendoza-Nazar, P.; Ruiz-Sesma, B.; Álvarez-Solís, J.D.; Dendooven, L.; Gutiérrez-Miceli, F.A. Optimization of Worm-Bed Leachate for Culturing of Tomato (Lycopersicon Esculentum Mill) Inoculated with Glomus Fasciculatum and Pseudomonas Fluorescens. Electron. J. Biotechnol. 2010, 13, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Carballo, T.; Gil, M.V.; Calvo, L.F.; Morán, A. The Influence of Aeration System, Temperature and Compost Origin on the Phytotoxicity of Compost Tea. Compost. Sci. Util. 2009, 17, 127–139. [Google Scholar] [CrossRef]
- Muller, L. Un Aparato Micro Kjeldahl Simple Para Análisis Rutinarios Rápidos de Materias Vegetales. Turrialba 1961, 11, 17–25. [Google Scholar]
- Fick, K.R.; Miller, S.M.; Funk, J.D.; McDowell, L.R.; Houser, R.H. Methods of Mineral Anaysis for Plant and Animal Tissues, 2nd ed.; University of Florida, Institute of Food and Agriculture: Gainesville, FL, USA, 1976. [Google Scholar]
- Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection. Statistics Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Neilsen, D.R.; Jackson, R.D.; Cary, J.W.; Evans, D.D. Soil Water; American Society of Agronomy and Soil Science of America: Madison, WI, USA, 1972. [Google Scholar]
- Sposito, G. The Thermodynamics of Soil Solutions; Oxford University Press: Oxford, UK, 1981; ISBN 0-19-857568-8. [Google Scholar]
- Durán-Umaña, L.; Henríquez-Henríquez, C. El vermicompost: Su efecto en algunas propiedades del suelo y la respuesta en planta. Agron. Mesoam. 2010, 21, 85–93. [Google Scholar] [CrossRef]
- Navarro-García, G.; Navarro-García, A. Química Agrícola: Química Del Suelo y de Los Nutrientes Esenciales Para Las Plantas, 2nd ed.; Ediciones Mundi-Prensa: Zaragoza, Italy, 2003. [Google Scholar]
- Moslehi, M.; Habashi, H.; Khormali, F.; Ahmadi, A.; Brunner, I.; Zimmermann, S. Base Cation Dynamics in Rainfall, Throughfall, Litterflow and Soil Solution under Oriental Beech (Fagus Orientalis Lipsky) Trees in Northern Iran. Ann. For. Sci. 2019, 76, 55. [Google Scholar] [CrossRef]
- Gaiser, T.; Stahr, K. Soil Organic Carbon, Soil Formation and Soil Fertility. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 407–418. ISBN 978-94-007-6455-2. [Google Scholar]
- James, C.N.; Copeland, R.C.; Lytle, D.A. Relationships between Oxidation–Reduction Potential, Oxidant, and PH in Drinking Water. In Proceedings of the Water Quality Technology Conference; American Water Works Association: San Antonio, TX, USA, 2004; pp. 1–13. [Google Scholar]
- Aharonov-Nadborny, R.; Tsechansky, L.; Raviv, M.; Graber, E.R. Mechanisms Governing the Leaching of Soil Metals as a Result of Disposal of Olive Mill Wastewater on Agricultural Soils. Sci. Total Environ. 2018, 630, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Bhanja, S.N.; Wang, J. Estimating Influences of Environmental Drivers on Soil Heterotrophic Respiration in the Athabasca River Basin, Canada. Environ. Pollut. 2020, 257, 113630. [Google Scholar] [CrossRef] [PubMed]
- Vepraskas, M.J.; Polizzotto, M.; Faulkner, S.P. Redox Chemistry of Hydric Soils. In Wetland Soils: Genesis, Hydrology, Landscapes, and Classification; Vepraskas, M.J., Craft, C.B., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Crozier, C.R.; Devai, I.; DeLaune, R.D. Methane and Reduced Sulfur Gas Production by Fresh and Dried Wetland Soils. Soil Sci. Soc. Am. J. 1995, 59, 277–284. [Google Scholar] [CrossRef]
- Parkin, T.B. Soil Microsites as a Source of Denitrification Variability. Soil Sci. Soc. Am. J. 1987, 51, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-Y.; Wang, H.; Wang, H.-T.; Xin, P.-Y.; Xu, X.-H.; Ma, Y.; Liu, W.-P.; Teng, C.-Y.; Jiang, C.-L.; Lou, L.-P.; et al. The Chemodiversity of Paddy Soil Dissolved Organic Matter Correlates with Microbial Community at Continental Scales. Microbiome 2018, 6, 187. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical Conductivity and Total Dissolved Solids. Soil Sci. Soc. Am. J. 2020, 84, 1442–1461. [Google Scholar] [CrossRef]
- Charley, J.L.; Mcgarity, J.W. High Soil Nitrate-Levels in Patterned Saltbush Communities. Nature 1964, 201, 1351–1352. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M.; Menzies, N.W. The Effect of Salinity on Plant-Available Water. Plant Soil 2017, 418, 477–491. [Google Scholar] [CrossRef]
- Benton Jones, J. Plant Nutrition and Soil Fertility Manual, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-1609-7. [Google Scholar]
- Kacprzak, M.; Kupich, I.; Jasinska, A.; Fijalkowski, K. Bio-Based Waste’ Substrates for Degraded Soil Improvement—Advantages and Challenges in European Context. Energies 2022, 15, 385. [Google Scholar] [CrossRef]
- Akinrinde, E.A. Soils: Nature, Fertility Conservation and Management; AMS Publishing, Inc.: Vienna, Austria, 2004. [Google Scholar]
- Toprak, S. Balanced Basic Fertilization in Sweet Chestnut (Castanea Sativa Mill.): Vertical Distribution of Plant Nutrients in Different Soil Textures. Alinteri J. Agric. Sci. 2021, 31, 7–13. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Dougherty, W.J.; Fang, Y.; Badgery, W.; Hoyle, F.C.; Dalal, R.C.; Cowie, A.L. Impact of Agricultural Management Practices on the Nutrient Supply Potential of Soil Organic Matter under Long-Term Farming Systems. Soil Tillage Res. 2018, 175, 71–81. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, Y.; Guo, D.; Wang, Q.; Wang, G. Chemical Properties and Microbial Responses to Biochar and Compost Amendments in the Soil under Continuous Watermelon Cropping. Plant Soil Environ. 2017, 63, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Barekzai, A.; Becker, A.; Mengel, K. Effect of Slurry Application on the EUF-N-Fractions in an Arable and a Grassland Soils; VDLUFA-Schriftenr. 28, Congress: Darmstadt, Germany, 1988; pp. 27–42. [Google Scholar]
- Borges, J.A.; Barrios, M.; Sandoval, E.; Bastardo, Y.; Márquez, O. Características Físico-Químicas Del Suelo y Su Asociación Con Macroelementos En Áreas Destinadas a Pastoreo En El Estado Yaracuy. Bioagro 2012, 24, 121–126. [Google Scholar]
- Miao, S.; DeLaune, R.D.; Jugsujinda, A. Influence of Sediment Redox Conditions on Release/Solubility of Metals and Nutrients in a Louisiana Mississippi River Deltaic Plain Freshwater Lake. Sci. Total Environ. 2006, 371, 334–343. [Google Scholar] [CrossRef]
- Sanders, J.R. The Effect of PH on the Total and Free Ionic Concentrations of Mnganese, Zinc and Cobalt in Soil Solutions. J. Soil Sci. 1983, 34, 315–323. [Google Scholar] [CrossRef]
- Sims, J.L.; Patrick Jr., W. H. The Distribution of Micronutrient Cations in Soil Under Conditions of Varying Redox Potential and PH. Soil Sci. Soc. Am. J. 1978, 42, 258–262. [Google Scholar] [CrossRef]
- Srivastava, O.P.; Sethi, B.C. Contribution of Farm Yard Manure on the Build up of Available Zinc in an Aridisol. Commun. Soil Sci. Plant Anal. 1981, 12, 355–361. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, Z.; Liu, K.; Tian, X.; Wang, S.; Wang, S.; Li, X.; Zhao, H.; Shar, A.G. Response of Exogenous Zinc Availability and Transformation to Maize Straw as Affected by Soil Organic Matter. Soil Sci. Soc. Am. J. 2017, 81, 814–827. [Google Scholar] [CrossRef]
- Melton, J.R.; Mahtab, S.K.; Swoboda, A.R. Diffusion of Zinc in Soils as a Function of Applied Zinc, Phosphorus, and Soil PH. Soil Sci. Soc. Am. J. 1973, 37, 379–381. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Tsadilas, C.D.; Selim, M.H.; Rinklebe, J. Zinc Sorption by Different Soils as Affected by Selective Removal of Carbonates and Hydrous Oxides. Appl. Geochem. 2018, 88, 49–58. [Google Scholar] [CrossRef]
- Jenne, E.A. Controls on Mn, Fe, Co, Ni, Cu, and Zn Concentrations in Soils and Water: The Significant Role of Hydrous Mn and Fe Oxides. In Trace Inorganics in Water; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1968; Volume 73, pp. 337–387. ISBN 978-0-8412-0074-6. [Google Scholar]
- Shuman, L.M. Chemical Forms of Micronutrients in Soils. In Micronutrients in Agriculture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1991; pp. 113–144. ISBN 978-0-89118-878-0. [Google Scholar]
- Doner, H.E.; Lynn, W.C. Carbonate, Halide, Sulfate, and Sulfide Minerals. In Minerals in Soil Environments; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1989; pp. 279–330. ISBN 978-0-89118-860-5. [Google Scholar]
- Qadir, M.; Noble, A.D.; Oster, J.D.; Schubert, S.; Ghafoor, A. Driving Forces for Sodium Removal during Phytoremediation of Calcareous Sodic and Saline–Sodic Soils: A Review. Soil Use Manag. 2005, 21, 173–180. [Google Scholar] [CrossRef]
- Grimme, H. Aluminium Induced Magnesium Deficiency in Oats. Z. Pflanz. Bodenkd. 1983, 146, 666–676. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-Mediated Stabilisation of Soil Organic Carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, L.; Qin, S.; Yang, G.; Fang, K.; Zhu, B.; Kuzyakov, Y.; Chen, P.; Xu, Y.; Yang, Y. Regulation of Priming Effect by Soil Organic Matter Stability over a Broad Geographic Scale. Nat. Commun 2019, 10, 5112. [Google Scholar] [CrossRef] [Green Version]
- Keren, R.; Bingham, F.T. Boron in Water, Soils, and Plants. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1958; pp. 229–276. ISBN 978-1-4612-5046-3. [Google Scholar]
- Padbhushan, R.; Kumar, D. Soil Boron Fractions and Response of Green Gram in Calcareous Soils. J. Plant Nutr. 2015, 38, 1143–1157. [Google Scholar] [CrossRef]
- Sidhu, G.S.; Kumar, D. Influence of Soil Applied Boron on Yield of Berseem (Trifolium alexandrium L.) and Soil Boron Fractions in Calcareous Soils. J. Plant Nutr. 2018, 41, 980–995. [Google Scholar] [CrossRef]
- Gupta, U.C. Relationship of Total and Hot-Water Soluble Boron, and Fixation of Added Boron, to Properties of Podzol Soils. Soil Sci. Soc. Am. J. 1968, 32, 45–48. [Google Scholar] [CrossRef]
- 68. Atique-ur-Rehman, F.M.; Rashid, A.; Nadeem, F.; Stuerz, S.; Asch, F.; Bell, R.W.; Siddique, K.H. Boron Nutrition of Rice in Different Production Systems. A Review. Agron. Sustain. Dev. 2018, 38, 25. [Google Scholar] [CrossRef] [Green Version]
Physical Properties of Soil | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil | pH | Electrical Conductivity (dS m−1) | Texture | Saturation Point (%) | Field Capacity (%) | Wilting Point (%) | Bulk Density (%) | |||||||
Calcareous | 8.08 | 0.90 | Loam | 39 | 20.7 | 12.3 | 1.04 | |||||||
Forest | 7.59 | 0.58 | Loam | 51 | 27.2 | 16.2 | 0.95 | |||||||
Soil fertility analysis | ||||||||||||||
O.M | P-Olsen | N-NO3 | K | Ca | Mg | Na | Fe | Zn | Mn | Cu | B | S | ||
Soil | % | (mg kg−1) | ||||||||||||
Calcareous | 0.97 | 19 | 23.1 | 296 | 6536 | 714 | 107 | 1.68 | 0.19 | 1.28 | 0.22 | 0.09 | 20.5 | |
Forest | 4.9 | 15 | 2.72 | 599 | 6364 | 341 | 101 | 3.90 | 1.87 | 8.17 | 0.54 | 0.47 | 12.2 |
Salinity/Sodicity | Cations | Anions | Micronutrients | ||||
---|---|---|---|---|---|---|---|
(mg L−1) | (mg L−1) | (mg L−1) | |||||
pH | 8.06 | Ca | 95.8 | SO4 | 81.7 | B | 0.01 |
EC (dS m−1) | 0.77 | Mg | 24.1 | HCO3 | 256 | Fe | ND |
ARS | 0.48 | Na | 20.5 | Cl | 37.1 | Mn | ND |
ARSaj | 0.63 | K | 6.24 | CO3 | 34.2 | Cu | ND |
N-NO3 | 1.12 | Zn | ND |
Fertilizer | Formula | Fertilization ¥ | Element & | |
---|---|---|---|---|
Steiner mg L−1 | Solid * g pot−1 | g pot−1 | ||
Calcium nitrate | Ca (NO3)2 4H2O | 590 | 16.52 | Ca = 2.8 K = 7.64 Mg = 0.66 N = 4.7 P = 0.86 S = 2.68 Fe = 0.084 Mn = 0.041 B = 0.0044 Zn = 0.006 Cu = 0.0033 Mo = 0.0022 |
Potassium nitrate | KNO3 | 710 | 19.88 | |
Magnesium sulphate | Mg SO₄·7H₂O | 246.4 | 6.899 | |
Monobasic potassium phosphate | KH2PO4 | 136 | 3.808 | |
Ultrasol micro (microelements) | Fe EDTA, Mn EDTA, Zn EDTA, Cu EDTA, B and Mo | 40 | 1.12 |
Variable | ¥ g pot−1 | Variable | ¥ g pot−1 | ||
---|---|---|---|---|---|
pH * | 8.2 | Mn (mg L−1) | <0.025 | ||
EC (dS cm−1) | 2.03 | Na (mg L−1) | 186.4 | 5.21 | |
N-NO3− (mg L−1) | 75 | 2.1 | S (mg L−1) | 154.51 | 4.32 |
P (mg L−1) | 9.33 | 0.26 | Zn (mg L−1) | 0.046 | 0.001 |
Ca (mg L−1) | 96.53 | 2.7 | B (mg L−1) | 1.017 | 0.028 |
K (mg L−1) | 440.17 | 12.32 | Cu (mg L−1) | <0.005 | |
Mg (mg L−1) | 42.75 | 1.19 | Fe (mg L−1) | 0.28 | 0.007 |
Y | Predictive Explanatory Variables | ||||
---|---|---|---|---|---|
Linear Models | Polynomial Models | ||||
T + S | T + S + W | T + S + (W)2 | T + S + (W)2 + (W)3 | T + S + (W)2 + (W)3 (W)4 | |
pH | 0.04270 * | 0.04279 | 0.04307 | 0.04293 | 0.04303 |
E.C | 0.8843 | 0.8822 | 0.8765 | 0.8741 * | 0.8746 |
ORP | 658.4 | 660.4 | 661.2 | 654.1 | 632.6 * |
NO3− | 192,534.9 | 192,534.9 | 191,012.7 | 188,569.1 * | 189,259.0 |
N | 1456.8 | 1461.8 | 1412.6 | 1382.9 | 1333.6 * |
K+ | 1253.2 | 1205.4 | 1192.6 * | 1192.7 | 1199.7 |
Ca2+ | 55,308.0 | 54,845.5 | 52,259.2 * | 52,447.9 | 52,347.7 |
Mg2+ | 3372.5 | 3401.9 | 3324.3 | 3335.1 | 3315.5 * |
Na+ | 416.4 | 305.1 | 293.6 * | 295.8 | 294.8 |
S | 795.1 | 758.3 | 755.4 | 739.8 * | 744.8 |
Zn2+ | 0.1474 | 0.1408 | 0.1410 | 0.1381 * | 0.1388 |
B | 0.57 | 0.57 | 0.58 | 0.56 | 0.46 * |
Variables | Coefficient | Std. Error | p Value |
---|---|---|---|
pH | |||
Steiner | −0.206786 | 0.031651 | 2.43 × 10−10 ** |
Solid | −0.314405 | 0.031651 | <2 × 10−16 ** |
Organic | −0.007024 | 0.031651 | 0.8245 |
Calcareous soil | 0.054583 | 0.022380 | 0.0153 * |
Variables | Coefficient | Std. Error | p Value |
---|---|---|---|
Potassium | |||
Steiner | 26.029 | 5.2579 | 1.18 × 10−6 ** |
Solid | 83.4773 | 5.2579 | <2 × 10−16 ** |
Organic | 7.397 | 5.2579 | 0.160 |
Calcareous soil | −45.2445 | 3.7179 | <2 × 10−16 ** |
Weeks | −3.1489 | 1.9876 | 0.114 |
Weeks2 | 0.3339 | 0.1289 | 0.010 * |
Calcium | |||
Steiner | 267.0032 | 34.8054 | 1.95 × 10−13 ** |
Solid | 567.6242 | 34.8054 | <2 × 10−16 ** |
Organic | 45.4315 | 34.8054 | 0.192702 |
Calcareous soil | −295.5239 | 24.6111 | <2 × 10−16 ** |
Weeks | −48.2493 | 13.1576 | 0.000286 ** |
Weeks2 | 3.7295 | 0.8532 | 1.66 × 10−5 ** |
Sodium | |||
Steiner | 23.96214 | 2.60988 | <2 × 10−16 ** |
Solid | 29.55917 | 2.60988 | <2 × 10−16 ** |
Organic | 27.32929 | 2.60988 | <2 × 10−16 ** |
Calcareous soil | 8.59827 | 1.84546 | 4.62 × 10−6 ** |
Weeks | −1.19594 | 0.98662 | 0.226 |
Weeks2 | 0.25367 | 0.06398 | 9.01 × 10−05 ** |
Variables | Coefficient | Std. Error | p Value |
---|---|---|---|
Electric Conductivity | |||
Steiner | 1.395000 | 0.142609 | <2 × 10−16 ** |
Solid | 2.916071 | 0.142609 | <2 × 10−16 ** |
Organic | 0.369881 | 0.142609 | 0.00992 ** |
Calcareous soil | −0.667857 | 0.100840 | 1.44 × 10−10 ** |
Weeks | 0.377170 | 0.150824 | 0.01288 * |
Weeks2 | −0.047783 | 0.022955 | 0.03815 * |
Weeks3 | 0.001814 | 0.001008 | 0.07286 |
Nitrates | |||
Steiner | 913.0952 | 65.9477 | <2 × 10−16 ** |
Solid | 1618.5714 | 65.9477 | <2 × 10−16 ** |
Organic | −29.9286 | 65.9477 | 0.65026 |
Calcareous soil | −361.7500 | 46.6321 | 1.11 × 10−13 ** |
Weeks | 153.7308 | 69.7468 | 0.02821 * |
Weeks2 | −23.4050 | 10.6151 | 0.02816 * |
Weeks3 | 1.2104 | 0.4663 | 0.00986 ** |
Sulfur | |||
Steiner | 13.04131 | 4.13602 | 0.001765 ** |
Solid | 13.38048 | 4.13602 | 0.001340 ** |
Organic | 24.95929 | 4.13602 | 4.30 × 10−9 ** |
Calcareous soil | −18.24827 | 2.92461 | 1.35 × 10−9 ** |
Weeks | −13.89950 | 4.37429 | 0.001627 ** |
Weeks2 | 2.21597 | 0.66574 | 0.000972 ** |
Weeks3 | −0.08965 | 0.02924 | 0.002351 ** |
Zinc | |||
Steiner | 0.0764286 | 0.0566417 | 0.17816 |
Solid | 0.4747619 | 0.0566417 | 1.55 × 10−15 ** |
Organic | −0.0027976 | 0.0566417 | 0.96064 |
Calcareous soil | −0.2030655 | 0.0400517 | 6.66 × 10−7 ** |
Weeks | 0.1781132 | 0.0599047 | 0.00316 ** |
Weeks2 | −0.0294383 | 0.0091172 | 0.00137 ** |
Weeks3 | 0.0012264 | 0.0004005 | 0.00238 ** |
Variables | Coefficient | Std. Error | p Value |
---|---|---|---|
Oxidation–reduction potential | |||
Steiner | 12.520238 | 3.831539 | 0.001200 ** |
Solid | 19.535714 | 3.831539 | 5.80 × 10−7 ** |
Organic | 8.607143 | 3.831539 | 0.025346 * |
Calcareous soil | 6.620833 | 2.709308 | 0.015064 * |
Weeks | 41.980100 | 9.494133 | 1.33 × 10−5 ** |
Weeks2 | −10.093597 | 2.454188 | 4.95 × 10−5 ** |
Weeks3 | 0.925696 | 0.241927 | 0.000156 ** |
Weeks4 | −0.028663 | 0.008014 | 0.000400 ** |
Nitrogen | |||
Steiner | −5.57000 | 5.56991 | 0.318042 |
Solid | −1.50262 | 5.56991 | 0.787504 |
Organic | 0.79643 | 5.56991 | 0.886388 |
Calcareous soil | −1.72417 | 3.93852 | 0.661842 |
Weeks | 22.17789 | 13.80163 | 0.109041 |
Weeks2 | −9.54002 | 3.56766 | 0.007871 ** |
Weeks3 | 1.16756 | 0.35169 | 0.001002 ** |
Weeks4 | −0.04282 | 0.01165 | 0.000277 ** |
Magnesium | |||
Steiner | 60.67560 | 8.75297 | 2.22 × 10−11 ** |
Solid | 130.17726 | 8.75297 | <2 × 10−16 ** |
Organic | 17.89310 | 8.75297 | 0.0417 * |
Calcareous soil | 65.49940 | 6.18929 | <2 × 10−16 ** |
Weeks | 37.33322 | 21.68890 | 0.0861 |
Weeks 2 | −11.57603 | 5.60648 | 0.0397 * |
Weeks 3 | 1.17324 | 0.55267 | 0.0345 * |
Weeks 4 | −0.03737 | 0.01831 | 0.0420 * |
Boron | |||
Steiner | −0.0594881 | 0.1044116 | 0.569 |
Solid | 0.0957619 | 0.1044116 | 0.360 |
Organic | −0.0295017 | 0.1044116 | 0.778 |
Calcareous soil | 0.3802925 | 0.0738301 | 4.49 × 10−7 ** |
Weeks | 1.5860830 | 0.2587204 | 2.52 × 10−9 ** |
Weeks2 | −0.4885648 | 0.0668780 | 2.13 × 10−12 ** |
Weeks3 | 0.0528210 | 0.0065926 | 2.01 × 10−14 ** |
Weeks4 | −0.0018441 | 0.0002184 | 1.01 × 10−15 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narváez-Ortiz, W.A.; Reyes-Valdés, M.H.; Cabrera-De la Fuente, M.; Benavides-Mendoza, A. Multiple Linear and Polynomial Models for Studying the Dynamics of the Soil Solution. Soil Syst. 2022, 6, 42. https://doi.org/10.3390/soilsystems6020042
Narváez-Ortiz WA, Reyes-Valdés MH, Cabrera-De la Fuente M, Benavides-Mendoza A. Multiple Linear and Polynomial Models for Studying the Dynamics of the Soil Solution. Soil Systems. 2022; 6(2):42. https://doi.org/10.3390/soilsystems6020042
Chicago/Turabian StyleNarváez-Ortiz, Willian Alfredo, M. Humberto Reyes-Valdés, Marcelino Cabrera-De la Fuente, and Adalberto Benavides-Mendoza. 2022. "Multiple Linear and Polynomial Models for Studying the Dynamics of the Soil Solution" Soil Systems 6, no. 2: 42. https://doi.org/10.3390/soilsystems6020042
APA StyleNarváez-Ortiz, W. A., Reyes-Valdés, M. H., Cabrera-De la Fuente, M., & Benavides-Mendoza, A. (2022). Multiple Linear and Polynomial Models for Studying the Dynamics of the Soil Solution. Soil Systems, 6(2), 42. https://doi.org/10.3390/soilsystems6020042