Microplastic Extraction from Agricultural Soils Using Canola Oil and Unsaturated Sodium Chloride Solution and Evaluation by Incineration Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and MP Samples
2.2. Oil Selection
2.3. Spiking and Recovery Test for Large Particles
2.4. Spiking and Recovery Test for Small Particles
2.5. Comparison with the Simple Density Separation
2.6. Laboratory Precautions and Sample Control
2.7. Statistics
3. Results and Discussion
3.1. Oil Selection
3.2. Spiking and Recovery Test
3.3. Comparison with the Simple Density Separation
3.4. Advantages and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Annual Production of Plastics Worldwide from 1950 to 2020. 2021. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 20 May 2022).
- PlasticsEurope. Plastics—The Facts 2020. 2020. Available online: https://issuu.com/plasticseuropeebook/docs/plastics_the_facts-web-dec2020 (accessed on 20 May 2022).
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef]
- Ng, E.-L.; Lwanga, E.H.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. Available online: https://onlinelibrary.wiley.co. [CrossRef] [PubMed] [Green Version]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Mahagamage, M.G.; Gajanayake, P.; Abeynayaka, A.; Gamaralalage, P.J.; Ohgaki, M.; Takenaka, M.; Fukai, T.; Itsubo, N. Microplastics and Potentially Toxic Elements: Potential Human Exposure Pathways through Agricultural Lands and Policy Based Countermeasures. Microplastics 2022, 1, 102–120. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. Am. Chem. Soc. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, L.; Liu, M.; Song, Y.; Lu, S.; Hu, J.; Cao, C.; Xie, B.; Shi, H.; He, D. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ. Sci. Nano 2018, 5, 2009–2020. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Sobral, P.; Ferreira, A.M. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 2010, 60, 1988–1992. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Rist, S.; Bodin, J.; Jensen, L.H.S.; Schmidt, S.N.; Mayer, P.; Meibom, A.; Baun, A. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr. Environ. Assess. Manag. 2017, 13, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Seidensticker, S.; Grathwohl, P.; Lamprecht, J.; Zarfl, C. A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics. Environ. Sci. Eur. 2018, 30, 30. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, P.; Sun, H.; Ma, J.; Li, B. The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments. Environ. Pollut. 2020, 257, 113525. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Sica, C.; Russo, G. Plastic materials in european agriculture: Actual use and perspectives. J. Agric. Eng. 2012, 42, 15–28. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Q.; Gu, Q.; Cao, Y.; Du, X.; Li, F. Contamination Characteristics and Degradation Behavior of Low-Density Polyethylene Film Residues in Typical Farmland Soils of China. J. Environ. Sci. Health Part B 2006, 41, 189–199. [Google Scholar] [CrossRef]
- Alvarenga, P.; Farto, M.; Mourinha, C.; Palma, P. Beneficial Use of Dewatered and Composted Sewage Sludge as Soil Amendments: Behaviour of Metals in Soils and Their Uptake by Plants. Waste Biomass Valorization 2016, 7, 1189–1201. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Ribeiro, F.; O’Brien, J.; O’Brien, S.; Tscharke, B.J.; Gallen, M.; Samanipour, S.; Mueller, J.F.; Thomas, K.V. Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography–mass spectrometry. Sci. Total Environ. 2020, 715, 136924. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Tscharke, B.J.; O’Brien, J.W.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Choi, P.M.; Wang, X.; Mueller, J.F.; Thomas, K.V. Release of Plastics to Australian Land from Biosolids End-Use. Environ. Sci. Technol. 2020, 54, 15132–15141. [Google Scholar] [CrossRef] [PubMed]
- Okoffo, E.D.; Donner, E.; McGrath, S.P.; Tscharke, B.J.; O’Brien, J.W.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; et al. Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption. Water Res. 2021, 201, 117367. [Google Scholar] [CrossRef] [PubMed]
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 2. [Google Scholar] [CrossRef] [Green Version]
- Rolsky, C.; Kelkar, V.; Driver, E.; Halden, R.U. Municipal sewage sludge as a source of microplastics in the environment. Curr. Opin. Environ. Sci. Health 2020, 14, 16–22. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Watteau, F.; Dignac, M.F.; Bouchard, A.; Revallier, A.; Houot, S. Microplastic Detection in Soil Amended With Municipal Solid Waste Composts as Revealed by Transmission Electronic Microscopy and Pyrolysis/GC/MS. Front. Sustain. Food Syst. 2018, 2, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, X.; Song, N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Nabi, I.; Bacha, A.U.R.; Zhang, L. A review on microplastics separation techniques from environmental media. J. Clean. Prod. 2022, 337, 130458. [Google Scholar] [CrossRef]
- Felsing, S.; Kochleus, C.; Buchinger, S.; Brennholt, N.; Stock, F.; Reifferscheid, G. A new approach in separating microplastics from environmental samples based on their electrostatic behavior. Environ. Pollut. 2018, 234, 20–28. [Google Scholar] [CrossRef] [PubMed]
- van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef]
- Han, X.; Lu, X.; Vogt, R.D. An optimized density-based approach for extracting microplastics from soil and sediment samples. Environ. Pollut. 2019, 254, 113009. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Anal. Methods 2017, 9, 1419–1428. [Google Scholar] [CrossRef]
- Mani, T.; Frehland, S.; Kalberer, A.; Burkhardt-Holm, P. Using castor oil to separate microplastics from four 4 different environmental matrices. Anal. Methods 2019, 11, 1788–1794. [Google Scholar] [CrossRef] [Green Version]
- Scopetani, C.; Chelazzi, D.; Mikola, J.; Leiniö, V.; Heikkinen, R.; Cincinelli, A.; Pellinen, J. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci. Total Environ. 2020, 733, 139338. [Google Scholar] [CrossRef]
- Lechthaler, S.; Hildebrandt, L.; Stauch, G.; Schüttrumpf, H. Canola oil extraction in conjunction with a plastic free separation unit optimises microplastics monitoring in water and sediment. Anal. Methods 2020, 12, 5128–5139. [Google Scholar] [CrossRef]
- Obara, H.; Maejima, Y.; Kohyama, K.; Ohkura, T.; Takata, Y. Outline of the Comprehensive Soil Classification System of Japan—First Approximation. Jpn. Agric. Res. Q. JARQ 2015, 49, 217–226. [Google Scholar] [CrossRef] [Green Version]
- MAFF (Ministry of Agriculture Forestry and Fisheries). The Situation Regarding Plastics Emitted from the Agricultural Sector 2022. Available online: https://www.maff.go.jp/j/seisan/pura-jun/attach/pdf/index-35.pdf (accessed on 20 May 2022). (In Japanese)
- Diamante, L.M.; Lan, T. Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s−1. J. Food Processing 2014, 2014, 234583. Available online: https://www.hindawi.com/journals/jfp/2014/234583/ (accessed on 20 May 2022). [CrossRef] [Green Version]
- Abulencia, J.P.; Theodore, L. Fluid Flow for the Practicing Chemical Engineer; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Shin-Etsu Silicone. Silicone Fluid. KF-96. Performance Test Results. 2014. Available online: https://www.shinetsusilicone-global.com/catalog/pdf/kf96_e.pdf (accessed on 20 May 2022).
- Cong, Y.; Zhang, W.; Liu, C.; Huang, F. Composition and Oil-Water Interfacial Tension Studies in Different Vegetable Oils. Food Biophys. 2019, 15, 229–239. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Bormashenko, Y.; Grynyov, R.; Gendelman, O. Low voltage reversible electrowetting exploiting lubricated polymer honeycomb substrates. Appl. Phys. Lett. 2014, 104, 171601. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, W.C. LIX.—On interfacial tension. Part II. The relation between interfacial and surface tension in sundry organic solvents in contact with aqueous solutions. Journal of the Chemical Society, Transactions. R. Soc. Chem. 1921, 119, 466–476. [Google Scholar] [CrossRef] [Green Version]
- Matsuzawa, Y.; Ayabe, M.; Nishino, J.; Kubota, N.; Motegi, M. Evaluation of char fuel ratio in municipal pyrolysis waste. Fuel 2004, 83, 1675–1687. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. Pergamon 2016, 48, 300–314. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.J.; Park, J.W.; Jung, S.M. Repeatable separation of microplastics integrating mineral oil extraction and a PDMS-Ni foam adsorbent in real soil. Chem. Eng. J. 2022, 429, 132517. [Google Scholar] [CrossRef]
- Vermeiren, P.; Muñoz, C.; Ikejima, K. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environ. Pollut. 2020, 262, 114298. [Google Scholar] [CrossRef]
- Conesa, J.A.; Nuñez, S.S.; Ortuño, N.; Moltó, J. PAH and POP Presence in Plastic Waste and Recyclates: State of the Art. Energies 2021, 14, 3451. [Google Scholar] [CrossRef]
Soil Type (CSCS) *1 | Sampling Site | Sampling Date | Land Use | Sand, % | Silt, % | Clay, % | pH (H2O) *2 | EC, mS cm−1 | TC *3, mg g−1 | TN *3, mg g−1 | OM *4, mg g−1 | CEC, meq g−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gray Fulvic soil | Shibata, Niigata | 22 April 2019 | Paddy field | 63.4 | 24.4 | 12.2 | 5.30 | 0.084 | 24.1 | 2.10 | 31.4 | 13.5 |
Clay Loam soil | Shindori, Niigata | 3 October 2019 | Paddy field | 48.0 | 24.0 | 28.0 | 5.24 | 0.118 | 18.6 | 1.68 | 50.6 | 5.54 |
Pseudogley soil | Agui, Aichi | 29 April 2019 | Paddy field | 37.0 | 33.8 | 29.0 | 5.17 | 0.078 | 15.0 | 1.50 | 51.8 | 9.54 |
Allophanic Andosol | Matsumoto, Nagano | 24 April 2019 | Paddy field | 33.9 | 24.4 | 41.5 | 5.66 | 0.800 | 45.7 | 4.00 | 68.2 | 13.2 |
Sandy Regosol | Ikarashi, Niigata | 25 October 2019 | Upland field | 85.7 | 8.6 | 5.7 | 5.87 | 0.026 | 6.20 | 0.89 | 24.2 | 3.23 |
Oil | Manufacturer | Density, g cm−3 | Dynamic Viscosity, mPa s | Kinematic Viscosity, mm2 s−1 | Oil–Water Interfacial Tension, mN m−1 | Price *, $ L−1 | Reference |
---|---|---|---|---|---|---|---|
Canola (Rapeseed) | J-Oil mills (Tokyo, Japan) | 0.916 | 71.6 | 78.2 | 33.47 | 2 | [38,41] |
Rice bran | Tsuno Food Industry Co. (Katsuragi, Japan) | 0.913 | 65.8 | 72.1 | 22.71 | 6 | [44,47] |
Olive | Nisshin OilliO (Tokyo, Japan) | 0.911 | 74.1 | 81.3 | 13.15 | 9 | [40,47] |
Castor | Fujifilm Wako Pure Chemical (Osaka, Japan) | 0.961 | 852.8 | 886.6 | 13.7 | 34 | [39,48] |
Turpentine | Ditto | 0.86 | 1.5 | 1.7 | 27.2 | 33 | [45,49] |
Silicone SE KF-96-100CS | Shin-Etsu Chemical (Tokyo, Japan) | 0.965 | 96.5 | 100 | 20.9 | 23 | [46] |
Silicone SE KF-96-500CS | Ditto | 0.97 | 485 | 500 | 21.1 | 27 | Ditto |
Gray Fulvic Soil | Clay Loam Soil | |||||||
---|---|---|---|---|---|---|---|---|
Oil Type | LDPE | PP | PVC | Total | LDPE | PP | PVC | Total |
Canola oil | 100 ± 0 | 100 ± 0 | 96.7 ± 2.7 | 98.9 ± 0.9 a | 90 ± 4.7 | 100 ± 0 | 100 ± 0 | 96.7 ± 1.6 a |
Rice oil | 100 ± 0 | 96.7 ± 2.7 | 100 ± 0 | 98.9 ± 0.9 a | 100 ± 0 | 93.3 ± 2.7 | 96.7 ± 2.7 | 96.7 ± 1.6 a |
Olive oil | 96.7 ± 2.7 | 86.7 ± 7.2 | 90 ± 4.7 | 91.1 ± 4.0 a | 93.3 ± 2.7 | 93.3 ± 2.7 | 96.7 ± 2.7 | 94.4 ± 0.9 a |
Castor oil | 83.3 ± 7.2 | 86.7 ± 7.2 | 80 ± 9.4 | 83.3 ± 5.4 ab | 100 ± 0 | 93.3 ± 2.7 | 100 ± 0 | 97.8 ± 0.9 a |
Turpentine oil | 100 ± 0 | 93.3 ± 5.4 | 100 ± 0 | 97.8 ± 1.8 a | 93.3 ± 2.7 | 100 ± 0 | 100 ± 0 | 97.8 ± 0.9 a |
Silicon oil KF96-100CS | 93.3 ± 2.7 | 100 ± 0 | 86.7 ± 2.7 | 93.3 ± 1.6 a | 93.3 ± 5.4 | 93.3 ± 5.4 | 96.7 ± 2.7 | 94.4 ± 2.4 a |
Silicon oil KF96-500CS | 66.7 ± 11.9 | 63.3 ± 9.8 | 76.7 ± 5.4 | 68.9 ± 2.4 b | 83.3 ± 7.2 | 76.7 ± 7.2 | 86.7 ± 7.2 | 82.2 ± 0.9 b |
Soil Type | LDPE | PP | PVC |
---|---|---|---|
Gray Fulvic soil | 97.9 ± 0.7 | 97.3 ± 0.2 | 97.6 ± 0.4 |
Clay Loam soil | 97.7 ± 0.4 | 96.6 ± 0.3 | 98.4 ± 0.4 |
Pseudogley soil | 97.6 ± 0.5 | 97.7 ± 0.2 | 96.6 ± 0.4 |
Allophanic Andosol | 96.0 ± 0.4 | 96.8 ± 0.8 | 96.3 ± 0.4 |
Sandy Regosol | 97.8 ± 0.3 | 97.8 ± 0.6 | 97.4 ± 0.4 |
Average | 97.4 ± 0.3 a | 97.3 ± 0.3 a | 97.3 ± 0.3 a |
Soil Type | Separation Method | LDPE | PP | PVC | |||
---|---|---|---|---|---|---|---|
Gray Fulvic soil | Oil and density method | 95.2 ± 0.4 | ** | 95.2 ± 1.0 | ** | 80.1 ± 2.4 | * |
Simple density method | 71.4 ± 2.0 | 83.0 ± 2.2 | 70.3 ± 2.1 | ||||
Clay Loam soil | Oil and density method | 96.2 ± 0.8 | *** | 98.4 ± 0.6 | ** | 80.5 ± 0.7 | ** |
Simple density method | 81.5 ± 1.0 | 75.0 ± 3.4 | 71.7 ± 0.9 | ||||
Pseudogley soil | Oil and density method | 95.4 ± 1.1 | *** | 96.0 ± 0.4 | *** | 78.1 ± 1.9 | * |
Simple density method | 82.8 ± 1.1 | 74.7 ± 2.4 | 66.4 ± 2.9 | ||||
Allophanic Andosol | Oil and density method | 98.1 ± 0.6 | *** | 98.1 ± 0.4 | *** | 76.0 ± 1.9 | ns |
Simple density method | 71.9 ± 0.4 | 77.5 ± 1.4 | 72.3 ± 2.7 | ||||
Sandy Regosol | Oil and density method | 98.3 ± 0.4 | *** | 98.7 ± 0.5 | *** | 79.0 ± 1.4 | * |
Simple density method | 70.9 ± 1.0 | 85.2 ± 1.5 | 70.7 ± 1.8 | ||||
Average | Oil and density method | 96.6 ± 0.4 a | *** | 97.3 ± 0.4 a | *** | 78.7 ± 0.8 b | *** |
Simple density method | 75.7 ± 1.5 a | 79.1 ± 1.4 a | 70.3 ± 1.0 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kononov, A.; Hishida, M.; Suzuki, K.; Harada, N. Microplastic Extraction from Agricultural Soils Using Canola Oil and Unsaturated Sodium Chloride Solution and Evaluation by Incineration Method. Soil Syst. 2022, 6, 54. https://doi.org/10.3390/soilsystems6020054
Kononov A, Hishida M, Suzuki K, Harada N. Microplastic Extraction from Agricultural Soils Using Canola Oil and Unsaturated Sodium Chloride Solution and Evaluation by Incineration Method. Soil Systems. 2022; 6(2):54. https://doi.org/10.3390/soilsystems6020054
Chicago/Turabian StyleKononov, Andrei, Motoya Hishida, Kazuki Suzuki, and Naoki Harada. 2022. "Microplastic Extraction from Agricultural Soils Using Canola Oil and Unsaturated Sodium Chloride Solution and Evaluation by Incineration Method" Soil Systems 6, no. 2: 54. https://doi.org/10.3390/soilsystems6020054
APA StyleKononov, A., Hishida, M., Suzuki, K., & Harada, N. (2022). Microplastic Extraction from Agricultural Soils Using Canola Oil and Unsaturated Sodium Chloride Solution and Evaluation by Incineration Method. Soil Systems, 6(2), 54. https://doi.org/10.3390/soilsystems6020054